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Abstract

Some vowel harmony systems have neutral
vowels, which need not agree along the harmo-
nizing dimensions of vowel quality. Neutral
vowels differ in whether other vowels in turn
harmonize with them: those that are harmo-
nized with are opaque while those that are not
are transparent. Prior artificial language learn-
ing studies have found opaque vowels to be
more readily learned in laboratory settings than
transparent vowels. This was initially thought
to be because transparent vowels intervene be-
tween harmonizing vowels on a vowel tier,
making harmony non-local. However, subse-
quent computational work has demonstrated
that vowel harmony is typically tier-strictly-
local, even with transparent and opaque vow-
els, indicating that there may be less differ-
ence between them than once believed. I pro-
pose an explanation for the different learning
results between transparent and opaque vow-
els by making use of a recent learning model
that proposes learners create tier-like represen-
tations in response to being unable to suffi-
ciently generalize without them, as measured
by the Tolerance Principle. I demonstrate how
the representations that this model constructs
make sense of different learning results be-
tween transparent and opaque vowels, despite
their shared formal properties.

1 Introduction and Background

Vowel harmony involves non-local dependencies,
as vowels agree along the harmonizing dimensions
across intervening consonants. In the following ex-
ample (1) from Turkish, the underlined suffix vow-
els harmonize in backness with the vowel to their
left (Nevins 2010, p. 28; Kabak 2011, p. 3).

(1) [dal-lar-wmn]
[jer-ler-in]
[ip-ler-in]

branch-PL-GeEx
place-PL-GEN
rope-PL-GEN

In some vowel harmony systems, a subset of
vowels are not required to harmonize—they are

neutral. These neutral vowels are coarsely grouped
into two categories: opaque and transparent.
Opaque vowels participate in harmony in that other
vowels harmonize with them. For example, in addi-
tion to backness harmony, Turkish high vowels [i,
y, w, u] also harmonize in roundness (2a). Low
vowels [e, @, a, o] are neutral to the rounding
harmony (2b), but high vowels nevertheless harmo-
nize with them opaquely (2c).

(2) a. [ip-in] rope-GEN
[jyz-yn] face-GEn
[kuuz-wmn] girl-GEx
[buz-un] ice-GEN

b. [kwz-lar] gril-PL
[buz-lar] ice-PL

c. [el-in] hand-Gen
[;Q)z_—yn] word-GEN
[sap-um] stalk-GEN
[jcjl-u;] road-GEN

Transparent vowels, on the other hand, are inert,
neither harmonizing nor being harmonized with.
For instance, while Hungarian has backness har-
mony (3a), the vowels [iz, e:] are transparent, with
the Dat vowel skipping them to harmonize with the
next vowel to the left of (3b; examples from Benus
and Gafos 2007).

(3) a. [¢rgm-nek]
[mo:kuf-nok]

joy-DaTt
squirrel-DAT

b. [emiir-nek] emir-Dat
[popiir-nok] paper-Dat
[my:vers-nek] artist-Dat
[kaiver-nok] coffee-DAt

The development of autosegmental theory
(Goldsmith, 1976) allowed for treating vowel har-
mony as local on a vowel tier (Clements, 1976,
1980). Opaque vowels do not harmonize with



the preceding vowel on a vowel tier, but their fea-
tures take over the harmony, so all remains lo-
cal. However, vowel harmony must cross transpar-
ent vowels, which introduces non-locality even on
a vowel tier (Goldsmith, 1985; Bakovic and Wil-
son, 2000; Hayes and Londe, 2006; Finley, 2009).
Finley (2015) hypothesized that this makes trans-
parent vowels harder to learn than opaque vowels
and tested this hypothesis with a series of artifi-
cial grammar learning (AGL) experiments. Finley
found that adults indeed succeeded at learning the
behavior of an opaque vowel but failed to learn the
behavior of a transparent vowel under equivalent
conditions. Only by increasing the amount of ev-
idence of the neutral vowel’s transparency, by in-
creasing the amount of exposure to items that un-
ambiguously indicated transparency, did learners
eventually succeed at learning transparent vowel
behavior. Chen (2024) found compatible results:
when adults were trained on an artificial harmony
system with a neutral and a transparent vowel, they
either failed to learn the harmony system altogether
or appeared to treat both the opaque and transpar-
ent vowels as opaque (depending on the presenta-
tion of the training stimuli).

However, work in computational phonology has
found that from a formal-language-theoretic per-
spective, neither opaque nor transparent vowels
meaningfully change the computational character
of vowel harmony: vowel harmony is typically tier-
strictly-local (k = 2) (Heinz et al., 2011), with
or without opaque and/or transparent vowels (Bur-
ness et al., 2021). Learners could project a tier
that excludes transparent vowels along with the
consonants, and this renders all relevant depen-
dencies local on the tier. Moreover, as Finley
(2015) observed, transparent vowels must be learn-
able, since they appear in numerous natural lan-
guage harmony systems. Indeed tier-strictly-local
constraints and processes are provably efficiently
learnable (Jardine and Heinz, 2016; Jardine and
McMullin, 2017; Burness and McMullin, 2019)
and Finley (2015) did find that under the right con-
ditions, transparent vowel harmony can be learned
in the lab. Similarly, Ozburn et al. (2016) found
that adult Canadian French speakers succeeded at
learning the behavior of a transparent vowel in an
artificial vowel harmony system built around the
French vowel inventory.

Given that vowel harmony with opaque and
transparent vowels shares a fundamental underly-
ing computational structure and both must be learn-

able in natural languages, it is worth revisiting
what might underlie the picture from experimental
results that vowel harmony is harder to learn with
transparent vowels than opaque vowels.

