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Abstract

Building on recent work in subregular syntax,
we argue that syntactic constraints are best un-
derstood as operating not over trees, but rather
strings that track structural relations such as
dominance and c-command. Even constraints
that seem intrinsically tied to trees (e.g. con-
straints on tree tiers) can be reduced to such
strings. We define serial constraints as an
abstraction that decomposes string constraints
into a context function (which associates nodes
with strings) and a requirement function (which
enforces constraints on these strings). We pro-
vide a general procedure for implementing se-
rial constraints as deterministic tree automata.
The construction reveals that the many types
of constraints found in subregular syntax are
variants of the same computational template.
Our findings open up a string-based perspec-
tive on syntactic constraints and provide a new,
very general approach to the automata-theoretic
study of subregular complexity.

1 Introduction

One of the most common assumptions in theoreti-
cal and computational linguistics alike is that syn-
tax does not operate over strings but rather trees,
DAGs, or even more complex structures. This is
the case for all major syntactic formalisms, includ-
ing a.o. Minimalism, HPSG, LFG, TAG, and CCG.
Even in formal language theory, where many find-
ings focus on the complexity of syntax as a set
of well-formed strings (Huybregts, 1984; Kornai,
1985; Shieber, 1985; Radzinski, 1991; Michaelis
and Kracht, 1997; Kobele, 2006, a.o.), there is a
large body of work that analyzes these strings as the
yield of tree structures (e.g. the characterization of
multiple context-free string languages as the string
yields of MSO-definable tree languages under an
MSO tree-to-tree transduction). But even though
syntax may well do a lot of work with richly struc-
tured objects, this does not entail that this structure

is readily accessible to all parts of syntax. To the
contrary, recent work in subregular syntax (Graf,
2022a,b) suggests that syntactic constraints are so
limited that they are better understood as operating
over strings, albeit strings that encode linguistic re-
lations like dominance and c-command rather than
linear precedence (cf. Frank and Vijay-Shanker,
2001).

For example, Principle A of binding theory
requires a reflexive such as herself to be c-
commanded by a compatible DP like Mary or the
woman within a specific locality domain. As ex-
plained in Graf and Shafiei (2019), enforcing Prin-
ciple A does not require access to the full tree
structure as we only need to know the list of c-
commanders of the reflexive, which can be repre-
sented as a string. Even wh-movement, one of the
most fundamental aspects of syntax, can be under-
stood as a constraint that a wh-landing site imposes
on its string of wh-tier daughters (Graf, 2022a,
p.275f). Thus, while syntax may build tree struc-
tures for use at the interfaces (meaning, prosody),
its constraints appear to be limited to particular
types of strings that do not provide nearly as much
information as the tree they are obtained from.

This paper puts this general observation on a for-
mal foundation. We introduce the notion of serial
constraints, which are pairs consisting of a context
function and a requirement function (Sec. 2). The
context function con associates every node n of
tree t with a string that encodes its syntactic con-
text in t, e.g. its string of ancestors or its string of
wh-tier daughters. The requirement function req
maps each n to a string language. Then t is well-
formed with respect to the serial constraint iff it
holds for every node n of t that con(n) ∈ req(n).
We argue that all the proposals put forward in the
subregular syntax literature so far are instances of
serial constraints (Sec. 2.3–2.5). We then show how
serial constraints can be implemented as determin-
istic tree automata (Sec. 3). For some constraints,



this takes the form of deterministic bottom-up tree
automata (Sec. 3.1, 3.2), while for others it takes
the form of sensing tree automata, which are deter-
ministic top-down automata with a look-ahead of 1
(Sec. 3.3, 3.4). Despite that difference in direction-
ality, the automata follow a common construction
that can be expressed in algebraic terms as a for-
mula of Boolean matrix multiplication steps. These
formulas can be tweaked in various ways to define
new types of string representations, opening up a
novel perspective on subregular automata for syn-
tax.

Our findings have several implications. First
of all, our framework provides the first automata-
theoretic description of tier-based strictly local tree
languages. While there has been a lot of work on
tier-based strict locality for strings (Lambert and
Rogers, 2020), extending it to trees is not trivial.
Since a node can have arbitrarily many tier daugh-
ters, one cannot simply store them all in the states
of the tree automaton. Our automata construction
resolves this challenge and might even provide a
new foundation to develop a subregular theory of
tree automata. Second, serial constraints formally
link two branches of subregular syntax that seem to
have been moving in different directions: tree tiers
with local constraints VS strings with tier-based
strictly local constraints. Our findings reassert
the status of subregular syntax as a unified pro-
gram that furnishes computationally restricted yet
linguistically flexible ways of analyzing syntactic
phenomena. Finally, the reduction of syntactic con-
straints from trees to strings opens up new attack
vectors for syntactic learning. For example, neu-
ral networks could be trained on corpora that lack
full tree structures but include relevant c-command
relations, encoded as a string.

