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1 Overview of the contribution

We extend the Multiple Tier-based Strictly 2-Local
Inference Algorithm, or MTSL2IA, of McMullin
et al. (2019), in two important respects. (We name
the extended version k-MTSLIA.)1

Firstly, we relax the previously fixed k-gram
span parameter k = 2 to arbitrary values (k ≥ 2).
This, for instance, lets us learn2 the long-distance
laryngeal restrictions in South Bolivian Quechua
(§3.1; Gallagher, 2010), simultaneous with an al-
lophonic vowel distribution conditioned by con-
sonants (§3.2; Gallagher, 2016). The former is a
TSL2 pattern, and the latter a TSL3 one, both of
which combine into a MTSL3 pattern by means of
intersection.

Secondly, we make the algorithm’s restriction
against overlapping tiers optional (as defined in
Aksënova and Deshmukh, 2018). This does not
expand the coverage of attested learnable patterns,
nonetheless, it lets us provide the first implemented
learner of the definition-true MTSLk class. The
latter class is equal to the intersection closure of
TSLk, as usually defined in the subregular literature
(Aksënova and Deshmukh, 2018; Aksënova et al.,
2020). Owing to its simpler definition, this version
of MTSLk is easier to manipulate mathematically.

2 Properties of the algorithm

2.1 Running time

Our algorithm, k-MTSLIA, consists of two sep-
arate routines LEARN(X) and SCAN(y,G). The
former constructs a grammar for the sample X ,
and the latter checks if a newly observed string y
conforms to the grammar G. The grammar is re-
turned in an implicit form (§4.2), which makes it
possible to run both routines in polynomial time –

1https://github.com/antecedent/k-mtslia
2Given that all relevant tier-based trigrams are attested,

which is feasible with curated datasets, but less so with natu-
ralistic ones (Wilson and Gallagher, 2018).

even when the number of restriction-bearing tiers is
bounded only exponentially3. LEARN(X) runs in
O(Nk), where N =

∑
x∈X |x|, and SCAN(y,G)

in O(|y|k). The degree of the polynomial, k, is
the k-gram span parameter. For example, using the
algorithm for MTSL3 entails k = 3, and, therefore,
cubic running time.

2.2 Minimality of resulting stringsets
For each k-gram ρ1ρ2 · · · ρk, k-MTSLIA collects
the minimal conditions that a tier τ has to satisfy
in order to have *ρ1ρ2 · · · ρk restricted on that tier
(§4.2). Therefore, the set of restriction-bearing
tiers is necessarily maximal, and, consequently, the
stringset accepted by SCAN is always the minimal
MTSLk superset of the input sample received by
LEARN. The fact that TSLτ

k
4 classes of stringsets

are lattice classes (Heinz et al., 2011, 2012) guar-
antees the uniqueness of such a superset. This also
ensures that for each k separately, k-MTSLIA iden-
tifies MTSLk stringsets in the limit – in a TxtEx
setting – in the terms of Gold (1967).

Additionally, for small alphabets, we have veri-
fied the above claim of minimality by comparing
k-MTSLIA’s results with the outcomes of a brute-
force MTSLk learner.

3 Some phonotactic restrictions of South
Bolivian Quechua

3.1 Laryngeal restrictions (TSL2)
As per Gallagher (2010), South Bolivian Quechua
allows only one aspirated or ejective stop per word:

kintu ‘a bunch’ only plain stops
k’inti ‘a pair’ one ejective
khastuy ‘to chew’ one aspirate

*k’int’i two ejectives
*khasthuy two aspirates

3As a result of dispensing with the “no overlapping tiers”
requirement.

4That is, TSLk with a fixed tier τ .
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Therefore, on a tier τ1 containing only stop con-
sonants, one observes the bigram restrictions of the
shape *ChCh, *ChC’, *C’Ch, and *C’C’.