To do so, I build on my prior work (Belth, 2024),
where I proposed that humans learn phonological
alternations by tracking dependencies between al-
ternating segments and the segments adjacent to
them—using the well-attested ability to track adja-
cent dependencies over many kinds of representa-
tions (Saffran et al., 1996, 1997; Aslin et al., 1998;
Saffran et al., 1999; Fiser and Aslin, 2002). In
that proposal, if adjacent dependencies are not suf-
ficiently predictive of the alternation, where suf-
ficiency is measured by the Tolerance/Sufficiency
Principle (Yang, 2016), learners use the same sen-
sitivity to adjacent dependencies to form a new
representation that excludes any adjacent segments
that led to incorrect predictions. The resulting
representations can be interpreted as tiers, which
are constructed in dynamic response to the input.
In Belth (2024), I implemented this proposal as
a learning model. The model succeeded at learn-
ing natural language harmony processes, including
Turkish vowel harmony, in which low vowels are
opaque to rounding harmony, and Finnish vowel
harmony, in which, similarly to Hungarian, [i, €]
are transparent to backness harmony (Ringen and
Heinamaiki, 1999). In Turkish, the learner con-
structed a vowel tier and in Finnish it constructed
a tier that excluded the transparent vowels. Thus,
the proposal already accounts for the learnability
of vowel harmony with opaque and transparent
vowels in natural languages. In this paper, I will
demonstrate that it simultaneously accounts for the
difference in experimental settings between artifi-
cial vowel harmony systems with opaque vs. trans-
parent vowels.

Consider a transparent vowel harmony system,
such as the artificial one from Finley (2015), where
a suffix vowel harmonizes in backness with the fi-
nal vowel of the stem (4a), but where the vowel [€]
is neutral (4b)-(4c). Since the neutral vowel is it-
self front, only when the penultimate stem vowel
is back (4b) do we get unambiguous evidence that
[e] is transparent.

(4) a. [budok-o]

[degib-e]
b. [doteb-0]
c. [tedet-e]

It is thus possible that the learner treats the neu-



tral vowel as opaque and handles the cases like
(4b), which contradict this, as lexicalized excep-
tions. If, during learning, enough of these excep-
tions accumulate that the learner’s harmony gener-
alization is no longer tenable with them as excep-
tions (which, as in Belth 2024, will be measured
with the Tolerance principle), then the learner will
again change representations, excluding the neutral
vowel because it is no longer sufficiently predictive,
thereby rendering it transparent. Thus, transparent
vowels can for a time be tolerated as opaque vow-
els with lexicalized exceptions. This is the main
idea underlying my proposed explanation for the
observed experimental differences in learning.

In the next section § 2, I introduce the model
from Belth (2024) (D2L) in more detail. In § 3, I
survey prior experimental work on learning trans-
parent and opaque vowels. I then demonstrate
how D2L accounts for these experimental results,
as conceptually described above, and also demon-
strate that a number of other models fail to account
for them § 4. I conclude with a discussion § 5.

2 Model

The model from Belth (2024), named D2L, was
based on the developmental trajectory of children’s
ability to track adjacent and non-adjacent depen-
dencies. Children show evidence of tracking ad-
jacent dependencies at a younger age—as young
as 8 months (Saffran et al., 1996, 1997; Aslin
et al., 1998)—than tracking non-adjacent depen-
dencies, which appears to develop around 15-18
months (Santelmann and Jusczyk, 1998; Gémez,
2002; Gémez and Maye, 2005). Tracking of adja-
cent dependencies has been observed over a range
of different kinds of structures, linguistic and non-
linguistic, including shapes (Fiser and Aslin, 2002)
and non-linguistic tones (Saffran et al.,, 1999).
These results serve as evidence of a language-
independent psychological mechanism—the abil-
ity to track adjacent dependencies—that could un-
derlie the learning of phonological alternations.

D2L implements the proposal that when learn-
ing a phonological alternation, a learner’s attention
is drawn to the alternating segment, and they begin
tracking segments adjacent to it. I will use Finley
(2015)’s artificial vowel harmony system as an ex-
ample (see § 3) to describe the model as it pertains
to the present paper. In (5), the underlying /-V/ suf-
fix alternates between [-e] ~ [-0].!

ISee Belth (2023a,b) for a proposal on how learners might

(5) /budok-V/ — [budoko]
/degib-V/ — [degibe]
/gemit-V/ — [gemite]
/kukop-V/ — [kukopo]
/tedet-V/ — [tedete]
/doteb-V/ — [dotebe]

D2L’s attention is centered around /-V/ and the
segments adjacent to it—here, the stem-final seg-
ments. D2L attempts to enforce harmony using the
final segments, but since they are all consonants,
the harmony fails. The learner then creates a new
representation, excluding any adjacent segments
that harmonizing with fails to yield the observed
surface form for /V/—here /k, b, t, p/. D2L at-
tempts to form a natural class for these segments, in
this case [—syl]. The new representation is the com-
plement of this deletion set, namely [+syl]. Clearly,
this has the interpretation of a vowel tier (6).

(6) /uo-V/ — [uoo]
lei-V/ — [eie]
lei-V/ — [eie]
/uo-V/ — [uoo]
lee-V/ — [eee]
loe-V/ — [oce]

D2L then tracks segments adjacent to /-V/ on
this new representation. The vowel [¢] here is
opaque, so harmonizing with the adjacent vowel on
this representation yields the expected surface re-
alizations of /-V/ and D2L has succeeded in form-
ing a representation and generalization that suffi-
ciently accounts for the alternation. Following the
notation from Belth (2024), (7) shows the gener-
alization, where the vowel /V/ agrees in the value
for feature [back] with an adjacent [+syl] segment
after projecting vowels.

(7)  AcreE(V, [back]) / [+syl] __ o proj([+syl])

If, on the other hand, the vowel [¢] were trans-
parent, the surface form of /doteb-V/ would be
[dotebo], in which case enforcing harmony on the
new representation would yield the wrong surface
form for /-V/: *[e] instead of [0] (8).

(8) /oe-V/ — *[oce]

In this way, stems where a back vowel precedes
a transparent front vowel will be exceptions to the
generalization D2L forms on the new representa-
tion. D2L changes representations whenever the

come to attend to learning an alternation in the first place, and
where the underlying forms might come from.