It is also important to emphasize what this paper
is not about. We do not claim that tree structure
is redundant for syntax. As mentioned above, the
structure-building aspect of syntax seems crucial
for prosody and semantic interpretation. Following
the two-step approach (Morawietz, 2003; Mönnich,
2006), we regard syntax as the interaction of two
components: syntactic constraints that define the
set of well-formed structures, and a transductive
component that maps syntactic objects to output
structures that are used at the PF and LF interfaces.
We are not currently aware of any method to re-
duce the latter to strings, and even subregular work
on the transductive component presupposes trees
for this (Graf, 2023). But syntactic constraints are

amenable to such a reduction and all the method-
ological simplifications this may provide — as long
as strings are built over pertinent syntactic relations
rather than linear precedence.

2 Serial constraints for syntax

We take as our starting point recent proposals
from subregular syntax (see Graf 2022a,b for a
recent overview). In subregular syntax, syntactic
structures are feature-annotated dependency trees
that encode derivations of a variant of Minimal-
ist grammars (MGs; Stabler, 1997, 2011) where
licensee features are unordered (Sec. 2.1; see also
appendix A for additional background on MGs and
their dependency trees). These syntactic structures
are regulated by various subregular constraints, and
we define serial constraints (Sec. 2.2) as a general
mechanism that unifies the many proposals in the
subregular literature (Sec. 2.3–2.5). Serial con-
straints could also be used with other kinds of tree
structures, but this paper limits itself to the kind
of MG dependency trees used in the subregular
literature.

2.1 MG derivations as dependency trees

We treat trees as labeled Gorn domains (Gorn,
1967), but for convenience we assume that daugh-
ters are numbered from right to left. A Gorn ad-
dress is a string of natural numbers (s ∈ N∗), in-
cluding the empty string ε. A Gorn domain D
is a set of Gorn addresses such that I) ui ∈ D
implies u ∈ D for all u ∈ N∗ and i ∈ N (mother-
of closure), and II) uj ∈ D implies ui ∈ D for
all u ∈ N∗, i, j ∈ N, and i < j (right sibling
closure). We occasionally use ux to refer to the
unique address ui ∈ D such that u ∈ N∗, i ∈ N,
and u(i+ 1) /∈ D. A Σ-tree is a pair ⟨D, ℓ⟩ where
D is a Gorn domain and ℓ : D → Σ the (total)
labeling function. When clear from context (and
particularly in Sec. 3), we use the term node to
refer to either a Gorn address or its label.

Let Lex be an MG lexicon, i.e. a finite set of lex-
ical items and thus an alphabet. We call a Lex -tree
an MG dependency tree (MDT) over Lex . Given
node u of MDT t, node ui is interpreted as the i-th
argument of u (see Fig. 1). Since there is a fixed up-
per bound j on the number of arguments a lexical
item may take, we may assume w.l.o.g. that there is
a fixed bound k ≥ j such that every Lex -tree is at
most k-ary branching. Limited branching is crucial
for our automata implementation in Sec. 3.
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Figure 1: Dependency tree for ∗Which politician did
Mary prove to herself that might flee the country?, with
Gorn address subscripts and dashed movement arrows
added as visual aids

Even though MGs make heavy use of move-
ment, all phrases in an MDT remain in their base
positions. Movement is indicated via movement
features, with the actual displacement left to a
post-syntactic transduction step. Negative features
(e.g. wh−, epp−) mark the head of the moving
phrase, and positive features (e.g. wh+, epp+) mark
the head that provides the corresponding landing
site. For additional background on the linguistic
interpretation of MDTs, the reader is referred to
appendix A.

2.2 Serial constraint = context + requirement

We define string-based constraints on trees as the
interaction of two functions. The context function
defines a system for mapping each node n of a tree t
to a specific string that is derived from the structural
relations of t, relative to n. In some cases, a set
Ω of diacritic symbols is used to distinguish mul-
tiple structural relations within the string. The re-
quirement function then regulates the shape of the
string n is mapped to. While all kinds of require-
ment functions could be considered, the proposals
from the subregular literature can be captured with
maximally simple ones that constrain the string of
n based solely on the label of n. Combining a con-
text function with a requirement function yields a
serial constraint.

Definition 1. An Ω-augmented context function
over Σ is a total function con that takes as
inputs a Σ-tree ⟨D, ℓ⟩ and Gorn address a ∈
D and maps them to a (possibly empty) string
⟨ℓ(a1), ω1⟩ · · · ⟨ℓ(an), ωn⟩ such that n ≥ 0 and for

all 0 ≤ i ≤ n, both ai ∈ D and ωi ∈ Ω. If |Ω| = 1,
the context function is unaugmented. ⌟

To avoid visual clutter, we write ℓ(a)ω instead of
⟨ℓ(a), ω⟩, and we completely omit any mention of
Ω for unaugmented context functions. To further
increase readability, we use · to explicitly separate
the symbols in the outputs of context functions.

Example 1. The (unaugmented) daughter string
context function drs maps every node to its string
of daughters, ordered from left to right. In Fig. 1,
drs(prove[exp+]) is Mary[epp−]·that[exp−]·to. ⌟

Definition 2. An Ω-augmented requirement
function over alphabet Σ is a total function req :
Σ → ℘((Σ × Ω)∗) that associates every symbol
with a (possibly empty) string language over Σ×Ω.
We say that req is regular iff req(σ) is a regular
string language for every σ ∈ Σ. ⌟

Again we will use superscripts instead of pair nota-
tion, and we will omit Ω for unaugmented require-
ment functions. Hence the co-domain of unaug-
mented req is simplified to ℘(Σ∗).

Example 2. The requirement function Merge maps
every lexical item to its set of possible argument
configurations, each one represented as a string.
For example, the transitive verb eat is mapped to
the set LDD of all strings consisting of exactly
two lexical items that each are of category D. In-
transitive eat would instead require exactly one
such D (and thus its image under Merge is LD ).
If the grammar formalism does not disambiguate
between the two, then eat is mapped to LDD∪LD .⌟

Definition 3. An Ω-augmented serial constraint
over Σ is a pair ⟨con, req⟩ such that con is an
Ω-augmented context function over Σ and req is
an Ω-augmented requirement function over Σ. A
Σ-tree t := ⟨D, ℓ⟩ is well-formed with respect
to ⟨con, req⟩ iff it holds for every a ∈ D that
con(t, a) ∈ req(ℓ(a)). ⌟

Example 3. Selectional restrictions of lexical items
can be regarded as a serial constraint that combines
the context function drs over MDTs with the re-
quirement function Merge. ⌟

2.3 Types of context functions: a-strings
We now turn to how the various string represen-
tations used in the subregular literature (Graf and
Shafiei, 2019; Shafiei and Graf, 2020; Graf, 2022a)
can be reconceptualized as context functions. We
start our discussion with a-strings as they are the
most intuitive.



Definition 4 (a-string). Given Gorn address u of
MDT t := ⟨D, ℓ⟩, the a[ncestor]-string context
function as maps t and u the string of nodes in t
that properly dominate u (in top-down order):1

as(t, u) :=

{
ε if u = ε

as(t, v) · ℓ(v) if u = vi, i ∈ N

Example 4. The a-string of which[epp−, wh−]
in Fig. 1 is did[wh+]·T[epp+]·prove[exp+]
·that[exp−] ·might[epp+]·flee. ⌟

A-strings can be used to enforce constraints on
movement paths. This includes domain conditions
like island constraints, but also morphological alter-
nations triggered by movement, e.g. wh-agreement
in Irish (McCloskey, 2001; Georgi, 2017; Graf,
2022c).

Example 5. If a subordinate clause is headed by
that, then its subject cannot be extracted out of this
clause. This is known as the that-trace effect. This
constraint is violated by which politician in Fig. 1.
We can model this with the context function as
in combination with a fairly simple requirement
function req . If n carries the subject movement
feature epp− then one of the following must hold:
the rightmost complementizer in as(n) is not that,
or for every movement feature f− of n, at least
one f+ occurs in as(n) to the right of the right-
most complementizer. If n does not include epp−,
req(n) is Σ∗. The MDT in Fig. 1 is ill-formed
because as(which[epp−, wh−]) is rejected by req
due to the rightmost complementizer being that
with no wh+ occurring after it. ⌟

2.4 Types of context functions: c-strings

Whereas a-strings are mostly used to capture ef-
fects related to movement, c-strings track licensing
requirements that are mediated by c-command.

Definition 5 (c-string). Given Gorn address u of
MDT t := ⟨D, ℓ⟩, its c[ommand]-string context

1The definition in Shafiei and Graf (2020) uses a bottom-
up order for a-strings, which is formally equivalent but less
elegant for our purposes. Moreover, Shafiei and Graf always
include ℓ(n) in as(n) in order to track which constraints
should apply to the string. Since our approach leaves con-
straint selection to req , including ℓ(n) in as(n) is redundant.
In fact, factoring out constraint selection reduces the complex-
ity of the string constraints in Shafiei and Graf (2020) from
IOTSL to OTSL.

Note that the same differences also hold for the definition
of c-strings in Graf and Shafiei (2019) and our Def. 5.

function cs is recursively defined as2

cs(t, u) :=


ε if u = ε

cs(t, v) · ℓ(v) if u = vx

cs(t, vi) · ℓ(vi)← if u = v(i− 1)

Example 6. The c-string of which[epp−, wh−]
in Fig. 1 is did[wh+]·T[epp+]·prove[exp+]
·Mary[epp−]←·that[exp−]·might[epp+]·flee.
The c-string of herself is did[wh+]·T[epp+]
·prove[exp+]·Mary[epp−]←·that[exp−]←·to. ⌟

Intuitively, the c-string of n is obtained by
traversing the tree from n towards the root in a
leftmost manner, never moving right or down. This
approximates the linguistic notion of c-command
but does not track how movement may create new c-
command relations or destroy existing ones (but we
believe that the automata-theoretic view in Sec. 3
furnishes the right tools for addressing this in the
future). In addition, c-strings also make an explicit
distinction between containing c-commanders (X)
and non-containing c-commanders (X←), which is
crucial for some constraints such as Principle A. C-
strings are our only instance of such an augmented
context function.

