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Abstract

Ensuring that semantic representations capture
the actual meanings of sentences to the exclu-
sion of extraneous features remains a difficult
challenge despite the amazing performance of
representations like SBERT. We compare and
contrast the semantic-encoding behaviours of
sentence embeddings as well as influence func-
tions, a resurgent method in the field of lan-
guage model intepretability, using meaning-
preserving grammatical transformations. Un-
der the two tasks of sentence similarity and a
new task called entity invariance, we seek to
understand how these two measures of seman-
tics warp under surface-level syntactic changes.
Invariance to meaning-preserving transforma-
tions is an important aspect in which sentence
embeddings and influence functions seem to
differ. Nevertheless, our experiments find that
across all our tasks and transformations, sen-
tence embeddings and influence functions are
highly correlated. We conclude that there is
evidence that influence functions point towards
a deeper encoding of semantics.

1 Introduction

A major concern with neural language models is
their lack of transparency. In addition to the ex-
pense of even functionally observing the predic-
tions of a model, there is the additional concern
of why it happened. A number of recent attempts
at probing or interpreting language-model predic-
tions have relied upon either misbegotten charac-
terizations of linguistic theory in relation to those
predictions, or narve metaphorical proxies for lin-
guistic theory, such as the retrieval of knowledge
from a computer’s memory, or assigning distribu-
tions to sentences as points in a discrete set of out-
comes, rather than as points in a continuous, albeit
inscrutable, latent semantic space.

A case in point is the resurgence of the notion
of an "influence function" (Hampel, 1974), which
attempts to assign weight to training sentences that
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an erroneous, indiscreet or salacious output can
then be traced back to. Until very recently, the use
of influence functions in LLMs was not computa-
tionally feasible. Now that it is somewhat feasible,
the question is what it makes sense to do with them.
In particular, the authors of these several papers on
optimization and approximation of influence func-
tions apparently never considered whether influ-
ence was merely a direct consequence of semantic
similarity, a topic with a long history of proposed
quantitative methods.

The central claim of this paper is that a better
understanding of the potential of influence func-
tions is attainable with a slightly less superficial
understanding of linguistic theory. In particular, as
a complement to the task of directly computing the
semantic similarity of two expressions, we intro-
duce the task of entity invariance, in which two
related sentences are examined relative to a seman-
tic argument that they share. The relation between
these two sentences is composed of grammatical
transformations, a now rather antiquated term for
regular, meaning-preserving correspondences (at
least in a reading that equates meaning with the-
matic role assignment) between syntactic forms.
Passivization, topicalization and clefting are exam-
ples of transformations. (Chomsky, 1965) (Lam-
brecht, 2001) (Aelbrecht and Haegeman, 2012).

We describe a series of experiments and descrip-
tive hypothesis tests which demonstrate that, un-
der certain conditions, influence functions have a
greater potential for invariance to syntactic trans-
formations than conventional sentence embeddings
in large-dimensional vector spaces. Just as in com-
puter vision, where the ability to identify a shape
is naturally tested for translation and rotation in-
variance, we assert that a semantic representation
should be tested for invariance to diathesis and
other syntactic transformations that ostensibly pre-
serve meaning.



2 Methods

2.1 Sentence-BERT

As a canonical example of sentence embed-
dings, we select all-mpnet-base-v2 (Reimers and
Gurevych, 2019), a sentence-transformer model
that encodes sentences into a 768-dimensional
dense vector space. The underlying model is the
Microsoft mpnet-base model, pre-trained with the
MPNet objective function (Song et al., 2020):
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This is a unified pre-training objective for both
Masked Language Modeling (Devlin et al., 2019)
and Permuted Language Modeling (Yang et al.,
2019), inheriting the strengths of both. A sequence
is permuted, and its right-most tokens are masked.
The goal is then to predict the value of the masked
token conditioned on all tokens preceding it, z.__,
and the positions of the other masked tokens MZ;C.

The model is then contrastively fine-tuned be-
tween sentence pairs in batches by computing the
cosine similarities of their embeddings and com-
paring the cross-entropy loss with true pairs. The
cosine similarities produce a value from -1 to 1.
The cross-entropy loss then encourages the true
pairs to have a larger value (closer to 1) while the
non-pairs have a smaller one (closer to -1).

The resulting model accepts a sentence or para-
graph and produces a vector encoding that captures
some semantically relevant information.

2.2 Influence Functions

Influence functions are an older idea from statis-
tics, re-introduced only recently to deep learning
(Koh and Liang, 2017). Suppose there is a training
dataset D = {z;}¥, and a model with parameters
6 € RP, fit using a loss function £:
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With this, we would like to investigate the effect
of adding or removing a single training example z,,
on the optimal parameters #*. By weighting that
new training example by €, we can describe the
new optimal parameters with an additional training

example as:
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Influence is defined as the first-order Taylor ap-
proximation to this function evaluated at e = 0.
Using the Implicit Function Theorem, this is:

Lo+ (2m) = —H 'V L (2, 0%) (5)

where H = V37(6*, D) is the Hessian of the
empirical-loss function with the original dataset.

Since Zy-+ is the linear approximation at 0, we
can approximate the change in parameters as fol-
lows:
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Now, when we set € = —% for some datapoint
zm already in the dataset, this corresponds to the
effect of removing that datapoint.

