
Differentiable Tree Operations Promote Compositional Generalization Differentiable Tree Operations Promote Compositional Generalization

Authors Authors
Author #1, Author #2, Author #3, Author #4, Author #5, Author #6, and Author #7

364
Proceedings of the Society for Computation in Linguistics (SCiL) 2023, pages 364-374.

Amherst, Massachusetts, June 15-17, 2023

Differentiable Tree Operations Promote Compositional Generalization

Paul Soulos
Johns Hopkins University
psoulos1@jhu.edu

Edward Hu
Université de Montreal

Kate McCurdy
University of Edinburgh

Yunmo Chen
Johns Hopkins University

Roland Fernandez
Microsoft Research

Paul Smolensky
Johns Hopkins University

Microsoft Research

Jianfeng Gao
Microsoft Research

1 Introduction

Reasoning within the symbolic space through dis-
crete symbolic operations can lead to improved
out-of-distribution generalization and enhanced in-
terpretability. Despite the significant advances in
representation learning made by modern deep learn-
ing, learning to directly manipulating discrete sym-
bolic structures remains a challenge. One key is-
sue is the non-differentiability of discrete symbolic
operations, which makes them incompatible with
gradient-based learning methods. Continuous rep-
resentations offer greater learning capacity, but of-
ten at the expense of interpretability and composi-
tional generalization.

In this work, we focus on binary trees and three
Lisp operators: car, cdr, and cons (Steele,
1990) (also known as left-child, right-child, and
construct new tree). Tensor Product Representa-
tion (TPR) provides a general encoding of struc-
tured symbolic objects in vector space (Smolen-
sky, 1990). Crucially, within the TPR space, the
three Lisp operators on discrete objects become
linear operators on continuous vectors. We restrict
processing over our TPR encodings to the inter-
pretable linear operations implementing the three
Lisp operators and their interpolations, making the
computation differentiable and accessible to back-
propagation. Gradients can flow through our differ-
entiable tree operations, allowing us to optimize the
sequencing and blending of linear operations using
nonlinear deep learning models to parameterize the
decision space.

Employing TPRs to represent binary trees, we
design a novel Differentiable Tree Machine archi-
tecture, DTM1 (§3), capable of systematically ma-
nipulating binary trees. The DTM architecture
achieves perfect out-of-distribution generalization
for the examined synthetic tree-transduction tasks,

1Code available at https://github.com/
psoulos/dtm.

Differentiable Tree Machine (DTM)
Neural
Tree

Agent

Differentiable
Tree

Interpreter
Tree

Memory

Figure 1: A high level overview of our model which
consists of three modules. The Neural Tree Agent is a
learnable neural network which, at each step of process-
ing, selects the operation to perform and the arguments
over which to operate. The Differentiable Tree Inter-
preter is an analytical function which compiles high
level symbolic operations into subsymbolic matrix oper-
ations on tensors.

on which previous models exhibit partial or no
out-of-distribution generalization. A discussion of
related work can be found in Appendix A.

2 Differentiable Tree Operations

In this work, we use a lossless encoding for struc-
ture in vector space. Given a tree depth limit
of depth D, the total number of tree nodes is
N = (bD+1 − 1)/(b− 1) where b is the branching
factor. We generate a set of N orthonormal role
vectors of dimension dr = N . For a particular po-
sition in a tree ri, a filler fi is assigned to this role
by taking the outer product of the filler vector and
role vector fi⊗ ri. The value of the entire structure
is the sum over the individual filler-role combina-
tions T =

∑N
i fi ⊗ ri. Since the role vectors are

orthonormal, a filler fi can be recovered from T by
the inner product between T and ri, fi = Tri.

Moving forward, we will focus on the case of
binary trees (b = 2), which serve as the foundation
for a substantial amount of symbolic AI research.
From the orthonormal role set, we can generate
matrices to perform the Lisp operators car, cdr,
and cons. For a tree node reached from the root by
following the path x, denote its role vector by rx;
e.g., r011 is the role vector reached by descending
from the root to the left (0th) child, then the right

365

(1st) child, then the right (1st) child. Let P =
{rx∥ |x| < D} be the set of all paths from the root
down to a depth less than D.

