
A principled derivation of OT and HG within constraint-based phonology
Giorgio Magri (CNRS, SFL, University of Paris 8)

[1] We consider a set Gen of phonological mappings; a set C of n relevant constraints; and an order
≺ among arbitrary n-dimensional vectors (x ≺ y means vector x is smaller than vector y). The
constraint-based grammar G≺ sensibly realizes an underlying form x as a surface candidate
y ∈ Gen(x) that is optimal because no other candidate z ∈ Gen(x) violates the constraints less.
That is, no other candidate z has an n-dimensional vector of constraint violations that is smaller
than the vector of constraint violations of the optimal candidate y when compared wrt order ≺.

[2] Most constraint-based phonological literature since the 80s has focused on the question of what
are the right candidate and constraint sets Gen and C. The question of what is the right order
≺ has instead been neglected: the debate has been limited to the comparison between OT’s
lexicographic order versus HG’s linear order. Yet, the question concerning the order is just as
fundamental. There are scores of other well defined orders ≺ among n-dimensional vectors. Why
are we ignoring them and focusing only on OT’s and HG’s orders? This talk offers an answer.

[3] Let me introduce the intuition with three examples. • Suppose a grammar G realizes both x′ = /ad/

and x′′ = /tada/ faithfully as y′ = [ad] and y′′ = [tada]. Can I conclude that G realizes the underlying
concatenation x′·x′′ = /adtada/ faithfully as the surface concatenation y′·y′′ = [adtada]? No: because
G might ban clusters of obstruents that disagree in voicing and one such marked structure dt has
been created by the concatenation of ad and tada into adtada. • Suppose a grammar G neutralizes
x′ = /adt/ to y′ = [ad] and, say, faithfully realizes x′′ = /ada/ as y′′ = [ada]. Can I conclude that G
realizes the underlying concatenation x′ · x′′ = /adtada/ non-faithfully as the surface concatenation
y′ · y′′ = [adada]? No: because G might ban complex codas and one such marked structure has
been dissolved (through proper syllabification) by the concatenation of adt and ada into adtada.
• Suppose a grammar G realizes both x′ = /adta/ and x′′ = /da/ faithfully as y′ = [adta] and
y′′ = [da]. Can I conclude that G realizes the underlying concatenation x′ · x′′ = /adtada/ as the
surface concatenation y′ · y′′ = [adtada]? I submit yes, because the concatenation of adta and da

into adtada is plausibly innocuous: it does not create nor dissolve any relevant marked structures.

[4] Let me formalize this intuition. • The concatenation y′ · y′′ of two surface strings y′ and y′′ is
innocuous (wrt a markedness constraint set M) provided it neither creates nor dissolves marked-
ness violations. That is, neither M(y′ · y′′) > M(y′) + M(y′′) nor M(y′ · y′′) < M(y′) + M(y′′),
whereby M(y′ · y′′) = M(y′) + M(y′′) for every markedness constraint M in M. • The concate-
nation x′ · x′′ of two underlying strings x′ and x′′ is innocuous (wrt Gen and M) provided the
concatenation y′ · y′′ of any two of their candidates y′ and y′′ from Gen(x′) and Gen(x′′) is innocu-
ous. To illustrate, the underlying strings /adta/ and /da/ with candidates obtained by changing
obstruent voicing are innocuous relative to the constraints NoCompCoda, AgreeVoice, and
NoVoice, as verified at the bottom of the page. • The intuition in [3] can now be formalized
through the axiom that a grammar G be concatenative on innocuous concatenations: the sur-
face realizations G(x′ · x′′) of the innocuous underlying concatenation x′ · x′′ are the concatenations
G(x′) ·G(x′′) of the surface realizations G(x′) and G(x′′) of the two underlying strings in isolation,
namely G(x′ · x′′) = G(x′) · G(x′′). To illustrate, since the concatenation of /adta/ and /da/ is
innocuous, the axiom requires that G(/adtada/) = G(/adta/) ·G(/da/).

[5] Some remarks are in order. • The concatenativity axiom is stated solely in terms of markedness
constraints. In fact, most faithfulness constraints (Ident, Max, Dep, Max[+ϕ], Dep[+ϕ], Unif,