Lastly, a change in parameters is difficult to in-
terpret, so typically influence is measured on a
more meaningful quantity such as validation loss
or perplexity. Luckily, this can easily be done for
any quantity f(€) using the chain rule. For any
meaningful measure f:
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Applying I ;(zy,) in the same way as before, we can

approximate the change in this measure f due to the
addition/removal of a datapoint with the following:
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2.2.1 Influence in the Domain of LLMs

While influence functions are an old idea, numer-
ous limitations kept them from being practical
when examining neural-network-based architec-
tures (Bae et al., 2024) (Zhang and Zhang, 2022)
(Basu et al., 2021).

* Loss landscapes are not fully convex, meaning
that the Hessian can be singular (thus it has
no inverse).



» Even if the loss landscape were convex, the
formulation of these objective functions im-
plicitly assumes the model is trained to full
convergence, which is almost never the case.

¢ Even if neither of these were an issue, the
task of inverting the Hessian is by itself time-
consuming.

These limitations have, over time, been ad-
dressed (Martens and Grosse, 2015) (George et al.,
2018) (Martens, 2020) (Bae et al., 2024), mainly
with clever approximations. The final result is then
a reasonably efficient method for calculating influ-
ence for analyzing even large language models (Li
et al., 2024), which we employ for our experiments.
For a more detailed explanation, we refer the reader
to (Grosse et al., 2023).

2.2.2 Influence for Language Modeling and
Transformers

To use influence on the language-modelling task,
we simply set the quantity f to be the following:

f(0) = logp(z; 0) (12)

where z. is the model’s output and 8 are the param-
eters of the transformer model. We follow previous
work and use GPT2 (Radford et al., 2019) as the
model to analyze, for which this log-likelihood de-
composes using Bayes’s Rule. Then the influence
function approximates the instantaneous change
in log-likelihood of generating an output z. when
removing or adding a piece of training data. For ex-
ample, when a model generates, "Pythagoras was
a...", the presence of a training datapoint like "the
Pythagorean theorem ..." is intuitively more impor-
tant to this prediction than something less related
like "The doctor suggested ...". Influence allows us
to quantify the effect of a single datapoint from the
training set by ablating it.

3 Problem Description

We investigate two capacities that we conjecture to
be desirable of any model that aspires to true se-
mantic reasoning: the now very well-studied ability
to calculate the similarity in meaning between two
sentences, and an invariance to meaning-preserving
syntactic transformations.

In particular, we define entity invariance as a
three-way comparison in which the congruence
of the (now, usually a vector) representation of
a fixed referring expression is calculated with a

sentence that uses it, but relative to a baseline in
which the same congruence is calculated between
the same referring expression and a different but
closely related sentence. For example, while the
precise geometric relationship between the desig-
nator John and John threw the ball may be mostly
inscrutable within modern neural vector represen-
tations of word and sentence meaning, we are per-
haps justified in expecting that this relationship,
whatever it is, will be the same as the one between
John and The ball was thrown by John, The ball,
John threw or It is the ball that John threw, be-
cause these various transformations are ostensibly
meaning-preserving. This is a higher-order alterna-
tive to directly calculating the sentence similarity
between the representations of John threw the ball
and The ball was thrown by John, viewed through
the lens of the meaning of John.

This has further implications with respect to
phenomena like semantic masking (Shi and Penn,
2025), in which asymmetries have been observed in
the ability of a document’s context to obscure vari-
ous inserted passages of text in question-answering
tasks with LLMs. Rephrasing under a meaning-
preserving transformation can actually alter these
effects if the entity answer to a factoid question is
not invariant to its sentence location.

The motivation behind both tasks is the same:
given some semantics-related task, when replac-
ing a sentence with a semantically equivalent yet
syntactically transformed alternative, it should be
the case that any method that claims to encode
semantics should be robust to this replacement.
Essentially, we claim moving across semantics-
preserving transformations should not change the
behavior of a true measure of semantics. For exam-
ple, if sentence A is similar to sentence B according
to some measure, and A’ is the passivized form of
A, then A’ should be equally similar to sentence B.
This is the sentence similarity task. If the subject of
sentence A is deemed important by some measure,
then the importance of that same subject on the
sentence A’ should also be equally important by
that measure. This is the entity invariance task. We
can approach both tasks with the aforementioned
semantic tools: cosines of SBERT vectors and influ-
ence functions. An example is illustrated in Figure
1.



Baseline Sentence
Alexander conquered Persia.

Passivized
Persia was conquered by Alexander.

Clefted
It was Persia that Alexander conquered.

Topicalized
Persia, Alexander conquered.

VP-Topicalized
Conquered Persia, Alexander did.

Entity
Alexander

Text within a turquoise box
represents the sBERT embedding
for that text

Two texts within a grey box
represents the influence score of
the bottom text on the top one
(note this is a scalar)

Alexander conquered Persia.

Task 1: Sentence Similarity

SBERT scores obtained by comparing each transformation with
its baseline:

Task 2: Entity Invariance

SBERT scores obtained by computing cosine similarity of each
transformation with its entity, subtracting similarity of the entity with

baseline
Cosine q ’ i
S ransformation score

—_— baseline score
D S

Alexander conquered Persia.
\Persia was conquered by Alexandy

Influence scores obtained by calculating influence of each
transformation on baseline

directly

——> nfluence Score

Influence scores obtained by calculating influence of the
entity on each transformation, subtracting influence of the
entity on the baseline

Persia was conquered by Alexander directly
Alexander
transformation score
Alexander conquered Persia. directly
Alexander —> baseline score

Conquered Persia, Alexander did. rapsformationiscors iy

baseline score = _

transformation score — baseline score :_

Figure 1: Example of both tasks under both metrics. Above shows the walkthrough of getting scores for the sentence
"Alexander conquered Persia." in the passivized transformation. The above calculations are repeated for each

transformation and for each sentence.