In order to extract the subtree which is the left
child of the root (Lisp car), we need to zero out the
root node and the right child subtree while moving
each filler in the left subtree up one level. Extract-
ing the right subtree (Lisp cdr) is a symmetrical
process. This can be accomplished by:
car(T)=D0T ;cdr(T)=D1T ;Dc=IF⊗

∑
rxr

⊤
cx

where I is the identity matrix on filler space.
Lisp cons constructs a new binary tree given

two trees to embed as the left- and right-child. In
order to add a subtree as the cth child of a new
root node, we define Ec to add c to the top of the
path-from-the-root for each position:
cons(T0, T1) = E0T0 + E1T1; Ec = IF ⊗∑

rcxr
⊤
x

When performing cons, a new filler s can be
placed at the parent node of the two subtrees T0 and
T1 by adding s⊗ rroot to the output of cons. Our
model uses linear combination to blend the results
of applying the three Lisp operations. The output
of step l ∈ 1 : L, when operating on the arguments
T⃗ (l) = (T

(l)
car, T

(l)
cdr, T

(l)
cons0, T

(l)
cons1), is

O(l)(w⃗(l), T⃗ (l), s(l)) = w(l)
carcar(T

(l)
car) + w

(l)
cdrcdr(T

(l)
cdr)+

w(l)
cons

(
cons(T (l)

cons0, T
(l)
cons1) + s(l) r⊤root

)
(1)

The three operations are weighted by the level-
specific weights w⃗(l) = (w

(l)
car, w

(l)
car, w

(l)
cons),

which sum to 1.

3 Differentiable Tree Machine (DTM)
Architecture for Binary Tree
Translation

In order to actualize the theory described in Section
2, we introduce the Differentiable Tree Machine
(DTM), a model that is capable of learning how
to perform operations over binary trees. Since the
primitive functions car, cdr, and cons are pre-
computed at initialization from the orthogonally
generated role vectors, this learning problem re-
duces to learning which operations to perform on
which trees in Tree Memory to arrive at a correct
output. A high-level overview of our model is given
in Figure 1. DTM consists of a learned component
(Neural Tree Agent), a differentiable pre-designed
tree interpreter described in Equation 1, and an
external Tree Memory for storing trees.

At a given timestep l, our agent selects the inputs
to Equation 1: the tree arguments for the operations
(T⃗ (l)), the new root symbol for cons (s(l)) and

how much to weight the output of each operation
(w⃗(l)). To select T⃗ (l), DTM produces coefficients
over the trees in Tree Memory, where the coeffi-
cients across trees in T⃗ (l) sum to 1. For example,
if Tree Memory contains only T0 & T1, weights
a⃗
(l)
car = (a

(l)
car,0, a

(l)
car,1) are computed to define the

argument to car: T
(l)
car = a

(l)
car,0T0 + a

(l)
car,1T1,

and similarly for cdr and the two arguments of
cons. a⃗

(l)
T = (⃗a

(l)
car; a⃗

(l)
cdr; a⃗

(l)
cons0; a⃗

(l)
cons1) de-

notes all such weights.
These decisions are computed within the Neu-

ral Tree Agent module of DTM using a standard
Transformer layer (Vaswani et al., 2017) consist-
ing of multiheaded self-attention, a feedforward
network, residual connections, and layer norm. Ap-
pendix Figure 3 shows the computation in a sin-
gle step of DTM. When a binary tree is read from
Tree Memory, it is compressed from the TPR di-
mension d_tpr to the Transformer input dimension
d_model using a linear transformation Wshrink ∈
Rd_tpr×d_model. We also feed in two special tokens
to encode the operation-weighting coefficients and
the new root-symbol prediction. In addition to the
standard parameters in a Transformer layer, our
model includes three additional weight matrices
Wop ∈ Rd_model×3, Wroot ∈ Rd_model×d_symbol,
and Warg ∈ Rd_model×4. Wop projects the oper-
ation token encoding into logits for the three op-
erations which are then normalized via softmax.
Wroot projects the root symbol token encoding into
the new root symbol. Warg projects the encoding
of each TPR in memory to logits for the four tree ar-
guments, the input to car, cdr, and cons left and
right. The arguments for each operator are a linear
combination of all the TPRs in memory, weighted
by the softmax of the computed logits. These val-
ues are used to create the output for this step as
described in equation 1 and the output TPR is writ-
ten into Tree Memory. For the beginning of the next
step, the contents of the Tree Memory are encoded
to model dimension by Wshrink and appended to
the Neural Tree Agent Transformer input sequence.
The input to the Neural Tree Agent Transformer
grows by one compressed tree encoding at each
time step to incorporate the newly produced tree,
as shown in Appendix Figure 4.