Opaque

Transparent

Figure 1: B = Back, F = Front, N = Neutral (opaque or
transparent, depending on condition). The black circle
represents the stems that are predictable from an adja-
cent vowel once D2L has constructed a vowel tier. The
blue circle represents stems where the adjacent vowel
is neutral. The orange sub-circle represents the only
stems for which the suffix is not predictable from the
tier-adjacent vowel.

generalization it forms over its current representa-
tion fails to sufficiently account for the alternation.
D2L uses the Tolerance Principle (TP; Yang 2016),
which has been evaluated in experimental settings
(Schuler et al., 2016; Shi and Emond, 2023), to de-
cide whether the generalization can sustain a par-
ticular number of exceptions (9).

(9) Tolerance Principle: a rule applying to
n items with e exceptions is productive iff

n
eﬁm

Thus, D2L will only change representations
again if the number of exceptions due to harmo-
nizing with the transparent vowel, relative to the
total number of alternating items, rises above the
TP threshold (9). If the number of exceptions fall
below the threshold, then D2L lexicalizes the ex-
ceptions and may overextend harmony with the fi-
nal vowel (7) to new words with a final transpar-
ent vowel. On the other hand, if the number of
exceptions grows too large, D2L will recursively
construct a new representation, this time excluding
the vowel [e]—the culprit behind the exceptions—
in addition to the consonants, as (10) shows.

(10) Acreg(V, [back]) / [+syl] __
o proj([+syl] \ {e})

This core idea is visualized in Figure 1. Once
D2L has constructed a new representation that
excludes consonants (i.e., a vowel tier), the suf-
fix vowel is entirely predictable from the newly-
adjacent vowel if the neutral vowel (N) is opaque.
This set of stems, for which the suffix is adjacently
predictable, is represented by the large black circle.

Table 1: The four basic kinds of training items in Fin-
ley (2015)’s study. B = Back, F = Front, N = Neutral
(opaque or transparent, depending on condition). The
right two columns give the suffix corresponding to the
condition (only the BN items differ between conditions)

Kind Types Example Opaque Transparent
BB 8 [budok] [-0] [-o]
FF 8 [degib] [-e] [-e]
FN 4 [tedet] [-e] [-e]
BN 4 [doteb] [-e] [-o]

On the other hand, if the neutral vowel is transpar-
ent, only BN words are not adjacently predictable
(the orange sub-circle). But if the orange part of
the diagram is small enough, then it may be rele-
gated to lexicalization, at least for a time.

3 Prior Experimental Studies

Finley (2015) carried out a series of artificial gram-
mar learning studies with adults, involving opaque
and transparent vowels. Finley first compared each
of two experimental groups—one OpAQUE and one
TrRANSPARENT—t0 relevant control groups. The ex-
perimental groups were trained on CVCVC nonce
words, each of which could be suffixed with ei-
ther front [-e] or back [-o0]. The artificial language
also had the vowels [i, u] and the neutral vowel [¢],
which only occurred as the final vowel. The choice
of suffix was based on harmony with the final stem
vowel, except for the words in the TRANSPARENT
condition that had the transparent [€] as the final
vowel; for these the choice was based instead on
harmony with the penultimate vowel. This is sum-
marized in Table 1. There were 8 stems each with
two harmonizing vowels (8§ BB and 8 FF), 4 stems
with a front vowel before the neutral [€] (FN), and
4 with a back vowel before it (BN).

In the OpPAQUE condition, if learners choose the
suffix based on the final stem vowel, they would ac-
curately generalize to test words of all four kinds.
In the TrANSPARENT condition, however, accu-
rate generalization to test BN words would require
learning the transparency of [e]. In other words,
because [¢] is front, only BN words show unam-
biguous evidence that [€] is transparent rather than
opaque. Finley’s first experiment, which presented
each stem-suffixed pair 5 times, suggested that the
participants in the OpaQUE condition learned vowel
harmony, including the behavior of the opaque
vowel. However, participants in the TRANSPARENT



condition learned the basic vowel harmony pattern,
but showed no evidence of learning the behavior of
the transparent vowel.

Finley then attempted to find conditions in
which participants would succeed at learning the
transparent vowel’s behavior. In a second experi-
ment, the 4 FN words, for which it is ambiguous
whether the [-e] vowel is harmonizing with the fi-
nal or penultimate vowel (which are both front),
were replaced with 4 additional BN words (all tak-
ing [-0]). This decreased the learners’ test perfor-
mance across the board. One interpretation is that
because the suffix [-0] became more dominant—
now occurring with 2/3 of training items—Iearners
failed to attend to learning the alternation at all.

Finley then returned to the original setup (bal-
anced items between FN and BN), and tried replac-
ing the neutral vowel [e] with [1]. The participants
again learned the overall harmony pattern, but not
the transparent vowel. In another experiment, each
word was presented 10 times instead of 5. This
led to an increase in performance on the transpar-
ent vowel, but the increase over the control group
was not statistically significant. The next experi-
ment added 6 additional unambiguously transpar-
ent (BN) stems, with all words being presented 10
times. This also led to an increase, though not sta-
tistically significant, in performance on the trans-
parent vowel. Finally, increasing the number of
presentations of the BN stems to 20, while keep-
ing the others at 10, led to an increase in perfor-
mance on the transparent vowel that was signifi-
cantly higher than the control group’s.

The overall picture is that under some condi-
tions where adults will learn a vowel harmony sys-
tem with an opaque vowel, they will fail to learn
a transparent vowel. But, if sufficient exposure
to words that demonstrate the transparency of a
vowel is available, adults will succeed at learn-
ing its transparency. While this overall picture is
clear, the precise conditions in which learning a
transparent vowel will or will not succeed are less
so. In multiple of Finley (2015)’s experiments,
the results showed a numerical increase in perfor-
mance that was not statistically significant. The
number of participants in some experiments was
small (often < 20 per condition), thus warranting
a level of caution in drawing strong conclusions
from any particular significance test. The study
involved adults, but we also know that children
acquire vowel harmony systems with transparent
vowels (MacWhinney, 1978; Gésy, 1989; Leiwo

et al., 2006; Gonzalez-Gomez et al., 2019). More-
over, the stimuli were presented in auditory form
only, with no accompanying image. It is difficult
to know in such a scenario whether participants
treated multiple tokens of the same type as in fact
being part of a single word type or of multiple.
Consequently, the relative role of type and token
frequencies is not entirely clear.