4 Experimental Setup

4.1 Datasets

4.1.1 Sentence Sampling and the
Grammatical Transformation Dataset

In order to investigate grammar transformations
on our semantic tasks in a controlled manner, we
created a dataset that contains 50 random factual
statements expressed in a simple sentence, con-
taining only one independent clause. We prompt
ChatGPT to produce a list of fact statements that
are expressed in a simple sentence. We take 50 of
these sentences as our baseline, with hand-filtering
to remove any strange or duplicate sentences. We
then prompt ChatGPT with these baselines and for
each baseline, ask it to give a topicalizaed, clefted,
vp-topicalized, and passivized form. Again, a final
step involves meticulously going through the trans-
formations to ensure accuracy. See Appendix C for
details about the prompts. The result is a dataset
containing 50 sentences in their base form. For
each base form, a passivized, clefted, topicalized,
and vp-topicalized form makes up the complete
dataset. Refer to Table 1 for an example of an entry
in the dataset, and refer to Appendix A for all the
baseline sentences in the dataset (their transforma-
tions follow naturally).

4.1.2 Wikitext Dataset

The WikiText dataset (Merity et al., 2016) is a
collection of over 100 million tokens taken from
"good," i.e., featured articles in Wikipedia. Several

Baseline Alexander conquered Persia.
Passivization Persia was conquered by Alexander.
Clefting It was Persia that Alexander conquered.
Topicalization Persia, Alexander conquered.

VP-Topicalization | Conquered Persia, Alexander did.

Table 1: One entry of the Grammatical Transformation
Dataset

Baseline Zorvik climbed Everest.
Passivization Everest was climbed by Zorvik.
Clefting It was Everest that Zorvik climbed.
Topicalization Everest, Zorvik climbed.

VP-Topicalization | Climbed Everest, Zorvik did.

Table 2: One entry of the Made-Up Entity Dataset

earlier papers on influence functions have chosen
to use this source, and so we have followed suit.
Influence functions are rather anomalous with
respect to language modeling experiments. The
language model (GPT2, in our case) is pre-trained
on a large dataset D, but then it must also be fine-
tuned on a smaller dataset with respect to the same
language modelling objective. The influence cal-
culations then determine how influential a certain
training instance in the fine-tune dataset is on the
generation of a query. This fine-tuned set exists
only so that influence will not need to be computed
on the entire pre-training dataset, which is massive.
We use the training partition of wikitext-2-raw-
v1 as the basis of our fine-tuning set. Into this, we
have inserted grammatically transformed sentences
from the Grammatical Transformation dataset that
are semantically unrelated to the wikitext that they



are embedded in.

4.1.3 Made-Up Entity Dataset

But because the pre-trained model may have seen
some version of the same data, it does make sense
to have another dataset where we rename all en-
tities that appear as subjects in the correspond-
ing, untransformed baseline sentences (the trans-
formations then typically change which grammati-
cal function that entity will have) with completely
made-up entities. When we use these renamed,
baseline sentences as queries during influence cal-
culations, we can then reasonably be assured that
the influence will have come mainly from the cor-
respondingly renamed transformation in the fine-
tuned set.

Table 2 shows an entry in the Made-Up Entity
dataset, and Appendix A shows all the made-up
entities.

4.2 Calculating Sentence Similarity

In directly calculating sentence similarity with
sBERT vectors, we simply compute the cosine of
the sSBERT encoding of a baseline sentence with
that of each of its transformations in the Grammat-
ical Transformation Dataset in turn. We used the
sentence transformer all-mpnet-base-v2 described
in Section 2.1.

When calculating sentence similarity with influ-
ence functions, we assume that sentences that are
more similar will be more influential. Our made-up
entity dataset has been concocted with nonsense
names so that the transformed sentence that was
inserted into the fine-tuning text will, in spite of its
transformation, be the most semantically similar.
The influence score will then correspond to how
similar they are.

Note that due to the symmetry built into the def-
inition of influence functions, we do not need to
explicitly symmetrically close our definition of sim-
ilarity here.

To support batched calculations, all of our added
entries are padded to 20 tokens, long enough to
cover the longest transformed sentence in our
dataset. With this setup, we can obtain the influ-
ence of each transformation on generating its own
baseline variant.

4.3 Calculating Entity Invariance

When using sBERT to calculate entity invariance,
we calculate:

(e-t) (e-b)

lellt] [e] 0]
where e, ¢t and b are the SBERT vectors for the
entity, transformed sentence and untransformed
baseline, respectively. Note that this calculation
avails itself of sSBERT s indifference to the semantic
type of its input.

We do this for each transformed sentence, for
each entry in the Grammatical Transformation
dataset.