The tree produced by the final step of our net-
work is used as the output (predicted tree). We
minimize the mean-squared error between the pre-
dicted symbol at each node in the predicted tree and
the ground-truth tree. Additional training details

366

Data set DTM Transformer LSTM Tree2Tree Tree Transformer
Active↔Logical
-train 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0± .00 1.0± .00
-test IID 1.0 ± .00 1.0 ± .00 1.0 ± .00 .99± .00 1.0± .00
-test OOD lexical 1.0 ± .00 .31 ± .00 .31 ± .00 .00± .00 .00± .00
-test OOD structural 1.0 ± .00 .00 ± .00 .00 ± .00 .10± .03 .00± .00
Passive↔Logical
-train 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0± .00 1.0± .00
-test IID 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0± .00 1.0± .00
-test OOD lexical 1.0 ± .00 .36 ± .00 .37 ± .00 .00± .00 .00± .00
-test OOD structural 1.0 ± .00 .00 ± .00 .00 ± .00 .19± .02 .00± .00
Active & Passive→Logical
-train 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0± .00 1.0± .00
-test IID 1.0 ± .00 1.0 ± .00 1.0 ± .00 .99± .00 1.0± .00
-test OOD lexical 1.0 ± .00 .32 ± .00 .32 ± .00 .00± .00 .00± .00
-test OOD structural 1.0 ± .00 .00 ± .00 .00 ± .00 .10± .02 .00± .00

Table 1: Mean accuracy and standard deviation across 5x random initializations on synthetic tree-to-tree transduction
tasks using different model architectures. Test sets include independent in-distribution (IID) and out-of-distribution
splits (OOD).

can be found in Section C.1.

4 Empirical Validation

4.1 Datasets and Baselines

We introduce three tree-to-tree transformation
tasks inspired by semantic parsing and lan-
guage generation with active and passive voice:
Active↔Logical, Passive↔Logical, and Active
& Passive→Logical 2. Each task has two out-
of-distribution splits to test lexical and structural
generalization. The train split has 10,000 samples;
all of the other splits have 1250 samples. Addi-
tional details about the three tasks are available in
Appendix D.

We compare DTM against seq2seq and tree2tree
models as our baselines. For seq2seq models, we
linearize our trees by coding them as a left-to-
right sequences with parentheses to mark the tree
structure. Our seq2seq models are Transformer
(Vaswani et al., 2017) and LSTM (Hochreiter and
Schmidhuber, 1997). Our tree2tree models are
Tree2Tree LSTM (Chen et al., 2018) and Tree
Transformer (Shiv and Quirk, 2019). Model de-
tails are provided in Appendix E.

4.2 Results

The results for DTM and the baselines can be seen
in Table 1. DTM achieves 100% accuracy across all

2Data available at https://huggingface.co/
datasets/rfernand/nc_pat.

splits for the three tasks. While the baselines per-
form similarly to DTM when compared on train and
test IID, the results are drastically different when
comparing the results across OOD splits. Across
all tasks, DTM generalizes similarly regardless of
the split, whereas the baselines struggle with lexi-
cal generalization and fail completely at structural
generalization. This is in line with research show-
ing that current models struggle much more with
structural generalization than lexical generalization
(Kim et al., 2022).

DTM can be compared against the other tree
models to see the effects of learning structured
processing in vector space. While the Tree2Tree
LSTM and Tree Transformer are both capable of
representing trees, the processing that occurs over
these trees is still black-box nonlinear transforma-
tions. DTM isolates black-box nonlinear transfor-
mations to the Neural Tree Agent, while the pro-
cessing over trees is factorized into interpretable
operations over tree structures with excellent OOD
generalization. This suggests that it is not the tree
encoding scheme itself that is critical, but rather
the processing that occurs over the trees.

4.3 Interpreting Inference as Programs

The output of the Neural Tree Agent at each
timestep can be interpreted as routing data and per-
forming a predefined operation. At convergence,
we find that the path from the input tree to the out-
put tree is defined by interpretable one-hot softmax

367

distributions. We can trace the program execution
to see how the input tree is transformed into the
output tree. An example of our model’s behavior
over 28 steps on Logical→Passive can be seen in
Figure 2. In particular, we were excited to find an
emergent operation in our model’s behavior. Trans-
ducing from Logical→Passive not only requires re-
arranging nodes but also inserting new words into
the tree, “was" and “by". At first glance, car, cdr,
and cons do not appear to support adding a new
node to memory. The model learns that taking cdr
of a tree with only a single child returns an empty
tree (the third step in Figure 2); the empty tree can
then be used as the inputs to cons in order to write
a new word as the root node with no children on the
left or right (the fourth step). The programmatic
nature of our network at convergence — the fact
that the weighting coefficients w⃗, a⃗ become 1-hot
— makes it trivial to discover how an undefined
operation emerged during training.

