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African American English (AAE) is a language
variety primarily spoken by most African Ameri-
can people in the United States and, like many lan-
guages, can vary regionally, stylistically, and gen-
erationally. However, early work on AAE perpetu-
ated myths that the language variety was uniform
across regions and that it was spoken primarily by
working class men, due to being conducted in inner
city areas and examining a specific set of linguis-
tic features – such as the negative concord feature
e.g. I ain’t done nothing like that before (Wolfram,
2007; Wolfram and Kohn, 2015). These sociolin-
guistic myths negatively impacted not only the field
of linguistics but also how the public viewed AAE
(Wassink and Curzan, 2004). Since then studies
have looked at a broader range of geographical
areas and demonstrated distinct local differences.
Here we build on this line of research by analyzing
relative incidences of 18 morphosyntactic features
(selected from Green (2002) and Koenecke et al.
(2020)) in relationship to geographic and social
factors, at scale.

Our data is a corpus of 224M geotagged tweets,
posted across the entirety of the United States be-
tween May 2011 and April 2015 and filtered to
prioritize conversational language. This dataset is
five orders of magnitude larger than previous social
media studies of AAE (Jones, 2015; Austen, 2017;
Ilbury, 2020) with at least some data in all U.S.
counties.

Many feature-based studies of large corpora use
keyword searches or regular expressions to de-
tect features – however, keyword searches are lim-
ited by orthographic variation in tweets and reg-
ular expressions cannot be made for all features.
To circumvent these obstacles, we use the BERT-
based machine learning method used in Masis et al.
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(2022) to automatically detect features. A binary
classifier is trained for each morphosyntactic fea-
ture by fine-tuning a large pretrained language
model; given a tweet, each classifier returns a score
indicating the probability that the tweet contains
the given feature. We use relative incidence - per-
centage of tweets containing the feature out of total
tweets - to represent usage frequency. For each
feature, relative incidence z-scores were calculated
for all census tracts. Following this, Principal Com-
ponents Analysis was used to identify common
patterns of variation across the linguistic features
(Grieve et al., 2011) and the first principal com-
ponent (PC1) was shown to correspond to a latent
factor of general AAE. We investigated the relation-
ship between PC1 and 10 demographic variables
(using data from the American Community Sur-
vey) via a standardized linear regression analysis,
allowing us to explore the effects of demographic
variables on general AAE usage while accounting
for potentially confounding variables.
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Figure 1: Heatmap of PC1, our latent factor of general
AAE morphosyntax. Counties with sparse twitter data
were excluded (in gray; ∼3%). County-level data is
used here for visualization purposes; we use census
tract-level data for the main analysis.

Our results show that, contrary to sociolinguistic
myths of uniformity, there is clear variation in AAE
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Northeast South Midwest

Metro Non-metro Metro Non-metro Metro Non-metro
Number of tracts 884 32 2612 494 876 60

Average PC1 score 0.432 0.456 1.335 2.618 1.143 0.809

Table 1: Table showing average PC1 scores for metro vs non-metro tracts (as defined by the Rural-Urban Commuting
Area Codes) in the Northeast, South, and Midwest regions (as defined by the U.S. Census); we see a clear locus of
AAE in the non-metro South. All tracts included in this table have a similar relative African American population
(15-25%) in order to control for African American population as a potential confounding variable.

across both geographic and social dimensions. We
present multiple notable findings. Regionally, we
see a distinct spatially contiguous southern core
(Fig. 1) which aligns with national-level phono-
logical and lexical variation in AAE, although it is
less variable (Austen, 2017; Jones, 2020). Across
social groups, there is higher AAE usage in the
rural south (Table 1) and in Black-Hispanic contact
communities – both of which are groups currently
underrepresented in the literature and completely
unrepresented in early work on AAE. We confirm
here that there is a great need for scholarly attention
towards these communities, as our results demon-
strate that they may be loci of AAE.

This work provides a significant advance in de-
scriptive work on AAE morphosyntax, presenting
the first national-level description and analysis of
overall grammatical variation in AAE in order to
answer key questions about variation in AAE. More
broadly, our methods demonstrate how machine
learning tools can be applied to large-scale real-
world data to help us gain a more representative
understanding of language in marginalized commu-
nities.
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