With influence functions, we again assume that
the congruence or salience of an entity to a particu-
lar text will be reflected by a greater influence. We
again avail ourselves of influence’s indifference to
the semantic type of the query, which can be as sim-
ple as a referring expression. In our experiments,
the entity in question will always be the subject of
the untransformed baseline sentence. We subtract
the influence of the entity on the baseline from the
influence of the entity on the transformed sentence.
Padding is the same as with sentence similarity.
Figure 1 presents an example of both tasks under
both metrics.

S5 Results and Findings

Let us first begin by noting that, across both
tasks and all syntactic transformations, there is a
tight, linear correspondence between sBERT vector
cosines and influence scores. Their Pearson corre-
lation is 0.9326, with a p-value of 2.62 x 10.7178

As for the specific grammatical transformations,
the five rows shown in the tables in this section
were chosen because they represent overall trends;
the full results for all 50 sentences can be found
in Appendix B. In addition, influence scores were
scaled with arctan, compressing the range to —m /2
to /2.

Table 3 contains sentence similarity scores us-
ing sBERT cosines. For the sentence similarity
task, SBERT tends to encode the passivized forms
of sentences most similarly to their corresponding
baseline sentences. Table 4 contains sentence sim-
ilarity scores using influence functions. In stark
contrast to the SBERT results, influence finds both
topicalizations to be most similar to their baselines,
whereas passivization is the least similar. In both
tables, we can see that the scores are near the top
of their respective scales.



Passivization ‘ Clefting Topicalization | VP-Topicalization Passivization | Clefting Topicalization | VP-topicalization
0.9325544834  0.8652806878 | 0.8628834486 0.90064466 -1.570795954 | -1.570796167 | -1.570795853 -1.570795884
0.9408032894  0.9085036516 0.883110702 0.8844070435 -1.570796289 | -1.570796284 | -1.570796288 -1.570796289
0.9199316502 1 0.8648024201 | 0.8657934666 0.8941929936 -1.570796251 | -1.570796245 | -1.570796264 -1.570796272
0.9520395398 | 0.9430727363 | 0.9146342278 0.9339743257 1570796283 | -1.570796278 | -1.570796279 -1.570796278
0.9660890102 | 0.8314833641 0.8642077446 0.9086657166 -1.570796223 | -1.570796245 -1.570796238 -1.57079623

Table 3: Scores of the Sentence Similarity task between
the baseline and each of the different transformations
using SBERT cosine similarities. Each row corresponds
to one row in the Grammatical Transformation dataset,
and each column to a grammatical transformation. Note
for this and all tables using this color pattern, white rep-
resents the smallest value, and dark green is the largest.
Rows are independently colour mapped.

Passivization | Clefting Topicalization | VP-topicalization
1.570795547 | 1.570795942 1.570796084 1.570796024
1.570796187 | 1.570796237 1.570796266 1.570796248

1.57079604 | 1.570796097 1.57079621 1.570796157
1.570795623 | 1.570796153 1.570796207 1.570796074
1.570793101 | 1.570796037 1.570796129 1.570796194

Table 4: Scores of the Sentence Similarity task between
the baseline and each of the different transformations
using influence functions. The scores have been normal-
ized using arctangents.

Table 5 shows the entity invariance scores us-
ing sSBERT cosines. For this task, sSBERT vec-
tors are most invariant to passivization relative to
their encodings of the respective baseline sentence,
whereas clefting exhibits the most variance. Table
6 shows the entity invariance scores using influ-
ence functions. For this particular combination, it
is more difficult to spot any sort of trend or prefer-
ence for one transformation over the others. Both
of these scores are difference calculations. In the
case of sBERT, the differences are closely range-
bound around zero, meaning that the effect of using
any grammatical transformation was minimal. In
the case of influence functions, the prominence of
values near —7 /2 shows that all of the grammati-
cal transformations we experimented with resulted
in a suppression of influence scores relative to the
baseline subject.

Passivization Clefting Topicalization | VP-topicalization
-0.09655714035 | -0.1692547202 | -0.04888242483 -0.08329671621

0.03376698494 | -0.01508197188 | 0.02062654495 -0.01081442833
-0.09354573488 | -0.1332816482 | -0.1059363484 -0.1363123655
-0.02574926615 | -0.05807337165 | -0.0239841342 -0.07041674852
-0.02594101429 | -0.09438753128 | -0.04366868734 -0.07553547621

Table 5: Scores of the Entity Invariance task between
the subject of the baseline sentence and each of that sen-
tence’s different transformations using SBERT cosines.

Table 6: Scores of the Entity Invariance task between the
baseline subject relative to each transformation using
influence functions. The scores have been normalized
using arctangents.

5.1 Significance of Grammatical
Transformations

It is also possible to examine differences in the
effects of the four grammatical transformations
that we selected. The distributions of the various
scores across tasks, both jointly and severally, fail
Levene’s test of homoscedasticity, so a repeated-
measures Friedman’s test is the appropriate way to
test for significant differences among their medi-
ans. Its null hypothesis is that there is no significant
difference among the four transformations, which
would imply (but not prove) a degree of resilience
in the chosen semantic representation. As shown in
Table 7, the choice of grammatical transformation
is significant in the direct sentence similarity task,
regardless of method, but is significant for entity
invariance only with sBERT cosines, not with in-
fluence functions. Note that the magnitudes of the
p-values are at opposite poles, so this is a matter of
kind, not degree. Table 8 shows the respective test
statistics with their effect sizes. The three signifi-
cant effect sizes are all considered large, because
they are greater than 0.5.