Furthermore, Ozburn et al. (2016) note that Fin-
ley’s artificial language used the English vowel
inventory, which leads to both roundness and
backness alternating ([-e] is front, unround; [-0]
back, round), which is not typical in natural lan-
guage backness harmony with transparent vowels.
Ozburn et al. trained adult Canadian French speak-
ers in a similar setting as Finley’s, but using har-
mony centered around the French vowel inventory,
which includes front rounded vowels, allowing for
the rounding dimension to stay fixed. Ozburn
et al.’s participants did show evidence of learning
vowel harmony transparency in this setting. How-
ever, whether this difference in results from Fin-
ley’s was due to the difference in stimuli and partic-
ipant populations or to difference in type frequency
is not clear: Ozburn et al. do not report how many
items of each kind they used in their experiment,
but they do say that 1/4 of the items were unam-
biguously transparent (BN), which is a higher pro-
portion than in Finley’s experiments (1/6 to 1/5).

In a related study, Chen (2024) trained adult
speakers of Taiwan Mandarin on an artificial vowel
harmony pattern with both an opaque and a trans-
parent vowel. The study was primarily interested
in a possible “starting small” effect—whether pre-
senting bisyllabic stems before trisyllabic stems,
and a disproportionate number of bisyllabic stems,
would yield better learning than presenting a bal-
anced number all at once. In the results, only
in the “starting small” condition did participants
show evidence of learning the vowel harmony
pattern. However—more relevant to the current
discussion—even in this condition, participants
only showed learning of the non-transparent vow-
els. They appeared to treat the transparent vowel as
also opaque. Thus, while this study deviates sub-
stantially from the prior two in goals and design,
the results largely corroborate the big picture of
Finley (2015)’s study: opaque vowels are learned
more readily by adults than transparent vowels.



4 Evaluation

To evaluate whether D21 makes sense of the ex-
perimental results on opaque and transparent vow-
els, I tested whether D2L learns an opaque vowel
in conditions where it does not learn a transparent
vowel (§ 4.2), and whether increasing the amount
of training on items showing transparency eventu-
ally leads it to learn a transparent vowel (§ 4.3).
First, I will introduce the setup (§ 4.1).

4.1 Data and Setup

I used data from Finley (2015)’s study for training
and evaluation. As the base training set, I used the
same 24 stem-suffixed pairs that Finley, p. 22 re-
ports; these are summarized in Table 1.

In experimental settings (as in natural language
learning), participants likely do not learn every
word they are trained on. Yet it is over the
words that are learned that generalizations can be
formed.> To simulate this variability in attained
vocabulary, I carried out 30 simulations with dif-
ferent samples of training words. For each, I sam-
pled an integer n from a Gaussian distribution with
mean 20 and standard deviation of 4 to represent
the vocabulary size. I then sampled n unique words
from the 24 training words, weighted by frequency.
In the first experiment (§ 4.2) all words were given
equal frequency, so the sampling was uniform. In
the second experiment (§ 4.3), where the amount
of exposure to unambiguously transparent (BN)
words is increased, this sampling procedure allows
for manipulating the saliency of BN words, as Fin-
ley (2015) did, by increasing their relative token
frequency.

For testing, I used the novel stems from Finley,
p- 23. These include 8 stems with two harmonizing
vowels (BB or FF) and 11 ending in the neutral [£].
Of the latter, 9 are BN.

4.1.1 Comparison Models

In a study of vowel harmony in Hungarian, Hayes
and Londe (2006) proposed two harmony con-
straints, applying over a vowel tier. The first, local,
constraint incurred a violation whenever a front
vowel immediately followed a back vowel on the
vowel tier, and the second, distal, constraint in-
curred a violation whenever a front vowel followed
a back vowel anywhere on the tier. The distal con-
straint was necessary because of Hungarian’s trans-

2See, for instance, Schuler (2017, ch. 4) for discussion of
this point for artificial language learning with children.

parent vowels. Finley (2015) reasoned that the dis-
tal constraint is more complex than the local con-
straint, and thus could make harmony more diffi-
cult to learn when transparent vowels are present.
This forms the first comparison model: I trained
a Maximum Entropy Harmonic Grammar model
using distal and local constraints like Hayes and
Londe’s. The model learns to map underlying
forms (e.g., /doteb-V/) to surface forms, using a
Maximum Entropy model, as described by Gold-
water and Johnson (2003). For each underlying
form, two candidates are generated—one with [-0]
and one with [-e]—and the number of violations
of local and distal harmony constraints are used as
the features of each candidate. I will call this model
He&L, as an homage to Hayes and Londe (2006).
While H&L learns a Maximum Entropy gram-
mar with provided constraints, it is also possible
for constraints to be learned. Indeed, building on
Hayes and Wilson (2008)’s model, Gouskova and
Gallagher (2020) proposed a Maximum Entropy
model that automatically learns to project tiers and
form phonotactic constraints over the resulting tier
projections. I used the model publicly available
from the authors.? I will call this model G&G.
Lastly, vowel harmony can typically be charac-
terized as 2-Tier-Strictly-Local (2TSL), whether
described as phonotactic constraints (Heinz et al.,
2011) or processes (Burness et al., 2021).* This
is usually true even when opaque or transparent
vowels are present. Formal learning algorithms
have been proposed that allow for proving the effi-
cient learnability of 2TSL languages and functions
(Jardine and Heinz, 2016; Burness and McMullin,
2019). However, while these learnability results
apply to vowel harmony with opaque or transpar-
ent vowels, it does not necessarily imply that lan-
guages with either of these kinds of neutral vow-
els will be learned at equal rates. Like D2L, the
Jardine and Heinz (2016) and Burness and Mc-
Mullin (2019) models start with a representation
where all segments are present, and iteratively re-
move segments to create new tiers. Unlike D2L,
they use the formal properties of TSL to deduce
conditions where removing segments is provably
correct. Thus, I use TSLIA (Jardine and Heinz,
2016; Jardine and McMullin, 2017), which is pub-
licly available (Aksénova, 2020), as an additional
comparison model. Formal models of this family

3 github.com/gouskova/inductive_projection_learner
4See Mayer and Major (2018) for an example of a harmony
pattern than cannot be characterized as TSL.
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often benefit from collapsing pattern-irrelevant dif-
ferences among segments (Aksénova, 2020; John-
son and De Santo, 2023), which simplifies the
learning problem and makes it more likely that the
characteristic sample (the information needed in
the training data for convergence onto an appropri-
ate grammar) will be present. Following this line
of work, I collapsed all consonants into the symbol
C, back vowels to B, non-neutral front vowels to F,
and neutral vowels to N. This collapsing was only
applied to TSLIA’s input, not the other models’.