(/adtada/, [attata])[
0
0
0

]
=

[
0
0
0

]
+

[
0
0
0

] (/adtada/, [adtata])[
0
1
1

]
=

[
0
1
1

]
+

[
0
0
0

] (/adtada/, [atdata])[
0
1
1

]
=

[
0
1
1

]
+

[
0
0
0

] (/adtada/, [addata])[
0
0
2

]
=

[
0
0
2

]
+

[
0
0
0

] (/da/, [ta])[
0
0
1

]
(/adtada/, [attada])[

0
0
1

]
=

[
0
0
0

]
+

[
0
0
1

] (/adtada/, [adtada])[
0
1
2

]
=

[
0
1
1

]
+

[
0
0
1

] (/adtada/, [atdada])[
0
1
2

]
=

[
0
1
1

]
+

[
0
0
1

] (/adtada/, [addada])[
0
0
3

]
=

[
0
0
2

]
+

[
0
0
1

] (/da/, [da])[
0
0
0

]
(/adta/, [atta])[

0
0
0

] (/adta/, [adta])[
0
1
1

] (/adta/, [atda])[
0
1
1

] (/adta/, [adda])[
0
0
2

]
NoCompCoda
AgreeVoice
NoVoice



Inte, etcetera) satisfy the identity F (x′ · x′′, y′ · y′′) = F (x′, y′) + F (x′′, y′′) for just any underlying
strings x′, x′′ and surface candidates y′, y′′ (provided the correspondence relation on the left-hand
side is the union of the correspondence relations on the righthand side). • SPE grammars comply
with the axiom by design, as the rule A → B/X Y only applies when the markedness constraint
*XAB is violated. • Constraint-based grammars as defined in [1] instead can flout the axiom.
As a counterexample, let x ≺ y iff and only iff

∑n
k=1

1
kx

2
k <

∑n
k=1

1
ky

2
k. We consider the three

markedness constraints above plus Ident. The constraint violation vectors are ordered as at the
bottom of the page. We see that the constraint-based grammar G≺ realizes /da/ as [ta] and /adta/

as [atta] but realizes their concatenation /adtada/ as [attada] instead of [atta] · [ta].
[6] The main result of this paper is the following complete characterization of the orders ≺ that yield

constraint-based grammars G≺ as in [1] that comply with the concatenativity axiom in [4].

An order ≺ among arbitrary n-dimensional vectors yields a constraint-based grammar G≺
that satisfies the concatenativity axiom if and only if there exist a certain number d (between

1 and n) of weight vectors w(1) = (w
(1)
1 , . . . , w

(1)
n ) . . .w(d) = (w

(d)
1 , . . . , w

(d)
n ) such that two

arbitrary n-dimensional vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) satisfy the inequality
x ≺ y if and only if there exists some index i (between 1 and d) such that:

• when we use the first i − 1 weight vectors
w(1), . . . ,w(i−1), the weighted sum of the
components of x is equal to the weighted
sum of the components of y:

n∑
k=1

w
(1)
k xk =

n∑
k=1

w
(1)
k yk

...n∑
k=1

w
(i−1)
k xk =

n∑
k=1

w
(i−1)
k yk

• when we use instead the weight vector w(i),
the weighted sum of the components of x is
strictly smaller than the weighted sum of
the components of y:

n∑
k=1

w
(i)
k xk <

n∑
k=1

w
(i)
k yk

[7] The complexity of this architecture is controlled by two parameters: the number d of weight
vectors and the number s of non-zero components per weight vector. Thus, a simple but non-
trivial implementation of this architecture is obtained by choosing the minimum value for one
parameter (to achieve simplicity) and the maximum value for the other (to achieve non-triviality).
We thus obtain two simplest non-trivial implementations.

[8] One simplest but non-trivial implementation of the boxed architecture corresponds to d = 1 and
s = n: we use a unique weight vector w(d=1) = w but allow it to have the maximum number of
non-zero components. In this case, the constraint-based grammar G≺ as in [1] corresponding to
the order ≺ described in the box is the HG grammar corresponding to the weight vector w.

[9] Next, we allow for maximum d = n and thus use a full stack of n weight vectors w(d=1), . . . ,w(d=n).
Yet, we require each of these n vectors to have only s = 1 component different from zero. We
can assume without loss of generality that the unique non-zero components are all equal to one
and that no two weight vectors w(i) and w(j) have the same component that is different from
zero. Thus, the d = n weight vectors induce the constraint ranking Ck1 � Ck2 � · · · � Ckn ,

where ki is the index of the unique non-zero component of the weight vector w(i). In this case, the
constraint-based grammar G≺ as in [1] corresponding to the order ≺ described in the box is the
OT grammar corresponding to this ranking �.

[10] In conclusion, HG and OT follow axiomatically as the simplest non-trivial implementations of the
constraint-based architecture [1] which abide by the axiom on phonological behavior stated in [4].

[atta],[ta]0
0
0
1


|

0.25

[da]0
0
1
0


|

0.333

[attada]0
0
1
1


|

0.583

[adta]0
1
1
0


|

0.833

[attata]0
0
0
2


|

1.000

[adtata]0
1
1
1


|

1.083

[adda]0
0
2
1


|

1.583

[atda]0
1
1
2


|

1.833

[adtada]0
1
2
0


|

1.833

[addata]0
0
2
2


|

2.333

[atdada]0
1
2
2


|

2.833

[atdata]0
1
1
3


|

3.083

[addada]0
0
3
1


|

3.25

CompCoda
AgreeVoice
NoVoice
IdentVoice

≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺


