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1 Introduction

In the computational study of natural language
phonotactics, work in formal language theory has
highlighted subclasses of regular languages (sub-
regular classes) as providing insights into the fun-
damental properties underlying a variety of typo-
logically attested patterns (McNaughton and Pa-
pert, 1971; Chandlee, 2017). Of particular note are
Tier-based Strictly Local (TSL) languages, which
capture long-distance phenomena through a formal-
ization of the notion of phonological tier (Heinz
et al., 2011). Beyond typological coverage, atten-
tion has been paid recently to how observations
about the subregularity of phonotactics can be tied
to learnability.

In this sense, grammatical inference algorithms
have shown how TSL languages can be learned effi-
ciently from positive data only (Jardine and Heinz,
2016a; Jardine and McMullin, 2017). Additionally,
super-classes of TSL have been defined to extend
its typological coverage, while retaining (and im-
proving on) its desirable (subregular) properties
(Graf and Mayer, 2018, a.o.).

Here, we provide an implementation of De Santo
and Aksënova (2021)’s grammatical inference
learning algorithm for one such extension — Multi-
ple Input-sensitive Tier-based Strictly Local lan-
guages (MITSL; De Santo and Graf, 2019) —
following the standard of SigmaPie (Aksënova,
2020)1, and evaluate it on an array of patterns with
varying degrees of (subregular) complexity.2

As we illustrate below, MISTL languages are
able to capture the interaction of local and non-
local constraints, and while also handling multiple
dependencies simultaneously. Their practical learn-
ability thus has strong implications for the viability
of grammatical inference/subregular approaches
to phonotactic learning broadly. Additionally, the

1https://pypi.org/project/SigmaPie/
2Our codebase is available here.

transparency and provable correctness of the learn-
ing algorithms developed for such formal classes
can be of help in probing properties of phonotactic
corpora more generally.

(a)

⇤ y á n i d i

n d
⇤ (b)

ok y á n i n i

n n
ok

(c)

ok k ú ú n d i d i

n d d
⇤ ok

Figure 2: Incorrect predictions of a TSL analysis of
nasal harmony in Yaka: (a) is ill-formed because of tier
adjacent ⇤[nd]; (b) is well-formed since there are no
voiced stops on the tier disagreeing in nasality; (c) is
well-formed because the [d] immediately following [n]
in the input string stops the latter from being a trigger
for harmony, but it is still ruled out by the constraint
needed for (b).

constraints insufficient (e.g., Ex. (3c)). Moreover,
since the number of segments between harmoniz-
ing elements is potentially unbounded, no TSL
grammar can generally account for this pattern, in-
dependently of the dimension of the tier k-grams.

Let us consider the examples in Ex. (3) once more.
Any nasal immediately followed by a voiced stop
does not trigger harmony. In fact, since they do
not block the harmonic process, neither the nasal
nor the stop participate in the harmony at all. If we
could make the projection of nasals and stops avoid
those segments that appear in specific consonant
clusters (e.g., [nd]) the tier constraints discussed
above would work once again. This is not possible
with TSL as originally defined in (Heinz et al.,
2011), as TSL selects tier elements only based on
their 1-local properties (i.e., which kind of segment
they are). However, this kind of expressivity can
be accomplished by increasing the locality window
of the tier-projection mechanism.

This is accomplished by De Santo and Graf
(2019)’s ITSL class: a TSL grammar is made simul-
taneously aware of local and non-local properties of
segments in the string with a natural change to the
definition of the projection function. Fig. 3 shows
how, by increasing the locality of the projection to
2, we allow the grammar to project a nasal iff it
is not immediately followed by a voiced oral stop,
and a voiced stop iff it is not immediately preceded
by a nasal. Then, we can use 2-local tier constraints
to ban [nd]. This time, possible intermediate clus-
ters are not a problem, since the projection is able
to infer that they are in local contexts that make
them irrelevant to the harmonic process.

(a)

⇤ y á n i d i

n d
⇤ (b)

ok k ú ú n d i d i

d

ok

(c)

ok n á á N g i n i

n n
ok

Figure 3: Example of a ITSL analysis of nasal harmony
in Yaka: (a) is ill-formed because of adjacent ⇤[nd]; (b)
is well-formed since only the last [d] is projected, while
the [nd] cluster is not; (c) is well-formed because the
[Ng] cluster does not enforce nasality on the following
stops. Note that [n,d,g,N] are projected on the tier only
when not in a nasal-stop cluster in the input.

