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Introduction Ongoing work attempts to identify
the formal language patterns in natural language.
In phonology, recent work has identified the subreg-
ular languages as a good candidate (Heinz, 2018).
However, there remain few explanations for the
source of this bias. This abstract proposes a means
of investigating formal language learnability. We
propose using a variant of minimum description
length (MDL) as defined on LSTMs with varying
priors on LSTM size. We will show its utility on a
test case from Heinz and Idsardi (2013) and Rawski
et al. (2017).

Methods The subregular hypothesis is that
phonological patterns occupy a well-defined sub-
set of the regular languages (Heinz, 2018). It has
enjoyed empirical success, with laboratory exper-
iments demonstrating these preferences in artifi-
cial language learning studies (Lai, 2015; Avcu
and Hestvik, 2020; McMullin and Hansson, 2019).
But explanations for the existence of this bias are
lacking. A minimum description length (MDL)
or simplicity principle, where the shortest encod-
ing of input data is preferred (Grünwald, 2000;
Chater and Vitányi, 2003), is an enticing explana-
tion, but it fails in most explored representation sys-
tems (Heinz and Idsardi, 2013). We consider Long
Short-Term Memory networks (LSTMs) (Hochre-
iter and Schmidhuber, 1997) as an alternative rep-
resentation system for their flexibility in learning
formal languages (Weiss et al., 2018), and show
that constraining their complexity induces a sub-
regular bias.

With LSTMs, a natural choice of description
length is the number of parameters, or number of
connections between neurons. Functionally, this
means training networks using L0-regularization,
which penalizes for number of nonzero parameters.
While it is generally undifferentiable, we use a
differentiable sampling technique from Louizos
et al. (2017). We keep the architecture fixed (see

Figure 1: Two regular grammars. G1 is subregular
and strictly local, G3 is a counting language and not
subregular. Figures adjusted from Heinz and Idsardi
(2013).

Appendix A) in order to control for other sources
of variation in LSTM complexity.

Our experiment concerns an open question from
Heinz and Idsardi (2013). Consider two formal
grammars from their paper (depicted as finite state
automata (FSA) in Fig. 1). These have equal de-
scription lengths as FSAs, but G1 is subregular
and governed by local constraints whereas G3 is
a counting language and not subregular. G1 is
more language-like and thus its purported prefer-
ence represents an open puzzle for simplicity-based
accounts.

To assess this preference using computational
complexity we train 5 LSTMs each with 45 differ-
ent regularization penalties to vary resulting LSTM
complexities (N=225). Each LSTM is trained on
words drawn from the intersection between G1 and
G3 using the cross entropy of the predicted next
character together with the regularization penalty
as the training objective (details in Appendix B).
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Figure 2: Plot showing relationship between complexity of LSTMs trained on an intersection of G1 and G3, and
the performance gap between G1 and G3 after training (the G1 preference). When complexity is unconstrained,
performance moderately favors G1 (blue ellipse). As complexity becomes more constrained, favorability of G1 as a
hypothesis increases (purple ellipse). Extremely tight constraints leads to a collapse in preference (gold ellipse).

After training we assess differences in performance
on words drawn from G1 and G3 separately to as-
sess generalization. If G1 is preferred for models
of constrained complexity, then complexity con-
straints may result in an inductive bias for subregu-
lar languages.

Results Our results show a bias for the subregu-
lar grammar G1 for almost all levels of complexity.
But, this preference is responsive to complexity
constraints. As complexity of these LSTMs low-
ers there is an increase in this preference before a
subsequent collapse (Fig. 2). A t-test between the
purple and blue regions (defined as the range 20-
40, and >40, respectively) is statistically significant
(t = −13.79, p < 2.2× 10−16).

What drives this change can be seen in Fig. 3.
Regularizing for complexity causes a drop in the
cross entropy for the subregular language after
training, a pattern which is most extreme when
at the 40 parameter mark. In other words, regular-
ization leads to generalization from the intersection
of the two grammars to G1 exclusively.

Discussion Our results show that a preference for
simple LSTMs can enhance subregular preferences
in at least some cases. Previous work on GRUs
(Prickett, 2021), also show subregular biases, but
our work contributes a possible additional explana-
tion for this bias: that this preference is downstream
of a preference for solutions involving smaller sub-
networks. This is consistent with the Lottery Ticket
Hypothesis (Frankle and Carbin, 2019), and may

function with–or be the underlying cause of–other
biases, like the recency bias (Ravfogel et al., 2019).

Though this work reinforces the existence of a
subregular bias in neural networks, and offers an
explanation for its presence, it still leaves several
questions unanswered. Is it really the subregular
class that is preferred? It is possible that what ap-
pears to be a subregular bias is only appearance,
and that the real bias has yet to be elucidated by for-
mal language theory. Furthermore, how does this
preference under regularization constraints com-
pare with human biases? Further research is war-
ranted to describe this bias, and how it compares
with the subregular class and human phonology.

Figure 3: Relationship between description length and
cross entropy loss on G1 and G3 for LSTMs trained on
their intersection.
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A Architecture

Each LSTM is composed of an embedding layer,
a single layer LSTM, a linear layer, and decoder
layer. The embedding layer has 3 dimensions, and
all other layers have 5. The LSTM uses the tanh
activation function.

B The training objective

Our training objective is a form of MDL, in partic-
ular, a two-part code formed from the sum of the
cross entropy and the expected value for number
of non-zero parameters. It can be idealized as:

J =
1

N

N∑

i=1

log pθθθ(xi) + β
∑

θ∈θθθ
qϕϕϕ(θ ̸= 0)

Where pθθθ is our LSTM, parameterized by parame-
ter vector θθθ and qϕϕϕ probability of a parameter being
masked (see Louizos et al. (2017) for details). The
constant β, our regularization parameter, allows us
to control for relative preference in LSTM size.
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