5 Conclusion

We introduce DTM, an architecture for leveraging
differentiable tree operations and an external mem-
ory to achieve compositional generalization. DTM
outperforms baselines across a variety of synthetic
tree-to-tree tasks. Future work will focus on allow-
ing DTM to work with unstructured data which will
allow it to be evaluated on more datasets.

References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Dan Klein. 2015. Neural module networks. 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 39–48.

Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky,
and Sebastian Riedel. 2017. Programming with a
differentiable forth interpreter. In Proceedings of the
34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 547–556. PMLR.

Kezhen Chen, Qiuyuan Huang, Hamid Palangi, Paul
Smolensky, Ken Forbus, and Jianfeng Gao. 2020.
Mapping natural-language problems to formal-
language solutions using structured neural represen-
tations. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages
1566–1575. PMLR.

Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-
to-tree neural networks for program translation. Ad-
vances in neural information processing systems, 31.

St
ep

 1

cons

cdr

car

St
ep

 2
cdr

St
ep

 3
St

ep
 4

Tree Memory

cons

St
ep

 2
8

S

Figure 2: An interpretable transformation from logical
form to passive. The interpretation is discussed in Sec-
tion 4.3.

368

Róbert Csordás, Kazuki Irie, and Juergen Schmidhu-
ber. 2021. The devil is in the detail: Simple tricks
improve systematic generalization of transformers.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
619–634.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43.

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. ArXiv, abs/1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gomez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John P. Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann,
Yori Zwols, Georg Ostrovski, Adam Cain, Helen
King, Christopher Summerfield, Phil Blunsom, Ko-
ray Kavukcuoglu, and Demis Hassabis. 2016. Hybrid
computing using a neural network with dynamic ex-
ternal memory. Nature, 538:471–476.

Edward Grefenstette, Karl Moritz Hermann, Mustafa
Suleyman, and Phil Blunsom. 2015. Learning
to transduce with unbounded memory. ArXiv,
abs/1506.02516.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9:1735–
1780.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial
Intelligence Research, 67:757–795.

Yichen Jiang, Asli Celikyilmaz, Paul Smolensky, Paul
Soulos, Sudha Rao, Hamid Palangi, Roland Fernan-
dez, Caitlin Smith, Mohit Bansal, and Jianfeng Gao.
2021. Enriching transformers with structured tensor-
product representations for abstractive summariza-
tion. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 4780–4793.

Armand Joulin and Tomas Mikolov. 2015. Inferring
algorithmic patterns with stack-augmented recurrent
nets. In NIPS.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Najoung Kim, Tal Linzen, and Paul Smolensky. 2022.
Uncontrolled lexical exposure leads to overestima-
tion of compositional generalization in pretrained
models.

Karol Kurach, Marcin Andrychowicz, and Ilya
Sutskever. 2016. Neural random access machines.
ICLR.

Gary F Marcus. 2003. The algebraic mind: Integrating
connectionism and cognitive science. MIT press.

R. Thomas McCoy, Tal Linzen, Ewan Dunbar, and
Paul Smolensky. 2019. RNNs implicitly implement
tensor-product representations. In International Con-
ference on Learning Representations.

Hamid Palangi, Paul Smolensky, Xiaodong He,
and Li Deng. 2018. Question-answering with
grammatically-interpretable representations. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32.

Scott E. Reed and Nando de Freitas. 2015. Neural
programmer-interpreters. CoRR, abs/1511.06279.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,
Miloš Stanojević, Phil Blunsom, and Chris Dyer.
2022. Transformer grammars: Augmenting trans-
former language models with syntactic inductive bi-
ases at scale. Transactions of the Association for
Computational Linguistics, 10:1423–1439.

Imanol Schlag and Jürgen Schmidhuber. 2018. Learn-
ing to reason with third order tensor products. Ad-
vances in neural information processing systems, 31.