Example 7. Consider a simplified version of Prin-
ciple A: if n is a reflexive, then the smallest TP
containing n must contain a DP that c-commands
n. In our framework, this means that cs(t, n) must
contain some X← such that X carries category fea-
ture D and occurs to the right of the rightmost T in
the string. If n is not a reflexive, the Principle A
requirement function PrA puts no restrictions on
it (we set PrA(n) := Σ∗). ⌟

Note that for every node n of any MDT t,
as(t, n) is the longest subsequence of cs(t, n)
that does not contain any symbols with the super-
script ←. In subregular terms, as(t, n) is a tier
of cs(t, n). It follows that every regular constraint
over a-strings can be restated as a regular constraint
over c-strings. Hence our automata-theoretic treat-
ment of c-strings in Sec. 3 is also an implicit treat-
ment of a-strings.

2.5 Types of context functions: T-strings

Our last and perhaps most abstract type of strings is
defined via tree tiers. Intuitively, a tree tier T (t) of
tree t is constructed by fixing a set of node labels,

2The original definition in Graf and Shafiei (2019) does
not include the augmentation symbol ←.
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the tier alphabet T , and removing from t all nodes
that do not belong to T . Figure 2 shows two tiers
of the MDT in Fig. 1. The epp-tier is obtained by
removing all nodes whose label does not include
epp+ or epp−, whereas the that-trace tier keeps
all instances of the complementizer that and all
nodes that carry wh+ or wh−. On a tree tier, the
label of a node determines the shape that its string
of daughters must have. Hence tree tiers are a vi-
sual metaphor for a context function that associates
every node with its string of tier daughters.

Definition 6 (Tier strings). Given Gorn address u
of MDT ⟨D, ℓ⟩ and T ⊆ Σ, we say that u is on T
iff ℓ(u) ∈ T . Then u is the T -mother of v (and v is
a T -daughter of u) iff u and v are both on T , v =
uv1 · · · vn (vi ∈ N, n ≥ 1), and for all 1 ≤ i < n
it holds that uv1 · · · vi is not on T . Furthermore,
w T -precedes w′ iff w and w′ have the same T -
mother and there exist u, v, v′ ∈ N∗ and i, j ∈ N
such that i > j, w = uiv, and w′ = ujv′.

The T -string context function T maps t and u
to the set of T -daughters of u in t, ordered by T -
precedence. When u has no T -daughters, T (n) :=
ε. ⌟

Example 8. Let epp be the alphabet of the epp-
tier, which includes all labels that contain epp+ or
epp−, and wh the corresponding alphabet for the
wh-tier. Then the epp-string of which[epp−, wh−]
in Fig. 1 is ε, and so is its wh-string. The epp-string
of T[epp+] is Mary[epp−]·might[epp+]. The wh-
string of did[wh+] is which[epp−, wh−], whereas
its that-trace string is that[exp−]. ⌟

Like a-strings, tier strings can be used to enforce
island constraints and other conditions on individ-
ual movement paths. In contrast to a-strings, they
also capture constraints on how distinct movement
paths may interact.

Example 9. In MGs, every landing site must be
targeted by exactly one mover. This can be cap-
tured over tier strings: for every n with movement
feature f+ it must be the case that the f-string of
n contains exactly one lexical item with f−. A-

strings, by contrast, can enforce the presence of
a landing site for a mover (if n carries f−, then
as(n) must contain f+) but cannot guarantee that
this landing site isn’t targeted by multiple movers
(e.g. C[wh+] when the subject and object both carry
wh−, as neither one appears in the other’s a-string).

Daughter strings as defined in example 1 are iden-
tical to T-strings with T = Σ. Hence our automata-
theoretic treatment of T -strings also subsumes
daughter strings.

3 Tree automata for serial constraints

The previous section has identified several string
representations and constraints that have been in-
voked in the subregular literature, and we have
recast all of them as context functions that can
be combined with suitable requirement functions.
Since the constraints from the subregular literature
all define subregular string languages, they can all
be captured with regular requirement functions and
thus finite-state string automata (FSAs). While
requirement functions are easily understood and
implemented, then, the formal status of context
functions is less clear.

We propose to model context functions as de-
terministic tree automata whose only purpose is to
decide which nodes should be fed as input to the re-
quirement function. These tree automata simulate
the (FSAs of the) requirement functions in their
state space, while different context functions corre-
spond to minimally different matrix multiplication
formulas for updating states. This has the advan-
tage that the tree automaton implicitly produces
and evaluates in a single run all n string representa-
tions that the corresponding context function would
produce for a tree with n nodes. The matrix mul-
tiplication formulas also provide a very general
template that can be easily adapted to new kinds of
string representations.