For the settings found to be statistically signifi-
cant, we present a ranking of transformation pref-
erence (higher scores are more preferred) in Table
9. This confirms that for the task of sentence simi-
larity, influence finds passivization to produce the
least similarity, and therefore the most difference
in meaning, while sBERT finds passivization to be
most similar. In fact, while they have similar p-
values and test statistics to those for SBERT vector
cosines, their ranking of grammatical transforma-
tions is the exact opposite.

For entity invariance, on the other hand, SBERT
once again finds passivization to best preserve it, al-
though clefting preserves it the least. In both tasks,
we are of course not testing whether passivization
influences meaning, but rather, given that passiviza-
tion is thought to be meaning-preserving, whether
SBERT cosines and influence functions perform as



we want them to.

Sentence Similarity
2.32x 107
1.69 x 10~

Entity Invariance
3.97 x 107
0.983

SsBERT
Influence

Table 7: p-values of Friedman'’s test for different experi-
mental settings.

Sentence Similarity
71.2371.1936
71.88/1.199

Entity Invariance
32.57/0.807
0.17/%*0.058

SBERT
Influence

Table 8: Test statistics (x?) / effect sizes (¢) of Fried-
man’s test for different experimental settings (the lower-
right effect size is hypothetical, as no significance has
been demonstrated).

5.2 Effect of Concocted Names

As shown in Table 10, the effect of concocting the
names of the fixed entities magnifies the effect of
changing the grammatical transformation in the
entity invariance task to the point that it becomes
statistically significant, and of moderate, almost
large size.

6 Discussion

That influence functions might demonstrate any
resilience to syntactic transformations is indeed
interesting, because: (1) sSBERT vectors do not
(nor does any other vector-based representational
scheme that we are aware of), in spite of how amaz-
ingly well they work as semantic representations,
and (2) it means that influence functions bring us
that much closer to being able to truly work with
the meanings of sentences rather than more super-
ficial aspects of their syntactic realizations. Nev-
ertheless, this resilience has only been seen in our
examination of something more subtle, where we
look not at differences in meaning, but differences
in influence scores relative to a fixed entity, and
thus arguably differences in differences in mean-
ing. Were it not for entity invariance, in fact, one
might wonder why influence scores bothered to
exist, given their strong Pearson correlations to
sBERT-vector cosines and fickleness with respect
to syntactic transformations in more direct compar-
isons of sentence meaning.

The results on the Made-Up Entity dataset sug-
gest that at least some of the resilience of influence
functions is due to their ability to draw upon the
meanings of the pre-trained data or the syntactic
variety of their expression, or both, in order to see

through the effects of a syntactic transformation. In
typical LLM fashion, however, the patterns learned
by the language model in relation to this are not
sufficiently robust or principled to withstand, for
example, an innocuous change in the semantic ar-
guments. And so an innovation that was designed
to isolate the effects of the query around the trans-
formed sentence in fact hurt performance.

6.1 Limitations

We cannot flatly claim that influence functions are
a better alternative to sSBERT vectors, in part be-
cause of the adverse effects of consistently chang-
ing names. There are other limitations, too, the
chief of which is that SBERT uses an encoder-style
model which contains bi-directional context, while
the Anthropic code base and paper for influence
functions is focused around GPT2 and other de-
coder models that only see previous tokens in its
history. So it is impossible to determine the ex-
tent to which the entity invariance we saw with
influence functions is due to the underlying de-
coder architecture without rewriting that code base.
What we can already affirm is that this difference
in architecture was not enough for influence scores
to fall out of lock step with SBERT cosines in the
Pearson correlation test that we conducted.

Another limitation is our choice of a small num-
ber of grammatical transformations for experimen-
tation. The results presented in Table 9 naturally
single out passivization from the other transfor-
mations, and indeed passivization is special. It is
the only transformation among the four that we
selected to unequivocally constitute A-movement,
and the only one that rotates the grammatical func-
tion assignment around the arguments of the base-
line sentence. It is also the only one of the four
that has overt morphological reflexes, although
both clefting and VP-clefting would also cause
the LLM’s tokenizer to change the length of the in-
put. One might also argue that certain of these four
transformations are easier to withstand or easier
to predict the consequences of, using the measure-
ment tools at our disposal, either because of the
structural complexity of the transformation in terms
of a chosen syntactic representation, or because of
a variance in their relative frequencies in the pre-
training corpus. We would, at the same time, like
to expand the experimental list of transformations,
while better balancing these other effects, but these
two purposes work against each other.



Passivization Clefting Topicalization VP-Topic
Influence on Sentence Similarity 1.570795571 1.570795892 1.570796019 1.570796057
sBERT on Sentence Similarity 0.937302351 0.9078437984 0.8857396245 0.8987811208
sBERT on Entity Invariance -0.05444133282 | -0.08711430431 | -0.05307358504 | -0.07616019249

Table 9: Medians of the scores on the Grammatical Transformation dataset for each transformation under statistically

significant conditions, ranked by colour.

| p-values Test Statistics | Effect Size
Sentence Similarity | 3.79 x 10~ 65.568 1.145
Entity Invariance \ 0.008 11.712 0.484

Table 10: p-values, test statistics (XQ), and effect sizes
(@) for different tasks with the Made-Up Entity dataset
(influence functions only).