Imanol Schlag, Paul Smolensky, Roland Fernandez,
Nebojsa Jojic, Jürgen Schmidhuber, and Jianfeng
Gao. 2019. Enhancing the transformer with explicit
relational encoding for math problem solving. CoRR,
abs/1910.06611.

Vighnesh Shiv and Chris Quirk. 2019. Novel positional
encodings to enable tree-based transformers. Ad-
vances in neural information processing systems, 32.

Paul Smolensky. 1990. Tensor product variable bind-
ing and the representation of symbolic structures in
connectionist systems. Artif. Intell., 46:159–216.

Paul Soulos, R Thomas McCoy, Tal Linzen, and Paul
Smolensky. 2020. Discovering the compositional
structure of vector representations with role learning
networks. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 238–254.

Paul Soulos, Sudha Rao, Caitlin Smith, Eric Rosen, Asli
Celikyilmaz, R Thomas McCoy, Yichen Jiang, Cole-
man Haley, Roland Fernandez, Hamid Palangi, et al.
2021. Structural biases for improving transformers
on translation into morphologically rich languages.
Proceedings of Machine Translation Summit XVIII.

Guy Steele. 1990. Common LISP: the language. Else-
vier.

369

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1556–
1566, Beijing, China. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1061–1070, Hong Kong, China. As-
sociation for Computational Linguistics.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2014.
Memory networks. CoRR, abs/1410.3916.

370

A Related Work

A.1 Compositional Generalization

Research on compositional generalization has been one of the core issues in Machine Learning since its
inception. Despite improvements in architectures and scalability (Csordás et al., 2021), neural network
models still struggle with out-of-distribution generalization (Kim et al., 2022). The lack of robust
compositional generalization has been a central argument against neural networks as models of cognition
for almost half a century by proponents of GOFAI systems that leverage symbolic structures (e.g. Fodor
and Pylyshyn, 1988; Marcus, 2003). These symbolic systems are brittle and face scalability problems
due to their incompatibility with differentiable learning methods. Our work attempts to bridge the neural
network-symbolic divide by situating symbolic systems in vector space, where a first-order gradient can
be derived as a learning signal.

In practice, the term “compositional generalization" has been associated with a range of different tasks
(Hupkes et al., 2020). Kim and Linzen (2020) identify a key distinction relevant to natural language:
lexical versus structural generalization. Lexical generalization is required when a model encounters a
primitive (e.g. a word) in a structural environment (e.g. a position in a tree) where it has not been seen
during training. Kim et al. (2022) demonstrate that lexical generalization remains unsolved: pretrained
language models still do not consistently generalize fully novel lexical items. Structural generalization is
required when a model encounters a structure that was not seen during training, such as a longer sentence
or a syntactic tree with new nodes. The tasks we study below explicitly test both types of compositional
generalization (§4.1).

Our proposed DTM model encodes and manipulates data exclusively in the form of Tensor Product Rep-
resentations (TPRs; §A.2). This formalism inherently supports composition and decomposition through
symbol-role bindings, creating an inductive bias toward symbolic operations. Lexical generalization
is straightforward when syntactic trees are encoded as TPRs: a novel symbol can easily bind to any
role. Structural generalization is possible through our linear representation of the car, cdr, and cons
functions, as these operators are not sensitive to the size or structure of the trees they take as arguments.
We evaluate DTM’s capacity for both types of compositional generalization in §4.2.

A.2 Tensor Product Representations (TPRs)

Tensor Product Representations have been used to enhance performance and interpretability across textual
question-answering (Schlag and Schmidhuber, 2018; Palangi et al., 2018), natural-language-to-program-
generation (Chen et al., 2020), math problem solving (Schlag et al., 2019), synthetic sequence tasks
(McCoy et al., 2019; Soulos et al., 2020), summarization (Jiang et al., 2021), and translation (Soulos
et al., 2021). While previous work has focused on using TPRs to structure and interpret representations,
the processing over these representations was done using black-box neural networks. In this work, we
predefine structural operations to process TPRs and use black-box neural networks to parameterize the
information flow and decision making in our network.

A.3 Differentiable Computing

One approach to integrating neural computation and GOFAI systems is Differentiable Computing. In
this approach, components of symbolic computing are re-derived in a continuous and fully differentiable
manner to faciliate learning with backpropagation. In particular, neural networks that utilize an external
memory have received considerable attention (Graves et al., 2014, 2016; Weston et al., 2014; Kurach
et al., 2016).