3.1 Automata for T-string context functions

T-string context functions are implemented as (de-
terministic) bottom-up tree automata. We present
the general template here and provide an illustra-
tive example in Sec. 3.2. Our construction assumes
that regular requirement functions are decomposed
into FSAs, one per symbol in the alphabet. The
FSAs are subsequently decomposed into Boolean
matrices. As mentioned in the introduction, this
addresses a central challenge of dealing with T-



strings: even when MDTLs are assumed to be at
most k-ary branching, there is no upper bound
on the number of T-daughters a node may have.
Hence one cannot represent the entire string of T-
daughters in the states of the tree automata. Instead,
one has to store how the T-daughters seen so far
would cause the FSA of req(σ) to transition be-
tween states. The matrix representation of FSAs
makes this very easy. Readers unfamiliar with this
construction are referred to Appendix B for addi-
tional background.

A bottom-up tree automaton is a 4-tuple A :=
⟨Σ, Q, F,∆⟩ where Σ is an alphabet, Q is a finite
set of states, F ⊆ Q is the set of final states, and ∆
is a set of transitions. Transitions are of the form
σ(q1, . . . , qn) ⇒ q (σ ∈ Σ, qi ∈ Q, n ≥ 0).3

Intuitively, the automaton processes trees from the
leaves to the root, assigning each node n a state
q ∈ Q based on I) the label of n, and II) the states
of n’s daughters. The automaton recognizes tree t
iff the root of t is assigned some q ∈ F .

Let B be the Boolean matrix representation of
some FSA with m ≥ 1 states that generates the
string language req(σ), where σ ∈ Σ and req is
some regular, Ω-augmented requirement function.
We use I for the initial matrix, F for the final ma-
trix, b(σ) for the Boolean matrix corresponding to
symbol σ ∈ Σ × Ω, and idm for the identity ele-
ment for matrix multiplication of Boolean m×m
matrices. We use ⊗ to denote Boolean matrix mul-
tiplication.

For every σ ∈ Σ, we construct a bottom-up
tree automaton Aσ that ensures for every tree t
and node n with ℓ(n) = σ that T (t, n) ∈ req(σ).
Intersecting all Aσ for σ ∈ Σ yields a bottom-up
tree automaton that enforces requirement function
req over T -strings.

Our construction automatically assembles Aσ

from the specification of just two attributes for each
node label.

Definition 7 (Node attributes). Let V,O ⊆ Σ be
the set of visible and opaque nodes, respectively,
and σ ∈ Σ the restricted node. Then the value
v(nω) of nω ∈ Σ × Ω is b(nω) if n ∈ V , and
idm otherwise. Given a Boolean matrix q, q ⊕
nω is v(nω) if n ∈ O and q ⊗ v(nω) otherwise.
Given initial matrix I and final matrix F, rn(q)

3In the tree automata literature, it is more common to write
the transition rules in the format σ(q1(x1), . . . , qn(xn)) ⇒
q(σ(x1, . . . , xn)), with each xi a variable representing a sub-
tree (see Gécseg and Steinby 1997 and Comon et al. 2008,
p.20). We omit these variables to reduce clutter.

is undefined if both n = σ and I ⊗ q ⊗ F = 0;
otherwise rn(q) = q. ⌟

Intuitively, visible nodes are those that can cause
the underlying FSA to transition to a new state. For
T-strings, those are simply the nodes that are on
the tier. Opaque nodes induce locality domains by
overwriting the result of previous matrix multipli-
cations with their own value. For T-strings, every
visible node is also opaque. The restricted nodes
for Aσ are exactly those labeled σ, i.e. the ones
whose T-string must be well-formed according to
the underlying FSA.

Definition 8 (T-string automaton). We define
Aσ := ⟨Σ, QB, QB,∆⟩. Here QB is the result
of closing the set of square matrices in B under
Boolean matrix multiplication. For every n ∈ Σ
and all q1, . . . , qk ∈ QB (k ≥ 1), we set

q := rn

(
k⊗

i=1

qi

)
⊕ v(n)

such that σ(q1, . . . , qk) ⇒ q ∈ ∆ iff q is defined.
Furthermore σ() ⇒ v(σ) ∈ ∆ for every σ ∈ Σ. ⌟

Since the formula above yields at most one value
for q, Aσ is deterministic even if B is the Boolean
representation of a non-deterministic FSA. Note
that QB and ∆ are automatically constructed from
σ, Σ, B, and the attributes V and O. Also, all states
of Aσ are final (a tree is rejected iff there is a node
that no state can be assigned to). Hence Aσ could
instead be defined as a 5-tuple ⟨Σ, σ,B, V,O⟩.

3.2 Example: epp-string requirement
function

Example 9 mentions that MGs require every land-
ing site to be targeted by exactly one mover. If a
node carries the feature epp+, then its epp-string
must contain exactly one node that carries epp−.
We can think of this as a requirement function 1
that maps each lexical item to one of two regu-
lar string languages. If l does not carry epp+, then
1(l) is Σ∗; otherwise, 1(l) is L1 := E

∗
EE

∗ where
E ⊆ Σ is the set of lexical items that carry epp−

and E := Σ − E. It is easy to define an FSA for
L1, which is then decomposed into its Boolean
representation B (see Fig. 3).