7 Conclusion

Along with neural language models has come in-
creasing concern over transparency and explain-
ability. Influence functions are one example of an
attempt to understand or interpret language models.
There is some evidence, as shown in this paper, that
influence functions are good for more than assign-
ing blame for faulty output. They correlate well
with sentence-similarity scores.

Using entity invariance over grammatical trans-
formations, we have been able to distinguish the
two, however. While sentence embeddings are
not resilient to syntactic transformations in any of
our experimental settings, in certain conditions,
influence functions are. This is important, be-
cause meaning representations should be invariant
to meaning-preserving transformations.

It will be important to repeat this experiment
after reworking either the Anthropic code base or
sBERT so that they can run on the same kind of
model. It will also be important to expand and
better control the list of syntactic transformations.
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A Full Datasets

Table 11 contains all the concocted entities that, af-
ter replacing the subjects in the Grammatical Trans-
formation dataset, form the Made-Up Entity dataset
described in 4.1.3.

Table 12 contains all the baseline sentences in
the Grammatical Transformation dataset described
in Section 4.1.1. The transformations are omitted
for brevity but follow directly from the baselines.

B Full Result Tables

Table 13 contains the full results of the sentence
similarity task on both metrics. Note that there are
50 rows of data, each corresponding to an entry in
the Grammatical Transformation Dataset. Colors
are mapped such that the smallest is white, largest
is dark green and intermediate values are gradated
uniformly, and in addition, each row is done inde-
pendently.

Table 14 contains the full results of the entity
invariance task on both metrics.

Table 15 contains the full results for the test of
influence on the Made-Up Entity dataset on both
tasks, detailed in Section 4.1.3.

C Prompts

Prompt to generate the baseline fact sentences:
Please provide me a list of factual statements like
"Mozart composed symphonies" that follow the
simple sentence structure.

Given the list of baseline sentences, the prompt
to generate a transformation: [ will provide you
a list of sentences. You are to take each sentence
and topicalize it. For example, if given "John liked
Mary." you are to return "Mary, John liked.". The
same prompt can be adapted for the other transfor-
mations.


https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1609/aaai.v36i8.20893
https://doi.org/10.1609/aaai.v36i8.20893
https://doi.org/10.1609/aaai.v36i8.20893

Made-up Entities in the Made-Up Entity Dataset

Kolpytimia | Fervan | Phran | Zorvik Ivoren
Jymilopy Galros | Quirin | Reilktyia | Jexar
Fulkingra | Hivian | Raxen | Avaron Kynor
Liuntmat Ivren Salven | Brenix Larven
Kolparop Jovik | Torvin | Cyrin Morden
Funmilip Kelrin | Uvorn | Dralin Nexor
Belrix Laxor | Vexan | Elvir Shadrin
Cevran Merin | Wavric | Fixon Fullinma
Darvon Novin | Xalden | Gravin Dilkop
Emlian Orvex | Yavren | Haldor Imnity

Table 11: All entities in our Made-Up Entity Dataset. These replace the subjects of the Grammatical Transformation

dataset to form the new dataset

Baseline Sentences in the Grammatical Transformation Dataset

Albert Einstein developed the theory of relativity.
Isaac Newton formulated the laws of motion.
Leonardo da Vinci painted the Mona Lisa.
William Shakespeare wrote Hamlet.

Marie Curie discovered radium.

J.K. Rowling wrote the Harry Potter series.
Vincent van Gogh painted The Starry Night.

Nikola Tesla invented the alternating current (AC) motor.

Georgy Zhukov led the defense of Stalingrad.
Alexander Fleming discovered penicillin.
Michelangelo sculpted David.

Charles Darwin developed the theory of evolution.
Thomas Edison invented the electric light bulb.
Beethoven composed Symphony No. 5.
Alexander Graham Bell invented the telephone.
Mozart composed The Magic Flute.

Leonardo DiCaprio played the role of Jay Gatsby.
Columbus discovered America.

The Wright brothers invented the airplane.
Alexander conquered Persia.

Marie Curie studied radioactivity.

Tesla designed alternating current systems.

The Romans built aqueducts.

Magellan circumnavigated the globe.

Gutenberg invented the printing press.

Armstrong landed on the moon.
Fleming discovered penicillin.
Darwin explained evolution.
Jobs founded Apple.

Beethoven composed Fur Elise.
Hillary climbed Everest.

Pasteur developed vaccines.
Galileo built telescopes.

Ford revolutionized manufacturing.
Orwell wrote 1984.

Picasso painted Guernica.
Edison patented the light bulb.
Mandela fought apartheid.
Turing cracked the Enigma code.

Pythagoras discovered the Pythagorean theorem.

Hitchcock directed Psycho.

Mozart composed Don Giovanni.
Washington led the Continental Army.
Napoleon invaded Russia.

Franklin invented the lightning rod.
Curie discovered polonium.

Kepler described planetary motion.
Gagarin orbited Earth.

Caesar crossed the Rubicon.

Chopin composed nocturnes.

