

A principled derivation of OT and HG within constraint-based phonology

Giorgio Magri (CNRS, SFL, University of Paris 8)

[1] We consider a set Gen of phonological mappings; a set \mathbf{C} of n relevant constraints; and an order \prec among arbitrary n -dimensional vectors ($\mathbf{x} \prec \mathbf{y}$ means vector \mathbf{x} is smaller than vector \mathbf{y}). The **constraint-based grammar** G_\prec sensibly realizes an underlying form x as a surface candidate $y \in Gen(x)$ that is optimal because no other candidate $z \in Gen(x)$ violates the constraints less. That is, no other candidate z has an n -dimensional vector of constraint violations that is smaller than the vector of constraint violations of the optimal candidate y when compared wrt order \prec .

[2] Most constraint-based phonological literature since the 80s has focused on the question of what are the right candidate and constraint sets Gen and \mathbf{C} . The question of what is the right order \prec has instead been neglected: the debate has been limited to the comparison between OT's **lexicographic** order versus HG's **linear** order. Yet, the question concerning the order is just as fundamental. There are scores of other well defined orders \prec among n -dimensional vectors. Why are we ignoring them and focusing only on OT's and HG's orders? This talk offers an answer.

[3] Let me introduce the intuition with three examples.

- Suppose a grammar G realizes both $\mathbf{x}' = /ad/$ and $\mathbf{x}'' = /tada/$ faithfully as $\mathbf{y}' = [ad]$ and $\mathbf{y}'' = [tada]$. Can I conclude that G realizes the underlying concatenation $\mathbf{x}' \cdot \mathbf{x}'' = /adtada/$ faithfully as the surface concatenation $\mathbf{y}' \cdot \mathbf{y}'' = [adtada]$? No: because G might ban clusters of obstruents that disagree in voicing and one such marked structure dt has been **created** by the concatenation of ad and $tada$ into $adtada$.
- Suppose a grammar G neutralizes $\mathbf{x}' = /adt/$ to $\mathbf{y}' = [ad]$ and, say, faithfully realizes $\mathbf{x}'' = /ada/$ as $\mathbf{y}'' = [ada]$. Can I conclude that G realizes the underlying concatenation $\mathbf{x}' \cdot \mathbf{x}'' = /adtada/$ non-faithfully as the surface concatenation $\mathbf{y}' \cdot \mathbf{y}'' = [adada]$? No: because G might ban complex codas and one such marked structure has been **dissolved** (through proper syllabification) by the concatenation of adt and ada into $adtada$.
- Suppose a grammar G realizes both $\mathbf{x}' = /adta/$ and $\mathbf{x}'' = /da/$ faithfully as $\mathbf{y}' = [adta]$ and $\mathbf{y}'' = [da]$. Can I conclude that G realizes the underlying concatenation $\mathbf{x}' \cdot \mathbf{x}'' = /adtada/$ as the surface concatenation $\mathbf{y}' \cdot \mathbf{y}'' = [adtada]$? I submit yes, because the concatenation of $adta$ and da into $adtada$ is plausibly **innocuous**: it does not create nor dissolve any relevant marked structures.

[4] Let me formalize this intuition.

- The concatenation $\mathbf{y}' \cdot \mathbf{y}''$ of two surface strings \mathbf{y}' and \mathbf{y}'' is **innocuous** (wrt a markedness constraint set \mathbf{M}) provided it neither creates nor dissolves markedness violations. That is, neither $M(\mathbf{y}' \cdot \mathbf{y}'') > M(\mathbf{y}') + M(\mathbf{y}'')$ nor $M(\mathbf{y}' \cdot \mathbf{y}'') < M(\mathbf{y}') + M(\mathbf{y}'')$, whereby $M(\mathbf{y}' \cdot \mathbf{y}'') = M(\mathbf{y}') + M(\mathbf{y}'')$ for every markedness constraint M in \mathbf{M} .
- The concatenation $\mathbf{x}' \cdot \mathbf{x}''$ of two underlying strings \mathbf{x}' and \mathbf{x}'' is **innocuous** (wrt Gen and \mathbf{M}) provided the concatenation $\mathbf{y}' \cdot \mathbf{y}''$ of any two of their candidates \mathbf{y}' and \mathbf{y}'' from $Gen(\mathbf{x}')$ and $Gen(\mathbf{x}'')$ is innocuous. To illustrate, the underlying strings $/adta/$ and $/da/$ with candidates obtained by changing obstruent voicing are innocuous relative to the constraints **NoCOMP CODA**, **AGREE VOICE**, and **No VOICE**, as verified at the bottom of the page.
- The intuition in [3] can now be formalized through the **axiom** that a grammar G be **concatenative** on innocuous concatenations: the surface realizations $G(\mathbf{x}' \cdot \mathbf{x}'')$ of the innocuous underlying concatenation $\mathbf{x}' \cdot \mathbf{x}''$ are the concatenations $G(\mathbf{x}') \cdot G(\mathbf{x}'')$ of the surface realizations $G(\mathbf{x}')$ and $G(\mathbf{x}'')$ of the two underlying strings in isolation, namely $G(\mathbf{x}' \cdot \mathbf{x}'') = G(\mathbf{x}') \cdot G(\mathbf{x}'')$. To illustrate, since the concatenation of $/adta/$ and $/da/$ is innocuous, the axiom requires that $G(/adtada/) = G(/adta/) \cdot G(/da/)$.

[5] Some remarks are in order.