We now construct A for a single lexical item,
which is might[epp+]. The epp-tier contains all
items that carry epp+ or epp−, so all of those are
visible and opaque. Figure 4 shows the states as-
signed by the automaton as well as the attributes of
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Figure 4: Run of automaton enforcing L1 over epp-
strings of might[epp+]; + and − indicate whether the
node is visible, opaque, and/or restricted

each node (in the order visible-opaque-restricted).
The tree is correctly recognized as well-formed
with respect to the epp-string requirement function
because the root is assigned a state (remember that
all states are final).

Let us consider a few specific nodes from Fig. 4.
The leaf node politician is not visible, so its value
is the 2 × 2 identity matrix id2. Since it is a leaf,
we use the transition σ() ⇒ v(σ), for which it is
irrelevant whether politician is opaque or restricted.
Now consider which, right above politician. It is
visible and opaque, but not restricted. Since it is
visible and carries epp−, its value is the Boolean
matrix e. Since it isn’t restricted, rn(

⊗k
i=1 qi) is

not undefined, but since it is opaque its state is just
its value e. The node flee above which is neither
visible nor opaque or restricted. Hence its state
is the result of matrix multiplying the states of
which and the with its value id2. Finally, might

is visible, opaque, and restricted. Its value is the
Boolean matrix e, which is identical to id2 in this
case. As might is restricted, rn(

⊗k
i=1 qi) could be

undefined. But fortunately multiplying I with the
state of flee and F yields 1 (confirming that the
epp-tier string of might is a member of L1). If
the result had been 0, no state would have been
assigned and the computation would have halted,
causing the tree to be rejected. Instead, might is
assigned its value as its state because it is opaque.
The computation continues from there, but since
no other nodes in the tree are restricted, we are
guaranteed to assign some state to the root (which
is final because all states are final).

By constructing such an automaton for every
lexical item with epp+, we ensure that every lexical
item with epp+ has exactly one epp− among its
epp-tier daughters.

3.3 Automata for c-string context functions

We now turn to the implementation of c-strings
(which subsumes a-strings as discussed at the end
of Sec. 2.4). Instead of bottom-up automata, we
will use sensing tree automata as these have previ-
ously been proposed by Graf and De Santo (2019)
as a model of c-string constraints.4 For conve-
nience, we use a slightly different notation for defin-
ing the transitions of these automata, and we allow
the initial state to be determined by the label of
the root. These changes will make it easier to see
that the state assignment template for sensing tree
automata is almost the same as for bottom-up tree
automata. In particular, the attributes and opera-
tions from Def. 7 carry over unaltered. This shows
that our treatment of context functions is indepen-
dent of the specific types of tree automata.

A sensing tree automaton is a 3-tuple A :=
⟨Σ, Q, δ⟩ where Σ is an alphabet, Q is a finite set
of states, and δ is a set of transition rules that may
take two distinct forms. For interior nodes, we
have ⟨q, σ(σ1, . . . , σk), i⟩ ⇒ qi (1 ≤ i ≤ k). This
means that if σi has mother σ with state q, left sib-
lings σ1, . . . , σi−1, and right siblings σi+1, . . . , σk,
then σi is assigned state qi. For root nodes, the
transition σ ⇒ q assigns state q to σ. Intuitively,
sensing tree automata assign states in a top-down

4Sensing tree automata cannot be used to capture tier-string
constraints. As noted in Graf and De Santo (2019), sensing
tree automata cannot regulate movement steps that aren’t re-
stricted by both the specifier island constraint and the adjunct
island constraint. For example, a sensing tree automaton can-
not ensure that every epp+ is targeted by exactly one epp−.
But as we just saw, this is easily enforced over epp-tier strings.



fashion and make the assigned state contingent on
the mother’s state and the labels of the node, its sib-
lings, and its mother. Since sensing tree automata
are deterministic, δ must not contain distinct tran-
sitions rules with the same left-hand side. A tree t
is accepted by A iff every node of t is assigned a
state.

With these preliminaries out of the way, it is
easy to define the sensing tree automaton Aσ for
some requirement function req . As before, B is
the Boolean representation of an FSA with m ≥ 1
states that generates r(σ), and QB is the result
of closing the set of square matrices in B under
Boolean matrix multiplication.

Definition 9. We define Aσ := ⟨Σ, QB, δ⟩. For
every state q ∈ Q and all 1 ≤ j ≤ k and
σ, σ1, . . . , σk ∈ QB, we set

qj := rσj

(
q ⊕

j−1⊕
i=1

v(σ←i )

)
⊕ v(σj)

⌟

such that ⟨q, σ(σ1, . . . , σj , . . . , σk), j⟩ ⇒ qj ∈ δ
iff qj is defined. Furthermore, σ ⇒ v(σ) for every
σ ∈ Σ.

The formula for c-strings differs only marginally
from T-strings, namely in the argument of r. Quite
generally, this is the area where differences be-
tween context functions are expressed. To wit, a-
strings would also differ in only this area by sim-
plifying the argument of r to just q. The specific
differences between c-strings and T-strings are due
to siblings taking on a similar role in c-strings to
ancestors in T-strings. With c-strings, an opaque
node renders inaccessible all information about its
left siblings, and thus the values of siblings have
to be combined with ⊕ instead of ⊗. Also, each
sibling σi is a c-commander and hence its value
must be v(σ←i ) rather than v(σi). These minor
changes in the formulas cannot distract from the
fact, however, that a-strings, c-strings and T-strings
(which includes daughter strings) have remarkably
similar automaton implementations.