ITSL languages have been shown to properly ex-
tend TSL, and fix a gap in its typological coverage.
However, there is a second shortcoming to adopt-
ing TSL as a model for natural language phono-
tactics: TSL (and ITSL) languages are not closed
under intersection (De Santo and Graf, 2019). Lack
of closure under intersection is problematic as it
entails that the complexity of phonological depen-
dencies is no longer constant under factorization.
This implies that the upper bound for phonological
phenomena shifts, depending on whether one treats
a constraint as a single phenomenon or the interac-
tion of multiple phenomena. Moreover, we clearly
want to be able to consider multiple phenomena at
the same time when describing the phonotactics of
a language. Consider the following additional data
from Yaka.

(4) a. kém-ene

b. kéb-ede

Ex. (4) shows a vowel alternation that is indepen-
dent of the nasality process, and is instead due to
vowel heigh harmony. Vowel harmony by itself
can be easily accounted for with a TSL grammar.
However, this account fails if we try to model nasal
harmony and vowel harmony in a single grammar
— since vowels projected on the tier would inter-
fere with the nasalization process. To account for
this, De Santo and Graf (2019) propose working
with the intersection closure of TSL (MTSL) and
ITSL languages (MITSL). Intuitively, MTSL and
MITSL can be conceptualized as encoding multiple
projections (tiers) at the same time, and enforcing
independent strictly local constraints over each tier.
For a string to belong to the language, it needs to

Figure 1: ITSL2
2 analysis of Yaka nasal harmony from

(De Santo and Aksënova, 2021), illustrating a 2-local
projection and 2-local tier constraints. (a) is ill-formed
because of tier-adjacent ∗[nd], but [n,d,g,N] are pro-
jected on the tier only when not in a nasal-stop cluster
in the input (cf. (b), (c)).

2 MITSL

TSL grammars encode long-distance dependencies
by enforcing local constraints over a subset of seg-
ments in the input alphabet (the tier) identified via
a projection function. While TSL covers many un-
bounded phonotactic patterns, past work has high-
lighted two limits: 1) since TSL’s tier projection is
only sensitive to properties of individual segments,
it cannot handle cases where local and non-local
requirements interact; 2) TSL’s reliance on a sin-
gle tier (i.e., lack of intersection closure) makes it
unable to handle multiple non-interacting depen-
dencies. k-MITSLm

n languages (n being the size
of the tier constraints; De Santo and Graf, 2019)
address these issues thanks to:

1. an input-sensitive (m-ITSL) projection, sensi-
tive not only to a segment by itself but also to
its m-local context in the input string (Fig. 1);

2. closure under intersection (k-MTSL): k mul-
tiple projection functions (tiers) are available,
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each with its dedicated local constraints.

Essentially, an ITSL projection is an input
strictly local function (Chandlee and Heinz, 2018),
such that projection is decided by whether a seg-
ment belong to the tier alphabet, and by segment(s)
in its immediate local context in the input string.
The MTSL component makes it so each string is
evaluated on any number of distinct tiers, and well-
formedness is guaranteed if and only if the string is
wellformed on each individual tier simultaneously.

3 Learning MITSL2
2 Patterns

De Santo and Aksënova (2021) propose a learn-
ing algorithm for MITSL2

2 languages, where the
tier projection and the tier constraints (m,n above)
are bounded to bigrams (MITSL2IA), extending
McMullin et al. (2019)’s algorithm for MTSL2 lan-
guages.

Consistently with (McMullin et al., 2019),
MITSL2IA builds on the intuition that if a bigram
ρ1ρ2 is banned on some tier, then it will never ap-
pear in string-adjacent contexts. For each ρ1ρ2 ab-
sent from the training data, the goal is therefore to
determine which segments can be safely removed
from the associated tier. To do so, the algorithm
incorporates the notion of a 2-path (Jardine and
Heinz, 2016b). Intuitively, a 2-path can be thought
of as a precedence relation (ρ1 . . . ρ2) accompanied
by the set X of symbols that intervene between ρ1
and ρ2. Formally, each 2-path is therefore a 3-tuple
of the form ⟨ρ1, X, ρ2⟩.