Table 12: All 50 baseline sentences used in the Grammatical Transformation Dataset. Not included for brevity are
the corresponding grammatical transformations but they all follow naturally to make up the full dataset.
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Passivization  Clefting Topicalization ~ VP-Topicalization | Passivization Clefting Topicalization ~ VP-Topicalization
1281673.25 2596264 0.8652806878 0.8628834486 0.90064466
5032188.5 6382516 0.9085036516 0.883110702 0.8844070435
7136764.5 11084613 12699568 0.8681627512 0.869109869 0.8732848167

3492748 4352391 5876025 0.8648024201  0.8657934666 0.8941929936
1532958 1962189.875 09146342278 09339743257
4620397 13047812 8191310.5 08314833641 0.8642077446 0.9086657166
1275383.625 282891275 0.8701131344
308514825 257060875 3505769.5
5773955.5 7070393.5 0.8671823144
43537105 3066081.75 3065397.75 09427666068 09304442406 0.9420560598
120182225 7623313125 0.8697237372
6461203 5040498.5 08237189054  0.8344243169 0.8498998284
1900646.625 1747893375 3532316.25 084999156 0.8362667561
3811932 5775193 5407366.5 0.8057485819
8396329 13875857 -336879.2813 0.8465870023  0.7667613029
2837912.5 274665275 3477327.5 0.7814874649 [70.8770526648
2148719.75 2310032.5 3563150 0.8985278606 0.836519599
1163579.875  1002357.438 1499065.875 0.7317293882
1367728375 614765.3125 08231762052 0.8400527835
1972371.625 3946486.5 0.8561660051 0.9100579023
7127515 1288459.25 242501275 0.9037286043 0.8873476982
3226312.25 3931645.75 0.9279776812 0.8876610994
1420691.625 3952169 0.8822870851
309985.2188 3447946 08528832197  0.856222868
800681  538536.625 0.8298295736
91632.98438 07549761534 0.7469062209

441928.3438 763860.5 1111945.375 0.9289374352
317121.375 905179.6875 0.8525787592 0.8231647611

1058726.875  2258758.75 0.8137908578
-1187882.375 1382713.875 277481475 0.8946403861 0.9033447504
1384578.5 1470714.5 0.878882587
3988527188 877115.1875 1418243.75 0.8732652068
5122609688  124985.6953 | 1507217.375 09277190566
927574  -569455.8125  890655.3125 09141231775 09183707237
733503.875  1276804.125 613235 08879346251 0.8347960711
2617136.25 1795073.5 2855236 0.8794906735 0.8984233141

63635925 1268317031 115431375 0.895643115

688857.4375 870001.75 08809921145  0.8822927475  0.8651847839
897886.75 2438285.5 08753024936 0.8788477182 0.900886178
941638.5625 1710459.5 0.9277408123 0.9360141158
30088.2207 1362985.5 0.8392100334
-774782.5625 4324408 3250920.75 0.888368547 0.9031774402
1543971.625  1883542.375 09336919785  0.9073114991 0.9046003222
21495765 1670727.625 2736040.75 0.8796239495  0.8039262891 0.8643612266

-66643.16406  208990.6719  760295.8125 0.906768024

1650114.375 1811241375 0.9335971475
94931.34375 0.9086754918

9082475 221943175 2098055.5 0.8263111115
-470488.875  688643.0625 09068481922 0.8767338395 0.9065231085
-1013974.75 2260686 0.9073643088 0.8753144145

Table 13: Full results of Sentence Similarity for both metrics on the entire Grammatical Transformation Dataset
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Passivization  Clefting Topicalization ~ VP-topicalization | Passivization Clefting Topicalization 'VP-topicalization
-6254405 -0.1866739392 -0.1492462158

-26642611 -25821433 -26574901 -0.1190310717

-15876012 -18372530 -0.1657860875

-0.1250346899 -0.1121886373 -0.1104551554
-12170401.5 -11296740.5
-27716518

-0.06935936213 -0.05996596813
-0.1617150307 -0.1105882525 -0.1176011562

-25609095 -25669994 -25406562 -0.07726699114
-14933946 -16347746 -16882840 -0.100716114 -0.08472329378
-15794400 -11933606 -11977778 -0.06004858017 -0.1017688513
-30020002 -26009050 -0.04582571983  -0.06943738461 -0.06015014648

-0.112989068

-23089960.75

-48643260 -52031866 -48561260 -0.1114506721  -0.09153693914 -0.1327273846
-13833647 -13587115 -0.1308091283
-26825080 -26189696 -0.09480243921 -0.1450120807 -0.1342134476

-2344986.125 -1476259.547 -0.0925809741 -0.1185005307
-39184466 -38029180 -36814442 -0.1590764523 -0.1918034554
-1582920.375 -2108257.125 -1594213.875 -0.09655714035 -0.1692547202
-6072064 -0.01508197188 -0.01081442833
-4791516.125 -0.09742739797  -0.08908066154 -0.09745392203

-28372232 -34465044 -39599843 -0.1332816482 -0.1363123655

-5319618.375 -5360857.469 -0.05807337165 -0.07041674852
§ -9223493 -0.03779411316 -0.05990833044
-1823057.594 -1909726.992 -0.03912311792  -0.07392579317 -0.06897968054
-31943223 -34662588 -32163390 -0.05335593224 | -0.03372785449
-2584393.844 -3484716.25 -0.09438753128 -0.07553547621

-3454303.375 -0.1302825809
2332928625 2165193.875 2180960313 -0.1065143049 -0.1084765792 -0.1459647715
-13939776.63 -16306948.5 -15179150.88 | -0.03378689289  -0.02639275789 | 0.001132577658
-3501600211  -3639278.414 -3362675.984 | -0.04256004095  -0.02782595158 -0.003503620625

-228390.333 -0.06719768047 | -0.1265891194 -0.07524868846
730582.7031  -678280.2813 -781506.2969 | -0.09697979689  -0.08204746246
-283525.1289  -284416.8887 -0.09624645114  -0.08741539717 -0.07799932361

-8322824 -7754106 -0.1249685585
-38572803 -34113582 -31726072 -0.04879248142

-18284.80469  -22466.16797 -0.1557758152
-0.1144337654 !