For D2L, I used the implementation publicly
available in the Python package algophon.’

In the experiments, each test stem has two pos-
sible suffixed forms: [-e] or [-0]. I compute a
model’s accuracy based on the fraction of stems for
which it produces/chooses the form consistent with
the relevant vowel harmony pattern. Specifically,
the correct choice for BB and FF is the vowel that
agrees in backness with the final stem vowel. In
OraquE conditions, the correct choice for neutral-
vowel-final stems is [-e], while in TRANSPARENT
conditions, it is the vowel agreeing with the penul-
timate stem vowel. I report overall accuracy and
neutral-vowel accuracy, which is computed over
only the neutral-vowel-final test stems.

This scheme can be interpreted as either learn-
ing an alternation (mapping a stem with underly-
ing /-V/ to the surface form) or a phonotactic pat-
tern (learning where [-e] and [-o] can/cannot oc-
cur). D2L and H&L learn alternations, while G&G
and TSLIA learn phonotactics. At test time, the for-
mer are probed to produce a surface form for a stem
with the underlying suffix /-V/ and the produced
form is taken as the choice. Meanwhile, the phono-
tactic models are asked to score the two choices
and the one with the better well-formedness score
is chosen. This setup is identical to Belth (2024)’s.

4.2 Opaque vs. Transparent

The first experiment evaluates whether D2L and
the comparison models show a difference in gener-
alization between an OPaQUE vowel harmony con-
dition and a TRANSPARENT condition (learning the
former better). The experiment uses the training
data described above (§ 4.1), training 30 models in
each of the two conditions, where the number of
words for each simulation is n ~ Normal(20, 4).
Figure 2 shows the accuracy on all test words
(All) and accuracy on test words where the final

3 github.com/cbelth/algophon/tree/main/algophon/models

vowel is neutral (Neutral). D2L’s accuracy, in both
cases, is higher for the OpaQuUE condition than the
TrANSPARENT condition, consistent with the over-
all picture that humans are better at learning har-
mony with an opaque vowel (§ 3). D2L shows this
asymmetry because, in most TRANSPARENT sam-
ples, the number of exceptions introduced by BN
stems does not rise above the TP threshold (9), so
D2L does not create a new representation.

No other model shows this pattern. H&L and
G&G learn both kinds of harmony equally well.
Thus, while Finley (2015) conjectured that the
added complexity of Hayes and Londe (2006)’s
distal harmony constraint might translate into dif-
ficulty learning transparent harmony, when tested
on even this quite small amount of data, there
is enough input to assign a weight to the distal
constraint large enough for the transparent vowel
to be learned. Perhaps surprisingly, even G&G,
which learns to project tiers and learns its con-
straints, also fails to show any difference between
conditions. In the OpaQuE condition, G&G consis-
tently finds a trigram constraint that marks vow-
els differing in backness across another segment.
This is sufficient to learn the harmony pattern. In
the TRANSPARENT condition, G&G learns a simi-
lar constraint, but only specific to the harmoniz-
ing (non-neutral) vowels. G&G then projects a tier
that includes only the vowels in that constraint—
the non-neutral vowels. Then, on this projection,
G&G learns a new constraint that marks dishar-
mony between vowels on the tie—which excludes
the transparent vowel. Thus, G&G learns trans-
parency in conditions where humans do not.

TSLIA does not learn either harmony pattern.
This indicates that there is no characteristic sample
present in the data. This is true even though I col-
lapsed irrelevant differences among segments (e.g.
all consonants were mapped to the symbol C, as de-
scribed in § 4.1.1), which simplifies the learning
problem and in some cases leads learners of this
sort to succeed at learning (Aksénova, 2020; John-
son and De Santo, 2023). Running the model with-
out collapsing segments yields the same results.

4.3 Eventual Learning of Transparent

In the second experiment, I evaluated whether D2L
and the comparison models get better at learning a
transparent vowel as the amount of training expo-
sure to words that unambiguously show the trans-
parency of the vowel increases. This follows the
same setup as the TRANSPARENT condition above,
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Figure 2: The distribution of accuracies (over All test words and over Neutral test words) of each model in Opaque
and Transparent conditions. Only D2L shows a difference in accuracy between conditions, as humans do.

but varies two parameters: the number of BN (un-
ambiguously transparent) types (4, 6 or 8), and
the relative token frequency of those types (1x,
2x, or 5x the token frequency of non-BN types).
Since the number of words for each simulation
is n ~ Normal(20,4) and the choice of those n
words is based on a sample weighted by token fre-
quency, varying the relative token frequency of the
BN words increases the probability that they enter
into a particular learner’s vocabulary. Thus, the to-
ken frequency also influences the type frequency
of BN words, but in a different way. Increasing the
type frequency was accomplished by replacing FN
words with BN words (so the total number of words
available was always 24). Combining these varia-
tions means there are 9 conditions per model. I ran
30 simulations (different seeds) for each model in
each condition.

Figure 3 gives the results, where the top row
of heatmaps is accuracy over all words and the
bottom row is accuracy over words with neutral
vowels. If a model mirrors the basic pattern of
humans, who get better with transparency as ex-
posure to BN increases, then accuracy should in-
crease (darker colors) as the type frequency in-
creases (rightward movement) and/or relative to-
ken frequency increases (downward movement)—

in other words if more rightward and lower cells
are darker. This is the case for D2L, but no other
model. Increasing the prevalence of BN excep-
tions eventually leads D2L to form a new rep-
resentation that excludes [e]. H&L and G&G are
dark in all cells, mirroring the above results where
they learn transparent vowels when humans do not.
TSLIA is again at chance across the board. D2L’s
performance is tied to increases in type frequency,
which is consistent with arguments and evidence
that type frequency, rather than token frequency,
plays the primary role in the formation of lin-
guistic generalizations (Aronoff, 1976; MacWhin-
ney, 1978; Baayen, 1993; Elman, 1998; Pierrehum-
bert, 2001; Albright and Hayes, 2003; Endress and
Hauser, 2011; Yang, 2016).