3.4 Example: Binding and (reduced) c-strings

As with T-strings, we provide a linguistic example
of the automaton construction for c-strings. Con-
sider once more the simplified version of Princi-
ple A from example 7: if n is a reflexive, then cs(n)
must have a non-containing D-head D←to the right
of the rightmost containing T-head.

Astart B

T, D←

D←

I :=
(
1 0

)
F :=

(
0
1

)
D← :=

(
1 1
0 0

)
T :=

(
1 0
0 0

)
id :=

(
1 0
0 1

)
Figure 5: FSA and Boolean matrices for Principle A
over reduced c-strings that only contain D← and T.

did[wh+]

T[epp+]

prove[exp+]

Mary[epp−] that[exp−]

might[epp+]

flee

which[epp−, wh−]

politician

the

country

to

herself

- - -(
1 0
0 1

)
+ + -(
1 0
0 0

)
- - -(

1 0
0 0

)
+ - -(
1 0
0 0

) - - -(
1 1
0 0

) - - -(
1 1
0 0

)
+ - +(
1 1
0 0

)+ + -(
1 0
0 0

)
- - -(

1 0
0 0

)
+ - -(
1 0
0 0

) + - -(
1 1
0 0

)
- - -(

1 0
0 0

) - - -(
1 1
0 0

)

Figure 6: Run of automaton enforcing LA over reduced
c-strings that only contain D and T; + and − indicate
whether the node is visible, opaque, and/or restricted
(D-heads are visible only when they are non-containing
c-commanders, and T-heads are visible only when they
are containing c-commanders)

In order to make the example more insightful,
we will implement this as a tree automaton that con-
structs a reduced version of the c-string that only
contains Ds and Ts, ignoring all c-commanders that
are immaterial to this constraint. That is to say, the
task of ignoring irrelevant nodes is shifted from
the requirement function into the context function.
Hence the requirement function maps reflexives
to the string language LA := {T,D←}∗ D← (see
Fig. 5). The set of visible nodes consists of all
D← and all T (but not D or T←). The only opaque
nodes are visible T-heads, and the only restricted
node is herself.

The run of the resulting sensing tree automa-
ton is shown in Fig. 6. Since every node is as-
signed a state, the tree is correctly recognized as
well-formed. The important thing to keep in mind



is that each node n may now exhibit a dual be-
havior depending on whether the formula uses
v(n) or v(n←). For example, the state of Mary
is computed with v(Mary) = id2, and hence it
is identical to the state of its mother prove. On
the other hand, the state of that is computed with
v(Mary←) = D←, inducing a state change. The
same effect obtains with the state of which relative
to the. Also note how might, by virtue of being
opaque, receives the state v(might) = T and thus
renders Mary inaccessible from within that subtree.

4 Conclusion

All syntactic constraints that have been put forward
in the subregular literature can be analyzed as serial
constraints. Serial constraints consists of a context
function that associates every node in a tree with
a string derived from the tree, and a (regular) re-
quirement function that requires the node’s associ-
ated string to belong to a (regular) string language.
While requirement functions are fairly unremark-
able from a formal perspective, context functions
require additional considerations.

This paper shows that the context functions for
T-strings (and by extension daughter strings) as
well as c-strings (and by extension a-strings) can
all be implemented as tree automata that follow a
universal template. Crucially, the states of these au-
tomata store no information beyond what is needed
to simulate the requirement function. All other
decisions are made based only on the information
available directly in each transition rule: whether
a node is visible, opaque, and/or restricted. How
exactly this information is used to compute states
can be succicntly expressesd via matrix multipli-
cation formulas. Each such formula is of the form
q := rσ (ϕ) ⊕ v(σ), where ϕ is a Boolean ma-
trix computed from the states and/or the values of
nodes accessible in the transition rule. The general
upshot is that even though selectional constraints
and constraints on tree tiers seem intuitively differ-
ent from a-string and c-string constraints, they are
but minor variations of a common theme.

One surprising implication of these findings is
that (most, perhaps even all) syntactic constraints
can be regarded as operating over strings rather
than trees. All the regulating work is done by the
requiremnt function (which is an FSA), with tree
automata serving as a simple wrapper that passes
information into this function. Of course this may
be due to serial constraints providing a lot more

power than it currently seems. For example, even
the requirement that a tree must have an odd num-
ber of nodes can be implemented as a serial con-
straint (e.g. via a preorder traversal). On the other
hand, it seems that no serial constraint can express
the requirement that a tree must contain an even
number of nodes that each properly dominate at
least two nodes. Further work is needed to properly
assess the power of serial constraints and how it
varies with the chosen automaton model.
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A Background: MGs and tree structures

Every MG is fully specified by its lexicon, which
is a finite set of feature-annotated lexical items
that are combined by the structure-building opera-
tions Merge and Move. Merge features encode the
lexical item’s category (category feature F− ) and
its subcategorization requirements (selector fea-
tures F+). Move features indicate whether the lexi-
cal item furnishes any landing sites for movement
(licensor features f+), and whether it undergoes
any movement of its own (licensee features f−).
To reduce clutter, we only indicate Move features
throughout this paper. Some variants of MGs allow
licensor features to indicate whether the landing
site is linearized to the left or to the right. We allow
this option in this paper and use it for extraposition
of the that-clause in Fig. 1, but nothing hinges on
that.