Another significant aspect of Differentiable Computing involves integrating structured computation
graphs into neural networks. Tree-LSTMs (Tai et al., 2015; Dong and Lapata, 2016; Chen et al., 2018)
use parse trees to encode parent nodes in a tree from their children’s representations or decode child
nodes from their parent’s representations. Some Transformer architectures modify standard multi-headed
attention to integrate tree information (Wang et al., 2019; Sartran et al., 2022), while other Transformer
architectures integrate tree information in the positional embeddings (Shiv and Quirk, 2019). Neural

371

Module Networks (Andreas et al., 2015) represent a separate differentiable computing paradigm, where
functions in a symbolic program are replaced with black-box neural networks.

A few works have explored using differentiable interpreters to learn subfunctions from program sketches
and datasets (Bošnjak et al., 2017; Reed and de Freitas, 2015). Most similar to our work, Joulin and
Mikolov (2015); Grefenstette et al. (2015) learn an RNN capable of leveraging a stack with discrete push
and pop operations in a differentiable manner. While they use a structured object to aid computation, the
operations they perform involve read/write operations over unstructured vectors, whereas the operations
we deploy in this work consist of structured operations over vectors with embedded structure.

B DTM Figures

Tree 0 Tree 1

Tree Memory

cons cdr car

AppendTree 2

Wshrink

Differentiable Tree
Interpreter

Tree 0
Encoding1

Root
Symbol

Encoding1

Operation
Encoding1

Tree 1
Encoding1

Multihead Attention(1)

Feedforward(1)
Operation x Tree

Arg Logits
Operation

Logits

From previous Transformer layer

softmax

To next Transformer layer

Neural
Tree
Agent

Tree 0
Encoding2

Root
Symbol

Encoding2

Operation
Encoding2

Tree 1
Encoding2

Tree 0
encoding2

root symbol
encoding2

operation
encoding2

Tree 1
encoding2

St
ep

 1

softmax

Tree 2
Encoding2

Tree 0
Encoding2

Root
Symbol

Encoding2

Operation
Encoding2

Tree 1
Encoding2

Figure 3: Step 1 of the DTM architecture is expanded to show the information flow in DTM. The yellow boxes
show which parameters are learnable. The blue box highlights the Neural Tree Agent, and the green boxes highlight
components in tree space: the Differentiable Tree Interpreter (Eq 1) and Tree Memory. The left side of the Neural
Tree Agent is a standard transformer layer with self-attention and a feedforward network. Residual connections and
layer norm are not shown.

Tree 0
Encoding0

Root Filler
Encoding0

Operation
Encoding0

Tree 0
Encoding1

Root Filler
Encoding1

Operation
Encoding1

Tree 0
Encoding2

Root Filler
Encoding2

Operation
Encoding2

Tree 0
Encoding3

Root Filler
Encoding3

Operation
Encoding3

Tree 1
Encoding1

Tree 2
Encoding2

Tree 3
Encoding3

Tree 2
Encoding3

Tree 1
Encoding3

Tree 1
Encoding2

Step 0

Step 1

Step 2

Step 3

Figure 4: Inputs to the Neural Tree Agent at each step of processing.

372

C Model Hyperparameter Selection

For all of the models we evaluated, the HP searching and training was done in 3 steps:

1. An optional exploratory random search over a wide range of HP values (using the Active↔Logical
task)

2. A grid search (repeat factor=3) over the most promising HP values from step 1 (using the
Active↔Logical task)

3. Training on the target tasks (repeat factor=5)

All of our models were trained on 1x V100 (16GB) virtual machines.

C.1 DTM
For the DTM models, we ran a 3x hyperparameter grid search over the following ranges. The best
performing hyperparameter values are marked in bold.

Computation Steps: [X+2, (X+2)*2] where X is the minimum number of steps required
to complete a task

weight_decay: [.1, .01]
Transformer model dimension: [32, 64]
Adam β2: [.98, .95]
Transformer dropout: [0, .1]

The following hyperparameters were set for all models
lr_warmup: [10000]
lr_decay: [cosine]
training steps: [20000]
Transformer encoder layers per computation step: [1]
Transformer # of heads: [4]
Batch size: [16]
d_symbol: # symbols in the dataset
d_role: 2D+1 − 1 where D is the max depth in the dataset
Transformer non-linearity: gelu
Optimizer: Adam
Adam β1: .9
Gradient clipping: 1
Transformer hidden dimension: 4x Transformer model dimension

Notes:

• For the Passive↔Logical task, a batch size of 8 was used to reduce memory requirements.