3.2 Distribution of mid vowels (TSL3)

As per Gallagher (2016), the same varieties of
Quechua exhibit allophonic variation between the
high [i, u] and mid [e, o], depending on the pres-
ence of uvular stops (Q) nearby. Concretely, [e,

o] occur only (1) when there is an uvular stop di-
rectly to the left or right, or (2) when there is an
uvular stop separated from the vowel by a single
intervening consonant:

q’epij ‘to carry’ (1)
qheLu ‘lazy’ (1)
erqe ‘son’ (2) and (1)

*k’epij neither (1) nor (2)
*khelu neither (1) nor (2)

As a result, [e, o] cannot occur between two non-
uvular-stop consonants (Q̄), except when they are
non-uvular-stop consonants intervening between
the vowel and an uvular stop. By inspecting the
Quechua vocabulary included5 with the Induc-
tive Projection Learner (Gouskova and Gallagher,
2020), we discover that two adjacent stops never
occur, therefore, the aforementioned intervening
consonants can be clarified as non-stops (T̄).

Avoiding typologically anomalous 5-gram re-
strictions such as *Q̄T̄?eT̄?Q̄, we instead opt to
place an analogous trigram restriction *Q̄eQ̄ (and
*Q̄oQ̄) on the tier τ2 = Q̄ ∪ {e, o}.

4 Underpinnings of the algorithm

4.1 Paths

k-MTSLIA relies on a similar notion of “paths” as
the original MTSL2IA does.

Definition. (k-path.) A string x contains a k-path
⟨ρ1ρ2 · · · ρk, S⟩ if and only if all of the following
are true:

• x has ρ1 as its first character,

• x has ρk as its last character,

• x has ρ1ρ2 · · · ρk as one of its subsequences,

• x has only one such subsequence,

• erasing this subsequence from x leaves x′,

• S is the set of (distinct) characters in x′, and

• S and {ρ1, ρ2, . . . , ρk} are disjoint.
5https://github.com/gouskova/inductive_projection_learner/

tree/master/data/quechua

For instance, “qheLu” possesses the 3-paths
⟨qhLu, {e}⟩ and ⟨qheu, {L}⟩.

4.2 Interpretation of attested paths
Each time we witness a k-path ⟨ρ1ρ2 · · · ρk, S⟩
in the inputs (including substrings), we can re-
strict *ρ1ρ2 · · · ρk on some tier τ , but we must
have at least one extra character from S on the
tier. Only this way will the k-gram ρ1ρ2 · · · ρk be
broken apart (by the intervening character) in the
tier image of some input string. If it were not bro-
ken apart in this manner, the entire k-gram would
project onto the tier image and make the restriction
*ρ1ρ2 · · · ρk contradictory with our data.

To put it differently, each k-path ⟨ρ1ρ2 · · · ρk,
{σ1, σ2, . . . , σN}⟩ can be interpreted as follows:

σ1 ∈ τ ∨ σ2 ∈ τ ∨ · · · ∨ σN ∈ τ.

Consider a certain 3-path of the string “q’epij”,
namely, ⟨q’pj, {e, i}⟩. In k-MTSLIA, it will be
interpreted in the following way:

e ∈ τ ∨ i ∈ τ.

In isolation, this formula would entail that
*q’pj will be restricted on the tiers {q’, p, j, e},
{q’, p, j, i}, and {q’, p, j, e, i} – that is, on all tiers
τ that satisfy the formula (and contain the k-gram
itself).

These disjunctive clauses make up the grammars
that k-MTSLIA’s LEARN routine returns. In fact,
each attested k-path contributes to such a disjunc-
tive clause, all of which are eventually conjoined
in one CNF formula that constitutes the grammar
itself – or, more precisely, it constitutes one portion
of it, associated with a specific k-gram restriction.

The SCAN(y) routine then checks whether the
conjunction G∧¬G′ of a given grammar G and the
negation of another grammar G′ = LEARN({y}) is
a satisfiable formula. If it is, the string y is rejected.
This is a simple procedure, linear in the size of
the conjoined formula, owing to the fact that the
grammars only contain single-polarity literals.

5 Discussion

We hope to have enriched the toolset of subreg-
ular grammatical inference with a polynomial-
time algorithm for a known learning problem.
However, while potentially useful for computa-
tional experiment-heavy research on the topic, k-
MTSLIA generalizes too little to be a cognitively
realistic learner of phonotactics for k ≥ 3 – unless
an additional source of inductive bias is provided.
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