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1 Introduction

Linguistic and model-theoretic analyses of long-
distance phonology postulate the existence of
phonological tiers (Goldsmith, 1976; Heinz et al.,
2011). For example, vowel harmony may be an-
alyzed as a process that projects vowels (but not
consonants) onto a tier and ensures that all sounds
on the tier have the same feature (e.g., [*-front] in
Turkish vowel harmony, Clements et al. (1982)).

Li and Zhou (under review) recently demon-
strated that convolutional neural networks (CNNs)
learning a toy example of vowel harmony (§2) on
short strings robustly generalize the pattern to much
longer strings. One explanation is that these CNNs
have independently recovered an “algorithm” that
is consistent with the tier projection analysis. Al-
ternatively, these models may have uncovered an
approximation of this system, or an entirely differ-
ent system that robustly generalizes to long lengths.
This work investigates these hypotheses via various
interpretability methods. In particular, we search
for evidence for a “strong” implementation of tier
projection, in which these CNNs exactly implement
the tier-projection and feature-matching analyses
described above.

2 Model and toy language

We follow the architecture of the CNN string recog-
nizer described in [4]. Strings are passed as a block
of one-hot character encodings into a convolutional
neural network consisting of 4 one-dimensional
layers. The output of this CNN is passed through
a global max-pool, followed by a single fully con-
nected layer that outputs for each string a binary
classification score between 0 and 1. Strings with
score above 0.5 are treated as belonging to the rec-
ognizer’s string language (e.g. the set of strings
obeying an unbounded vowel harmony rule). Each
convolutional layer is parameterized with a kernel
size of 3, a channel size of 256, and a stride of 1

with same padding.

CNNs were trained on an artificial string accep-
tance task designed to emulate a pattern of transpar-
ent unbounded vowel harmony. Artificial strings
are sampled by generating syllables roughly obey-
ing the sonority sequencing principle with a vowel
inventory {a, e, o, u, i, &, 0, i}, with the constraint
of vowels agreeing in the presence of trema (V) or
absence of trema (V) in harmonious strings. Mod-
els learned to recognize if a given string obeys the
vowel harmony rule, obtaining perfect test accu-
racy even over strings much longer than those seen
during training.

3 CNNs do not implement exact tier
projection

We first investigate the hypothesis that these CNN
models are explicitly performing “hard" tier projec-
tion. That is, there exists some intermediate layer
of the CNN in which vowels (but not consonants)
are being projected. If this is the case, we hypoth-
esize that unprojected consonant strings such as
[spl] and [spr] should not be distinguishable from
one another in terms of activation at that layer. We
tested this prediction by decoding the consonants
[1] from [r] and the voiceless stops [p,t,k] from each
other. For each set of sounds, we selected all at-
tested length-3 consonant clusters where sounds in
the set can appear interchangeably. We obtained
activations for all of these clusters and decoded the
presence of one target sound in the sound set (e.g.,
[spr] has [p], but [str] and [skr] do not). We find
that all sound sets are reliably decodable (Fig. 1A).

Although the performance of the decoder drops
off towards later layers, it remains substantially
higher than that of a conservative baseline. We
observe a similar trend when we attempt to decode
sound presence in CVCVC sequences (e.g., is [p]
present in [palar] vs. [torel]?). However, we note
that while decoding accuracy falls off in later lay-
ers for all sounds, consonants consistently fall off
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Figure 1: A. Decoding accuracy (via ridge regression) for [1] against [r] and [p, t, k] against each other. B. Decoding
accuracy for presence of individual sounds. Error bars/ribbons in (A, B) indicate range of accuracies across 5 runs.
C and D. Intermediate activations projected along the first two principal components obtained from PCA over all
possible CVC inputs (C) and all possible CVCVC inputs (D). Activations are taken after the application of ReLU in
each layer, and flattened for PCA. Each individual set of activations is colored by the identity of the vowel in the
CVC sequence (C) and by the sequence of vowel features in the CVCVC sequence (D).

more than vowels (Fig. 1B). While we conclude
that these CNNs have not learned to perform tier
projection exactly, some prioritization for vowels
over consonants is observed.