In short, by examining the set of 2-paths present
in the training data, we can determine which seg-
ments are freely distributed with respect to a bi-
gram ρ1ρ2 that is known to be banned on some tier.
By associating each potential bigram constraint to
a specific tier, MITSL2IA is thus able to handle
multiple tier projections. In addition, De Santo and
Aksënova (2021) handle the extended input con-
texts by generalizing the definition of tier symbols
from segments to bigrams. Each tier-bigram ρ1ρ2
is thus a 4-factor for MITSL2IA, such that the al-
gorithm can evaluate a target element σ and its left
or right local context (see De Santo and Aksënova,
2021, for technical details).

Consistently with other work of this type,
MITSL2IA is guaranteed to learn target grammars
efficiently (polynomial in time and data) in the
limit, if the input sample is characteristic — it
contains all the information necessary to distin-
guish the specific target pattern(s) (De la Higuera,

REG

SF/DBSP

LTT

MITSL

LT MTSL ITSL IBSP PT

TSL

SL SP

FIN

Figure 2: Subsumption of subregular classes, with the
TSL extensions as of (De Santo and Graf, 2019).

2010). This property of learning algorithms in this
tradition makes them not only valuable from a the-
oretical perspective, but it also allows us to use
them for a deeper exploration of how target phe-
nomena of interest are represented in naturalistic
data sets. In this work, we start pursuing questions
in this direction, with a preliminary investigation
of the practical efficacy of De Santo and Aksënova
(2021)’s learner.

4 Evaluating MITSL2IA

We implemented MITSL2IA in Python 3 following
requirements of the SigmaPie toolkit, and evaluated
it over patterns resembling natural language phe-
nomena belonging to different subregular classes,
according to the pipeline argued for by Aksënova
(2020). The learner had as input datasets which
were either the artificial outputs of harmonic string
generators incorporating a target grammar, or nat-
ural language word-lists with simplified alphabets
created by masking “irrelevant” symbols (for de-
tails see Aksënova, 2020). Each artificial dataset
contained 1000 randomly sampled strings, and up
to 130K words for the simplified natural language
corpora.

MITSL2IA’s output grammars were then used
as input to string generators. We evaluated the con-
sistency of the learned grammar with respect to
the target grammar, by computing the number of
strings in the newly generated sample that were
well-formed according to the target generalization
(% of new strings accepted by the original gram-
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Aksënova (2020) This Paper
SP SL TSL MTSL MITSL

Word-final devoicing
T ✗ ✓ ✓ ✓ ✓

A 68% 100% 100% 100% 100%
NG 58% 100% 100% 100% 100%

Single vowel harmony without blocking
T ✓ ✗ ✓ ✓ ✓

A 100% 83% 100% 100% 100%
NF 100% 72% 100% 100% 100%

Single vowel harmony with blocking
T ✗ ✗ ✓ ✓ ✓

A 84% 89% 100% 100% 99%
Several vowel harmonies without blocking

T ✓ ✗ ✓ ✓ ✓

A 100% 69% 100% 100% 100%
Several vowel harmonies with blocking

T ✗ ✗ ✓ ✓ ✓

A 76% 59% 100% 100% 99%
NT 76% 70% 67% 95% 99%

Vowel harmony and consonant
harmony without blocking

T ✓ ✗ ✗ ✓ ✓

A 100% 64% 74% 100% 100%
Vowel harmony and consonant

harmony with blocking
T ✗ ✗ ✗ ✓ ✓

A 83% 64% 69% 100% 100%
Unbounded tone plateauing

T ✓ ✗ ✗ ✗ ✓

A 100% 85% 90% 100%
Two locally-driven long-distance
assimilations (ITSL restrictions)

T ✗ ✗ ✗ ✗ ✓

A 100%

Table 1: (T)heoretical expectations and performance
of 5 subregular learners on (A)rtificial and simplified
(N)atural language input data-sets. MITSL corresponds
to the learner evaluated in this paper. NG: German; NF :
Finnish; NT : Turkish.

mar).
Following (Aksënova, 2020), we included pat-

terns from subclasses of MITSL which are also
known to be attested in natural languages (cf. Fig. 2
and Tbl.1). An unbounded tone-plateauing pattern
(Hyman and Katamba, 2010; Jardine, 2016) charac-
terized as Strictly Piecewise (SP) in past literature
also served as a simple ITSL pattern (De Santo and
Graf, 2019), and we added an explicitly MITSL pat-
tern not included in (Aksënova, 2020). The perfor-
mance of our implementation on each dataset was
compared to what reported by Aksënova (2020) for
a battery of other subregular learners (Tbl. 1).