5 Conclusion and Discussion

Do opaque and transparent vowels do different
things to a vowel harmony system? From one per-
spective, transparent vowels introduce non-locality
that opaque vowels do not (Goldsmith, 1985;
Bakovic and Wilson, 2000; Hayes and Londe,
2006; Finley, 2009). From another perspective,
neither opaque nor transparent vowels change the
kind of information needed to capture the harmony
generalization: in both cases there is a set of seg-
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Figure 3: Heatmaps showing the accuracy of each model when trained on a vowel harmony pattern with a transparent
vowel. The top row shows accuracy across all test words; the bottom shows accuracy across words where the
final vowel is transparent. Matching the trend from human learners in laboratory settings would yield an accuracy
gradient that increases as the type and/or token frequency of words exhibiting unambiguous transparent vowel

harmony increases. D2L. matches this general trend. The same cannot be said of any other evaluated models.

ments that can be projected (a tier) that renders all
the dependencies local (Heinz et al., 2011; Burness
and McMullin, 2019). One way to approach this
question is to take the perspective of the learner.
In Belth (2024), I proposed that learners construct
new representations only when the ones they are
currently generalizing over let them down. The
results in that article demonstrated that in natu-
ral language harmony systems, this approach leads
to accurate generalization to test words. Trained
on a few hundred words from Turkish, where
low vowels are opaque to rounding harmony, or
Finnish, where [i, e] are transparent to backness
harmony, D2L constructed representations that al-
lowed for forming a successful harmony general-
ization. In this paper, I have demonstrated that in
Finley (2015)’s setting, the same model constructs
a vowel tier and only when a transparent vowel in-
troduces enough exceptions does the model again
construct a new representation, then generalizing
to transparent vowels. Thus, in this proposal, there
is a difference between opaque and transparent
vowels—but only for a time.

Further research into the factors influencing hu-
man leaning of vowel harmony in the presence of
opaque and transparent vowels—in particular chil-

dren’s learning and acquisition—would be of great
value. For instance, D2L predicts that, if the con-
ditions are right, there could be a stage of acquisi-
tion where learners incorrectly harmonize alternat-
ing vowels with preceding transparent vowels. In
the limited number of developmental studies on the
acquisition of vowel harmony systems with trans-
parent vowels (MacWhinney, 1978; Goésy, 1989;
Leiwo et al., 2006), I am not aware of reports of
such errors (see Goad and Ozburn 2024 for a re-
cent survey). However, if such a stage exists, D2L.
predicts it to be transient, since accumulating ex-
ceptions would lead to recursive creation of a new
representation. Moreover, it is only a subset of
words (BN stems in the languages discussed here)
that have the potential of showing such overgener-
alization. And over-application of generalizations
to a particular word is influenced by the strength of
the word’s lexical representation, which in turn is
influenced by its token frequency (Hooper, 1976;
Bybee, 1985; Marcus et al., 1992; Bybee, 1995).
Errors are thus more likely on low-token-frequency
words, which are less represented in child speech.
Consequently, identifying whether this is indeed a
developmental stage would likely require studies
aimed precisely at this question.



References

Aléna Aksénova. 2020. Tool-assisted induction of sub-
regular languages and mappings. Ph.D. thesis, State
University of New York at Stony Brook.

Adam Albright and Bruce Hayes. 2003. Rules
vs. analogy in English past tenses: A computa-
tional/experimental study. Cognition, 90(2):119-
161.

Mark Aronoff. 1976. Word formation in generative
grammar. Linguistic Inquiry Monograph, 1.

Richard N Aslin, Jenny R Saffran, and Elissa L New-
port. 1998. Computation of conditional probability
statistics by 8-month-old infants. Psychological sci-
ence, 9(4):321-324.

Harald Baayen. 1993. On frequency, transparency
and productivity. In Yearbook of morphology 1992,
pages 181-208. Springer.

Eric Bakovic and Colin Wilson. 2000. Transparency,
strict locality, and targeted constraints. In West Coast
Conference on Formal Linguistics., pages 43-56.

Caleb Belth. 2023a. Towards a learning-based account
of underlying forms: A case study in Turkish. In
Proceedings of the Society for Computation in Lin-
guistics 2023, pages 332-342, Ambherst, MA. Asso-
ciation for Computational Linguistics.

Caleb Belth. 2023b. Towards an Algorithmic Account
of Phonological Rules and Representations. Ph.D.
thesis, University of Michigan.

Caleb Belth. 2024. A learning-based account of phono-
logical tiers. Linguistic Inquiry, pages 1-37.

Stefan Benus and Adamantios I Gafos. 2007. Ar-
ticulatory characteristics of Hungarian ‘transpar-
ent’vowels. Journal of Phonetics, 35(3):271-300.

Phillip Burness and Kevin McMullin. 2019. Efficient
learning of Output Tier-based Strictly 2-Local func-
tions. In Proceedings of the 16th Meeting on the
Mathematics of Language, pages 78-90, Toronto,
Canada. Association for Computational Linguistics.

Phillip Burness, Kevin McMullin, and Jane Chandlee.
2021. Long-distance phonological processes as tier-
based strictly local functions. Glossa: a journal of
general linguistics, 6(1).

Joan Bybee. 1985. Morphology: A study of the rela-
tion between meaning and form. John Benjamins,
Philadelphia.

Joan Bybee. 1995. Regular morphology and the lexi-
con. Language and cognitive processes, 10(5):425—
455.

Tsung-Ying Chen. 2024. The “starting-small” effect
in phonology: Evidence from biased learning of
opaque and transparent vowel harmony. Language
and Speech, page 00238309241230625.

George N Clements. 1976. The autosegmental treat-
ment of vowel harmony. Indiana University Linguis-
tics Club.