4 CNNs demonstrate feature-based
abstraction over vowels

We now turn to ask whether among the vowels,
some abstraction has formed to facilitate the com-
putation of vowel harmony, such as that of V as a
category vs. V. We investigate this by applying prin-
ciple component analysis (PCA) to the activations
of each convolutional layer in response to all pos-
sible CVC sequences (Fig. 1C), and separately for
all CVCVC sequences (Fig. 1D). Applying PCA to
the CVC inputs, we find evidence that CNN repre-
sentations do reflect abstract vowel features, with
the V-V distinction being strongly captured by the

first principal component (PC) in all layers of the
network. Applying PCA to the CVCVC outputs
yields similar findings, with the first PC capturing
the distinction between the two harmonious fea-
ture combinations (VV vs. VV) and the second PC
capturing the distinction between the two dishar-
monious feature combinations (VV vs. VV). We
do note, however, that neither of these dimensions
seem to reflect the distinction between harmonious
and disharmonious feature sequences itself. Pre-
liminary examination suggests that this distinction
may be found in the third principal component,
though perhaps in a less robust manner than the
distinctions described above.



5 Discussion
5.1 A soft implementation of tiers

Altogether the results indicate that the trained
CNNs are not implementing an algorithm that fully
resembles strict tier projection. However, results
do point toward a soft implementation of tiers. Un-
der this hypothesis, the concept of tiers still maps
onto a layer of the network, but the layer still has
capacity (and learns) to represent other contrasts
that are irrelevant to the pattern at-hand. In the case
of this toy example, we observe vowel representa-
tions become progressively abstract across layers
(Fig. 1C) and track vowel bigram information (Fig.
1D), but consonants, which are theoretically irrel-
evant, are still reliably decodable across all layers
(Fig. 1A and 1B). The main prediction is that vow-
els have “privileged” representations (e.g., better
signal within-model) over consonantsthat support
computations for the task at hand. This is most evi-
dent in the decoding results of Fig. 1B, where vow-
els consistently better decoded than consonants.

5.2 Alternative theories and their
implementations

So far, the possible implementations that have been
discussed in this work pertain to a specific frame-
work (tier-based analyses of harmony patterns). It
could be the case that the CNNs examined in this
study are implementing an algorithm that is con-
sistent with other theories of harmony. Some the-
ories, which assume different forms of input (e.g.,
articulatory accounts of harmony, Gafos (1999)),
may render the models incompatible or be consid-
ered as an implementation of intermediary repre-
sentations. That aside, the methods utilized in this
work can be generalized to test hypotheses about
what theories a model has learned to implement. A
phonological theory makes predictions about what
instances (e.g., phonological strings) have shared or
contrastive representations. Translating these pre-
dictions to signals from model read outs, it predicts
that contrastive representations to be decodable or
occupy a representational subspace.

5.3 Disambiguating between representations
of grammaticality and tier-based
representations

We found via PCA that the model has learned to
linearly represent the distinction between harmonic
and disharmonic vowel sequences. Considering
that this is theoretically the only contrast that the

model needs to learn to distinguish, these findings
are currently confounded with a grammaticality
(in other words, output True/False oriented) repre-
sentation and an algorithmic abstraction of vowel
sequences. This should become distinguishable
when a model is equipped to learn multiple pat-
terns. Eventually, all patterns have to converge to
some representation that supports final True/False
decisions, but should have different specific, de-
tectable, representational content for each pattern
learned.

6 Conclusion

Our results suggest that these CNNs have con-
verged to a robust solution for unbounded vowel
harmony, albeit one that is different from the mech-
anism of explicit tier projection. In particular, we
find that vowels and consonants are both highly
decodable from intermediate activations, contrary
to what is predicted by an exact tier projection ac-
count. However, the intermediate activations of
the CNN do reflect robust representations of the
vowel features over which harmony is computed,
with preliminary evidence for representation of the
distinction between harmony and disharmony.

Acknowledgments

We thank the reviewers of this abstract for their
helpful feedback. This work is supported by a
SSHRC Doctoral Fellowship to JL (752-2024-
0291).

References

George N Clements, Engin Sezer, et al. 1982. Vowel
and consonant disharmony in turkish. The structure
of phonological representations, 2:213-255.

Adamantios I Gafos. 1999. The articulatory basis of
locality in phonology. Ph.D. thesis, Johns Hopkins
University.

John Anton Goldsmith. 1976. Autosegmental phonol-
ogy. Ph.D. thesis, Massachusetts Institute of Tech-
nology.

Jeffrey Heinz, Chetan Rawal, and Herbert G Tanner.
2011. Tier-based strictly local constraints for phonol-
ogy. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man language technologies, pages 58—64.



	Introduction
	Model and toy language
	CNNs do not implement exact tier projection
	CNNs demonstrate feature-based abstraction over vowels
	Discussion
	A soft implementation of tiers
	Alternative theories and their implementations
	Disambiguating between representations of grammaticality and tier-based representations

	Conclusion