- The concatenativity axiom is stated solely in terms of markedness constraints. In fact, most faithfulness constraints (**IDENT**, **MAX**, **DEP**, **MAX_[+φ]**, **DEP_[+φ]**, **UNIF**,

$(/adtada/, [attata])$ $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$(/adtada/, [adtata])$ $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$(/adtada/, [atdata])$ $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$(/adtada/, [addata])$ $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$	$(/da/, [ta])$ $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
$(/adtada/, [attada])$ $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$(/adtada/, [adtada])$ $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	$(/adtada/, [atdada])$ $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$(/adtada/, [addada])$ $\begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$	$(/da/, [da])$ $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
$(/adta/, [atta])$ $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$(/adta/, [adta])$ $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$	$(/adta/, [atda])$ $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$	$(/adta/, [adda])$ $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$	NoCOMP CODA AGREE VOICE No VOICE

INTE, etcetera) satisfy the identity $F(\mathbf{x}' \cdot \mathbf{x}'', \mathbf{y}' \cdot \mathbf{y}'') = F(\mathbf{x}', \mathbf{y}') + F(\mathbf{x}'', \mathbf{y}'')$ for just any underlying strings $\mathbf{x}', \mathbf{x}''$ and surface candidates $\mathbf{y}', \mathbf{y}''$ (provided the correspondence relation on the left-hand side is the union of the correspondence relations on the righthand side). • SPE grammars comply with the axiom by design, as the rule $A \rightarrow B/X_Y$ only applies when the markedness constraint $*XAB$ is violated. • Constraint-based grammars as defined in [1] instead can flout the axiom. As a counterexample, let $\mathbf{x} \prec \mathbf{y}$ iff and only iff $\sum_{k=1}^n \frac{1}{k} x_k^2 < \sum_{k=1}^n \frac{1}{k} y_k^2$. We consider the three markedness constraints above plus IDENT. The constraint violation vectors are ordered as at the bottom of the page. We see that the constraint-based grammar G_\prec realizes /da/ as [ta] and /adta/ as [atta] but realizes their concatenation /adtada/ as [attada] instead of [atta] · [ta].

[6] The main result of this paper is the following complete characterization of the orders \prec that yield constraint-based grammars G_\prec as in [1] that comply with the concatenativity axiom in [4].

An order \prec among arbitrary n -dimensional vectors yields a constraint-based grammar G_\prec that satisfies the concatenativity axiom if and only if there exist a certain number d (between 1 and n) of **weight** vectors $\mathbf{w}^{(1)} = (w_1^{(1)}, \dots, w_n^{(1)}) \dots \mathbf{w}^{(d)} = (w_1^{(d)}, \dots, w_n^{(d)})$ such that two arbitrary n -dimensional vectors $\mathbf{x} = (\textcolor{red}{x}_1, \dots, \textcolor{red}{x}_n)$ and $\mathbf{y} = (\textcolor{blue}{y}_1, \dots, \textcolor{blue}{y}_n)$ satisfy the inequality $\mathbf{x} \prec \mathbf{y}$ if and only if there exists some index i (between 1 and d) such that:

- when we use the first $i - 1$ weight vectors $\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(i-1)}$, the weighted sum of the components of \mathbf{x} is equal to the weighted sum of the components of \mathbf{y} :
- when we use instead the weight vector $\mathbf{w}^{(i)}$, the weighted sum of the components of \mathbf{x} is strictly smaller than the weighted sum of the components of \mathbf{y} :

$$\begin{array}{rcl} \sum_{k=1}^n w_k^{(1)} \textcolor{red}{x}_k & = & \sum_{k=1}^n w_k^{(1)} \textcolor{blue}{y}_k \\ \vdots & & \vdots \\ \sum_{k=1}^n w_k^{(i-1)} \textcolor{red}{x}_k & = & \sum_{k=1}^n w_k^{(i-1)} \textcolor{blue}{y}_k \end{array} \qquad \qquad \sum_{k=1}^n w_k^{(i)} \textcolor{red}{x}_k < \sum_{k=1}^n w_k^{(i)} \textcolor{blue}{y}_k$$

- [7] The complexity of this architecture is controlled by two parameters: the number d of weight vectors and the number s of non-zero components per weight vector. Thus, a simple but non-trivial implementation of this architecture is obtained by choosing the minimum value for one parameter (to achieve simplicity) and the maximum value for the other (to achieve non-triviality). We thus obtain two simplest non-trivial implementations.
- [8] One simplest but non-trivial implementation of the boxed architecture corresponds to $d = 1$ and $s = n$: we use a unique weight vector $\mathbf{w}^{(d=1)} = \mathbf{w}$ but allow it to have the maximum number of non-zero components. In this case, the constraint-based grammar G_\prec as in [1] corresponding to the order \prec described in the box is the **HG grammar** corresponding to the weight vector \mathbf{w} .
- [9] Next, we allow for maximum $d = n$ and thus use a full stack of n weight vectors $\mathbf{w}^{(d=1)}, \dots, \mathbf{w}^{(d=n)}$. Yet, we require each of these n vectors to have only $s = 1$ component different from zero. We can assume without loss of generality that the unique non-zero components are all equal to one and that no two weight vectors $\mathbf{w}^{(i)}$ and $\mathbf{w}^{(j)}$ have the same component that is different from zero. Thus, the $d = n$ weight vectors induce the constraint ranking $C_{k_1} \gg C_{k_2} \gg \dots \gg C_{k_n}$, where k_i is the index of the unique non-zero component of the weight vector $\mathbf{w}^{(i)}$. In this case, the constraint-based grammar G_\prec as in [1] corresponding to the order \prec described in the box is the **OT grammar** corresponding to this ranking \gg .
- [10] In conclusion, HG and OT follow axiomatically as the simplest non-trivial implementations of the constraint-based architecture [1] which abide by the axiom on phonological behavior stated in [4].