George N Clements. 1980. Vowel harmony in nonlin-
ear generative phonology. Indiana University Lin-
guistics Club Bloomington.

Jeffrey Elman. 1998. Generalization, simple recur-
rent networks, and the emergence of structure. In
Proceedings of the twentieth annual conference of
the Cognitive Science Society, page 6. Mahwah, NJ:
Lawrence Erlbaum Associates.

Ansgar D Endress and Marc D Hauser. 2011. The in-
fluence of type and token frequency on the acquisi-
tion of affixation patterns: Implications for language
processing. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 37(1):77.

Sara Finley. 2009. Formal and cognitive restrictions on
vowel harmony. The Johns Hopkins University.

Sara Finley. 2015. Learning nonadjacent dependencies
in phonology: Transparent vowels in vowel harmony.
Language, 91(1):48.

Jozsef Fiser and Richard N Aslin. 2002.  Statisti-
cal learning of higher-order temporal structure from
visual shape sequences. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition,
28(3):458.

Heather Goad and Avery Ozburn. 2024. Vowel har-
mony in language acquisition. In The Oxford Hand-
book of Vowel Harmony. Oxford University Press.

John Goldsmith. 1976.  Autosegmental phonology.
Ph.D. thesis, Massachusetts Institute of Technology.

John Goldsmith. 1985. Vowel harmony in Khalkha
Mongolian, Yaka, Finnish and Hungarian. Phonol-
ogy Yearbook, 2(1):253-275.

Sharon Goldwater and Mark Johnson. 2003. Learning
OT constraint rankings using a maximum entropy
model. In Proceedings of the workshop on variation
within Optimality Theory, pages 111-120.

Rebecca Gémez and Jessica Maye. 2005. The develop-
mental trajectory of nonadjacent dependency learn-
ing. Infancy, 7(2):183-206.

Rebecca L Goémez. 2002.
tion of invariant structure.
13(5):431-436.

Variability and detec-
Psychological Science,

Nayeli Gonzalez-Gomez, Silvana Schmandt, Judit
Fazekas, Thierry Nazzi, and Judit Gervain. 2019. In-
fants’ sensitivity to nonadjacent vowel dependencies:
The case of vowel harmony in hungarian. Journal of
Experimental Child Psychology, 178:170-183.

Mairia Gésy. 1989. Vowel harmony: interrelations
of speech production, speech perception, and the
phonological rules. Acta Linguistica Hungarica,
39(1/4):93-118.


https://doi.org/10.1016/S0010-0277(03)00146-X
https://doi.org/10.1016/S0010-0277(03)00146-X
https://doi.org/10.1016/S0010-0277(03)00146-X
https://doi.org/10.1111/1467-9280.00063
https://doi.org/10.1111/1467-9280.00063
https://doi.org/10.1007/978-94-017-3710-4_7
https://doi.org/10.1007/978-94-017-3710-4_7
https://aclanthology.org/2023.scil-1.29
https://aclanthology.org/2023.scil-1.29
https://dx.doi.org/10.7302/8399
https://dx.doi.org/10.7302/8399
https://doi.org/10.1162/ling_a_00530
https://doi.org/10.1162/ling_a_00530
https://doi.org/10.1016/j.wocn.2006.11.002
https://doi.org/10.1016/j.wocn.2006.11.002
https://doi.org/10.1016/j.wocn.2006.11.002
https://aclanthology.org/W19-5707/
https://aclanthology.org/W19-5707/
https://aclanthology.org/W19-5707/
https://doi.org/10.16995/glossa.5780
https://doi.org/10.16995/glossa.5780
https://doi.org/10.1177/00238309241230625
https://doi.org/10.1177/00238309241230625
https://doi.org/10.1177/00238309241230625
https://doi.org/10.1037/a0020210
https://doi.org/10.1037/a0020210
https://doi.org/10.1037/a0020210
https://doi.org/10.1037/a0020210
https://www.jstor.org/stable/24672220
https://www.jstor.org/stable/24672220
https://doi.org/10.1037/0278-7393.28.3.458
https://doi.org/10.1037/0278-7393.28.3.458
https://doi.org/10.1037/0278-7393.28.3.458
https://doi.org/10.1093/oxfordhb/9780198826804.013.38
https://doi.org/10.1093/oxfordhb/9780198826804.013.38
https://www.jstor.org/stable/4419959
https://www.jstor.org/stable/4419959
https://doi.org/10.1207/s15327078in0702_4
https://doi.org/10.1207/s15327078in0702_4
https://doi.org/10.1207/s15327078in0702_4
https://doi.org/10.1111/1467-9280.00476
https://doi.org/10.1111/1467-9280.00476
https://doi.org/10.1016/j.jecp.2018.08.014
https://doi.org/10.1016/j.jecp.2018.08.014
https://doi.org/10.1016/j.jecp.2018.08.014
https://www.jstor.org/stable/44362744
https://www.jstor.org/stable/44362744
https://www.jstor.org/stable/44362744

Maria Gouskova and Gillian Gallagher. 2020. Induc-
ing nonlocal constraints from baseline phonotactics.
Natural Language & Linguistic Theory, 38(1):77—
116.

Bruce Hayes and Zsuzsa Czirdky Londe. 2006. Stochas-
tic phonological knowledge: The case of Hungarian
vowel harmony. Phonology, 23(1):59-104.

Bruce Hayes and Colin Wilson. 2008. A maximum en-
tropy model of phonotactics and phonotactic learn-
ing. Linguistic inquiry, 39(3):379—440.

Jeffrey Heinz, Chetan Rawal, and Herbert G Tanner.
2011. Tier-based strictly local constraints for phonol-
ogy. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man language technologies, pages 58—64.

Joan B. Hooper. 1976. Word frequency in lexical diffu-
sion and the source of morphophonological change.
In William M. Christie, editor, Current progress in
historical linguistics, pages 96—105. North Holland,
Amsterdam.

Adam Jardine and Jeffrey Heinz. 2016. Learning tier-
based strictly 2-local languages. Transactions of the
Association for Computational Linguistics, 4:87-98.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of tier-based strictly k-local languages. In
Language and Automata Theory and Applications,
pages 64—76. Springer.