As is common in subregular syntax, but unlike
standard MGs, we assume that licensee features are
unordered (this has no effect on generative capac-
ity). For example, a lexical item with both epp−

and wh− has to undergo both epp-movement and
wh-movement, but the order is unspecified. If the
closest epp-landing site is closer than the closest
wh-landing site, epp-movmeent will precede wh-
movement, otherwise it will follow it. When a
lexical item undergoes movement, it does not move
by itself but moves along the entire phrase it is the
head of.

MG derivations can be represented as depen-
dency trees. The mother-of relation corresponds to
Merge steps, and the right-to-left order of siblings
matches the order in which they are merged with
the mother. For example, flee in Fig. 7 first merges
with (the phrase headed by) the, taking it as a com-
plement. After that, (the phrase headed by) which
is merged as a specifier. Movement is only indi-
cated by licensor and licensee features — movers
are not displaced from their base position. A mover
with f− always targets the cloest landing site from
its base position that is provided by a matching f+.

While MG dependency trees look different from
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standard phrase structure trees, they encode all nec-
essary syntactic information. However, they do so
much more compactly than more common alterna-
tives such as X′-trees (cf. Fig.7).

B Background: FSAs as Boolean matrix
multiplication

An FSA is a 5-tuple A := ⟨Σ, Q, I, F,∆⟩ where
Σ is the alphabet, Q is a finite set of states, I ⊆ Q
is the set of initial states, F ⊆ Q is the set of final
states, and ∆ is a finite set of transition rules of
the form q

σ
=⇒ q′. We assume w.l.o.g. that Q is not

empty.
The corresponding Boolean representation is

constructed as follows. First, we fix an arbitrary
enumeration of all n ≥ 1 states of Q. Then every
σ ∈ Σ is associated with a n × n matrix b(σ)
such that the cell b(σ)i,j in row i, column j (1 ≤
i, j ≤ n) is 1 if ∆ contains the transition qi

σ
=⇒ qj .

Otherwise, the cell is 0. The initial matrix I is a
1 × n matrix such that I1,j is 1 if qj ∈ I and 0
otherwise. Similarly, the final matrix F is a n× 1
matrix such that Fi,1 is 1 if qi ∈ F and 0 otherwise.

Example 10. The smallest deterministic FSA over
Σ := {a, c} that recognizes a(aa)∗ corresponds to
the matrices below.

I :=
(
1 0

)
F :=

(
0
1

)
b(a) :=

(
0 1
1 0

)
b(c) :=

(
0 0
0 0

)
⌟

A string σ1 · · ·σk is recognized by A iff I ⊗
b(σ1) ⊗ · · · ⊗ b(σk) ⊗ F = 1, where ⊗ denotes
Boolean matrix multiplication. Given a Boolean
u × v matrix A and v × w matrix B, A ⊗ B is a
u × w matrix C such that for all 1 ≤ i ≤ u and
1 ≤ j ≤ w

Ci,j :=

v∨
k=1

(Ai,k ∧Bk,j)

Example 11. Continuing the previous example, the
FSA recognizes aaa as we have

I⊗ b(a)⊗ b(a)⊗ b(a)⊗ F = 1

which can be gleaned from the following tree:

1

(
0 1

)
(
1 0

)
(
0 1

)
(
1 0

)
I (

0 1
1 0

)b(a)

(
0 1
1 0

)

b(a)

(
0 1
1 0

)

b(a)

(
0
1

)

F

But the FSA rejects aa, c, and the empty string:

0

(
1 0

)
(
0 1

)
(
1 0

)
I (

0 1
1 0

)b(a)

(
0 1
1 0

)

b(a)

(
0
1

)

F

0

(
0 0

)
(
1 0

)
I (

0 0
0 0

)b(c)

(
0
1

)

F

0

(
1 0

)
I (

0
1

)F

⌟

The identity matrix idn of size n is the n × n
square matrix such that idi,j = 1 if i = j, and 0
otherwise. When M is an m × n matrix, idm ⊗
M = M ⊗ idn = M .

Example 12. Multiplying b(a) with id2 yields
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Figure 7: MG dependency tree and corresponding X′-tree for Which politician did Mary prove might flee the country



b(a).

b(a)× id2 =

(
0 1
1 0

)
⊗
(
1 0
0 1

)
=

(
0 1
1 0

)
=

(
1 0
0 1

)
⊗
(
0 1
1 0

)
= id2 ⊗ b(a) ⌟
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