• Training runs that didn’t achieve 90% training accuracy were excluded from evaluation

D Dataset Details

We introduce the Basic Sentence Transforms dataset for testing tree-to-tree transformations. It contains
various synthetic tree-transform tasks inspired by semantic parsing and language generation. This dataset
is designed to test compositional generalization in structure transformations, as opposed to most existing
compositionality-related datasets, which are focus on linear sequence transformations.

Each task in the dataset has five splits: train, validation, test, out-of-distribution lexical (OOD-lexical),
and out-of-distribution structural (OOD-structural). The OOD-lexical split tests a model’s ability to
perform zero-shot lexical generalization to new adjectives not seen during training. The OOD-structural
split tests a model’s structural generalization by using longer adjective sequences and new tree positions
not encountered during training. The train split has 10,000 samples, while the other splits have 1,250
samples each. We focus our evaluation on the following three tasks:

373

Active↔Logical contains syntax trees in active voice and logical form. Transforming from active
voice into logical form is similar to semantic parsing, and transducing from logical form to active voice is
common in natural language generation.

Source Tree:
(S (NP (DET some) (AP (N crocodile))) (VP (V washed) (NP (DET our) (AP (ADJ happy

) (AP (ADJ thin) (AP (N donkey)))))))
Target (Gold) Tree:

(LF (V washed) (ARGS (NP (DET some) (AP (N crocodile))) (NP (DET our) (AP (ADJ
happy) (AP (ADJ thin) (AP (N donkey)))))))

Passive↔Logical contains syntax trees in passive voice and logical form. This task is similar to the
one above but is more difficult and requires more operations. The passive form also contains words that
are not present in logical form, so unlike Active↔Logical, the network needs to insert additional nodes.
At first glance, this does not seem possible with car, cdr, and cons; we will show how our network
manages to solve this problem in an interpretable manner in §4.3. The input and output of Figure 1 show
a transformation from logical form to passive form.

Source Tree: (S (NP (DET his) (AP (N tree))) (VP (AUXPS was) (VPPS (V touched) (
PPPS (PPS by) (NP (DET one) (AP (ADJ polka-dotted) (AP (N crocodile))))))))

Target (Gold) Tree: (LF (V touched) (ARGS (NP (DET one) (AP (ADJ polka-dotted) (AP (
N crocodile)))) (NP (DET his) (AP (N tree)))))

Active & Passive→Logical contains input trees in either active or passive voice and output trees in
logical form. This tests whether a model can learn to simultaneously parse different trees into a shared
logical form.

Source Tree: (S (NP (DET a) (AP (N fox))) (VP (AUXPS was) (VPPS (V kissed) (PPPS (
PPS by) (NP (DET my) (AP (ADJ blue) (AP (N giraffe))))))))

Target (Gold) Tree: (LF (V kissed) (ARGS (NP (DET my) (AP (ADJ blue) (AP (N giraffe))
)) (NP (DET a) (AP (N fox)))))

E Baseline Details

Transformer For our Transformer model, we use the PyTorch library implementation of the Encoder-
Decoder Transformer (Vaswani et al., 2017). We search over model and training hyperparameters and
choose the combination that has the highest (and in the case of ties, quickest to train) mean validation
accuracy on the Active & Passive→Logical task. The best hyperparameter setting was then used to train
models on all four of our tasks. More training details can be found in Appendix A.

LSTM We use LSTM (Hochreiter and Schmidhuber, 1997) seq2seq (Sutskever et al., 2014) imple-
mentations that support hyperparameters for attention (on/off), bidirectionality (on/off), and the number
of encoder and decoder layers. We search over model and training hyperparameters and choose the
combination that has the highest (and in the case of ties, quickest to train) mean validation accuracy on
Active & Passive→Logical. The best hyperparameter setting was then used to train models on all four of
our tasks. More training details can be found in Appendix A.

Tree2Tree LSTM Tree2Tree LSTM (Chen et al., 2018) combines a Tree-LSTM encoder (Tai et al.,
2015) and a Tree-LSTM decoder (Dong and Lapata, 2016) to create a tree2tree models.

Tree Transformer We select the Tree Transformer model from Shiv and Quirk (2019) since it has a
bias to encode and decode trees. Tree information is encoded in relative positional embeddings as the
path from one node to another..

374