-0.1278484464  -0.1360321045 -0.09156519175

-1234735.563 |  -0.1284969449  -0.1011826992

-1908188.188

-1874450.125 -1688667.938 -1822333.188 -0.1489322186  -0.1448811293 -0.1114014387
-4128723.789  -2868800.25  -5321833.625 -0.07667589188 -0.07678490877
-32576832 -30273304 -0.03211379051  -0.04234272242 -0.01085174084

-451694.0859 | -220842.4688 -318559.5 -0.1560547352 !
-1946600.25 201542075 -2433695.125 -0.08943325281

-044356.6641  -945010.3594 -978230.1328 -0.1224358678
-30200487.56 -0.08090877533 -0.05628025532
-1860999.219  -1730642.281 2111163.311 | -0.04685598612  -0.05257755518 -0.04875138402
-2253507.375  -2368550.75 -2355812.188 | -0.04864227772  -0.0438078672  -0.04264387164
-2257342.25  -2389740.875 -0.06806963682  -0.08834481239 -0.1109085083
-17051838.84  -16849220.94 -0.08681321144  -0.09053331614 -0.1175132394
-2649977.906  -2593891.906 -2393907 -0.04226249456 -0.0484764576  -0.06495755911
[1226235076:380 -26820000.16 -0.097905159  -0.08832764626 |IIIE0:022546648980|  -0.1072673202

Table 14: Full results of Entity invariance for both metrics on the entire Grammatical Transformation Dataset



Sent Similarity via Influence Entity Invariance via Influence
Passivization  Clefting Topicalization ~ VP-topicalization | Passivization  Clefting Topicalization ~ VP-topicalization
18216750 14871124 -27748200 -21957264
16107982 16881070 18357252 -31761387

8983601 9679158 -15623932.5 -15539081 -19133420
6311177 -34866796
-4400801 -44443604 -41120728
73414495 49477325 -10131612
4204987.5 3982068 3914922.75 -3905569.219
39287480 39517636 41943084 24590565.5  -24768332.5 24817787.5
5499680.5 5292868 9293386 -8419173.469  -8611006.188 -8578112
795575.6875 72137175 -17970983 -18785290 -17531584

1111503.125 271656725  1668867.125 -48718234.09  -48014607.44
3494235.5 5168803 5021732.5 -1818692
28548485 2777719.5 380874325 -56349592 -50853727 -52246354
1941477.5 5676007.5 1837815.625 1714763
806739.75 1078171 -5654521 -6208624 -6319545
1971969.5  2315744.5 -116435  82594.09375 -293907.0938
3113887.25  3309663.25 -62781103.19 [=61198772:5  -61969797.77
904815.0625 1094813.375 -4695470.813  -4905691.969 -4977761.5
4766804375  180478.6094  677784.3125 -8619159.438
-1440849.125 -14793079  -14087506.5 -15849524.5

1288198375 3206311.25 2969881.625 2794664.625
3750752 4090863.75 1741095.734
1479134.5 1753084.5 1594822.125 -2982937.656  -2696552.434 -2792250.531
622985.6875 234648375 23206848 | -19082092.5 22463687
537622.6875 960032 2324116.75 -3400219.875  -2762614.938 -3739159.875
1378174.875  1122773.25 -35094075.25 -35754053.25
347643.125 594932.75 -11695386.09 -11622510.38
305673.8125  661324.9375 -4706700.25 -4590533
2249547 3402734.5 4276829.5 -29706655 -28966407
3405452.25 5271509 8707653 -14378362 -13283870
768798.9375 5316533.5 21723378 20852058
6758299.5 370532375
355867.75 | 1285882.375 1297126.75 -502630.875
1240693.875 2390800
126504.9453  689580.875 -2965967.5 -2990364.906
-12713596 -14162309 -13836231.5
574604.875  1275667.75 -1196177.531 -633820.4688

229866.9063  489298.1563 1058893.375 -1023570.063
1205245.625 2386297.75

-961018.6875

-9116313.133 -9054034.375 -8748847.125

4838220.5 5989610 -170502362 -156098350 -155251562
680086.625 3757842 -43254391.25  -44739429.88 -42880126
6614905.5 8474995 4974632.5 -24289794

1809379 3166296.5
2263918  830624.4375 4329830.5
-422677.3125  232356.2344 1123875

2627413.25 -55810420 -60561396 -56077972

-18316043.25 -16365657
-1450561.25 -828111.5 101014

393759.875 135900575  1329041.125 2476717.504
1965582.375 3442731 -13644846  -16204924.75 -13169884.5
5672233125 3692350 -19651287  -17660868.5 -15906087
-179255.6563 -3388808 -21820827.5 -21853104
1040165.625 191164575 | -34843994.5  -35182859.5

Table 15: Full results of Influence on both tasks for the Made-Up Entity dataset
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