5 Results and Discussion

Recall that while MITSL2IA is guaranteed to learn
a pattern when a sample is characteristic, we did
not control for that requirement when generating
the input datasets. Our results show that even with
small, randomly generated datasets the learner per-
formed well on all target patterns (Tbl. 1).

While a larger scale evaluation paradigm is an
important future step, these results are encourag-
ing in supporting the reliability of MITSL2IA in
practical scenarios and highlight the importance
of implementations to test grammatical inference
algorithms beyond theoretical convergence.

Importantly, since subregular classes in the TSL
“neighborhood” stand in a subsumption relation
with respect to each other (Fig. 2), the learner is
theoretically expected to be able to generalize cor-
rectly not only when trained on strictly MISTL
patterns, but to each one of the simpler patterns as
well. However, high-performance on subclasses of
MITSL (SL, TSL, MTSL) was not trivially granted
in practice. Since MITSL2IA needs evidence from
all possible local contexts to recognize tier ele-
ments, it requires more evidence for simple pat-
terns (e.g., whether to project a sibilant on a tier or
not) than its less expressive counterparts. So one
might expect the needed characteristic samples to
be larger, when moving from simpler to more ex-
pressive learning algorithms. In fact, this effect is
behind the slightly lower performance on the sin-
gle harmony data, compared to the TSL and MTSL
learners. However, this is where the transparent
nature of the algorithm shines. By inspecting the
grammar outputted by MITSL2IA, it was possible
to infer that the initial sample for those patterns
lacked evidence to discard one particular element
from the harmony tier.

For example, the input data was insufficient for
the learner to converge on the target grammar for
the “single vowel harmony with blockers” and the
“several vowel harmonies with blocking” cases. In
both instances, this was because an element that
should have been transparent to the restriction was
not removed from the tier, because of the default as-
sumption that all elements are on the tier restricting
any unattested bigram (4-factor).

To further probe the relation between algorithm
convergence and information gaps in the input sam-
ple, we thus defined an injection procedure on top
of the learner itself. Specifically, we implemented
a process to detect miscategorized strings in the
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newly generated samples due an element β that
should have been removed from the tier restricting
the factor a as follows:

1. Find the set of all paths B which contain β
and are attested to be interveners for a;

2. Let the set B′ be formed by removing β from
all paths in B;

3. Every path b ∈ B′ − A must be attested in
the input while intervening a. In practice,
for MITSL2

2 grammars, these strings can be
formed by overlapping m-factors in b, and,
for a = α1α2, having the string start with α1

and end with α2. Importantly, because paths
are sets, m-factors in b can be repeated.

Re-running the learner on the data augmented
with the “missing” samples resulted in a 100% per-
formance on all three of the 99% cases, suggesting
that transparent learners of this kind could be used
to inspect the quality of the data in natural lan-
guage samples available to phonotactic learners
more broadly. Additionally, this suggests ways of
expanding the current batch learning approach to
MISTL data to online algorithms.

6 Conclusion

This work adds to De Santo and Aksënova (2021)’s
work on learning MITSL languages from positive
data, by showing how an implementation of their
algorithm is strikingly successful on a variety of
phonotactic patterns. We also argue that the evalu-
ation pipeline adopted here following (Aksënova,
2020), is valuable for future empirical testing of
subregular learning algorithms in the grammatical
inference tradition.

At the same time, we suggest more broadly that
implemented grammatical inference algorithms
like MITSL2IA can be crucial to more deeply
probe how/whether sufficient information about
target patterns appears in phonotactic corpora, con-
tributing to the study of the relation between data
and learning performance in humans and machines.
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