Jacob K Johnson and Aniello De Santo. 2023. Eval-
uating a phonotactic learner for MITSL-(2, 2) lan-
guages. Society for Computation in Linguistics,
6(1):379-382.

Baris Kabak. 2011. Turkish vowel harmony. The Black-
well companion to phonology, pages 1-24.

Matti Leiwo, Pirjo Kulju, and Katsura Aoyama. 2006.
The acquisition of Finnish vowel harmony. Finnish
Journal of Linguistics, (19):149-161.

Brian MacWhinney. 1978. The acquisition of mor-
phophonology. Monographs of the society for re-
search in child development, pages 1-123.

Gary F Marcus, Steven Pinker, Michael Ullman,
Michelle Hollander, T John Rosen, Fei Xu, and Har-
ald Clahsen. 1992. Overregularization in language
acquisition. Monographs of the society for research
in child development, pages i—178.

Connor Mayer and Travis Major. 2018. A challenge
for tier-based strict locality from uyghur backness
harmony. In Formal Grammar 2018: 23rd Interna-
tional Conference, pages 62—83. Springer-Verlag.

Andrew Nevins. 2010. Locality in vowel harmony. Lin-
guistic Inquiry Monographs. Mit Press.

Avery Ozburn, G Hansson, and Kevin McMullin. 2016.
Learning vowel harmony with transparency in an ar-
tificial language. In Talk Presented at the 2016 NOW-
CAM Meeting: Eugene Oregon.

Janet Pierrehumbert. 2001. Stochastic phonology. Glot
international, 5(6):195-207.

Catherine O Ringen and Orvokki Heindmiki. 1999.
Variation in Finnish vowel harmony: An OT account.
Natural Language & Linguistic Theory, 17(2):303—
337.

Jenny R Saffran, Richard N Aslin, and Elissa L New-
port. 1996. Statistical learning by 8-month-old in-
fants. Science, 274(5294):1926-1928.

Jenny R Saffran, Elizabeth K Johnson, Richard N Aslin,
and Elissa L Newport. 1999. Statistical learning of
tone sequences by human infants and adults. Cogni-
tion, 70(1):27-52.

Jenny R Saffran, Elissa L Newport, Richard N Aslin,
Rachel A Tunick, and Sandra Barrueco. 1997. In-
cidental language learning: Listening (and learning)
out of the corner of your ear. Psychological science,
8(2):101-105.

Lynn M Santelmann and Peter W Jusczyk. 1998. Sen-
sitivity to discontinuous dependencies in language
learners: Evidence for limitations in processing
space. Cognition, 69(2):105-134.

Kathryn D Schuler, Charles Yang, and Elissa L New-
port. 2016. Testing the tolerance principle: Children
form productive rules when it is more computation-
ally efficient to do so. In CogSci, volume 38, pages
2321-2326.

Kathryn Dolores Schuler. 2017. The acquisition of pro-
ductive rules in child and adult language learners.
Ph.D. thesis, Georgetown University.

Rushen Shi and Emeryse Emond. 2023. The threshold
of rule productivity in infants. Frontiers in Psychol-
ogy, 14:1251124.

Charles Yang. 2016. The price of linguistic productiv-
ity: How children learn to break the rules of lan-
guage. MIT press.


https://doi.org/10.1007/s11049-019-09446-x
https://doi.org/10.1007/s11049-019-09446-x
https://doi.org/10.1017/S0952675706000765
https://doi.org/10.1017/S0952675706000765
https://doi.org/10.1017/S0952675706000765
https://direct.mit.edu/ling/article-abstract/39/3/379/374/A-Maximum-Entropy-Model-of-Phonotactics-and?redirectedFrom=fulltext
https://direct.mit.edu/ling/article-abstract/39/3/379/374/A-Maximum-Entropy-Model-of-Phonotactics-and?redirectedFrom=fulltext
https://direct.mit.edu/ling/article-abstract/39/3/379/374/A-Maximum-Entropy-Model-of-Phonotactics-and?redirectedFrom=fulltext
https://aclanthology.org/P11-2011/
https://aclanthology.org/P11-2011/
https://doi.org/10.1162/tacl_a_00085
https://doi.org/10.1162/tacl_a_00085
https://doi.org/10.1007/978-3-319-53733-7_4
https://doi.org/10.1007/978-3-319-53733-7_4
https://doi.org/10.7275/crgk-6g04
https://doi.org/10.7275/crgk-6g04
https://doi.org/10.7275/crgk-6g04
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781444335262.wbctp0118
https://journal.fi/finjol/article/view/153143
https://doi.org/10.1007/978-3-662-57784-4_4
https://doi.org/10.1007/978-3-662-57784-4_4
https://doi.org/10.1007/978-3-662-57784-4_4
https://bpb-us-e1.wpmucdn.com/blogs.uoregon.edu/dist/4/12537/files/2016/05/NoWPhon2_paper_31-1vrf0jb.pdf
https://bpb-us-e1.wpmucdn.com/blogs.uoregon.edu/dist/4/12537/files/2016/05/NoWPhon2_paper_31-1vrf0jb.pdf
https://www.jstor.org/stable/4047991
https://www.jstor.org/stable/2891705
https://www.jstor.org/stable/2891705
https://doi.org/10.1016/S0010-0277(98)00075-4
https://doi.org/10.1016/S0010-0277(98)00075-4
https://doi.org/10.1111/j.1467-9280.1997.tb00690.x
https://doi.org/10.1111/j.1467-9280.1997.tb00690.x
https://doi.org/10.1111/j.1467-9280.1997.tb00690.x
https://doi.org/10.1016/S0010-0277(98)00060-2
https://doi.org/10.1016/S0010-0277(98)00060-2
https://doi.org/10.1016/S0010-0277(98)00060-2
https://doi.org/10.1016/S0010-0277(98)00060-2
https://doi.org/10.3389/fpsyg.2023.1251124
https://doi.org/10.3389/fpsyg.2023.1251124

	Introduction and Background
	Model
	Prior Experimental Studies
	Evaluation
	Data and Setup
	Comparison Models

	Opaque vs. Transparent
	Eventual Learning of Transparent

	Conclusion and Discussion

