
aligned-textgrid: Lightweight access to structured phonetic data.

Josef Fruehwald
University of Kentucky

Department of Linguistics
josef.fruehwald@uky.edu

Christian Brickhouse
Stanford University

Department of Linguistics
brickhouse@stanford.edu

1 Introduction

Praat [Boersma and Weenink, 2024] is free and open
source software most commonly used in linguistic
research for acoustic analysis and audio annotation.
Its TextGrid format allows for flexible, time-stamped,
point and interval annotations of audio that can be eas-
ily edited in the Praat GUI and saved as plain text files.

In addition to manual annotation, a number of com-
monly used forced-alignment programs also generate
highly structured data in the form of TextGrids, includ-
ing the FAVE suite [Rosenfelder et al., 2022], DARLA
[Reddy and Stanford, 2015], and the Montreal Forced
Aligner [McAuliffe et al., 2017b]. While there are, ad-
ditionally, a number of software tools specifically for
parsing TextGrid files (in R, Mahr [2020], in python,
Gorman [2019], Taubert [2023], Mahrt [2023], among
many others), these tools don’t focus on the linguistic
structure represented in the TextGrid output of forced
aligners. PolyglotDB [McAuliffe et al., 2017a] is a
database framework that enriches TextGrids with an
annotation graph, but its use case is analysis of larger-
scale speech corpora. The goal of aligned-textgrid is to
provide lightweight, scriptable access to the structured
data produced by forced-aligners. The library is written
in python, and currently available on the Python Pack-
age Index.

2 Hierarchy and Precedence in
TextGrids

Figure 1 illustrates the typical output of a forced-
aligner. It has two tiers: a word tier and a phone tier.
Within the TextGrid format, each annotation is defined
exclusively by i) its tier membership, ii) onset time, iii)
offset time, and iv) label.

Figure 1: Word and Phone TextGrid

However, there are implicit linguistic relationships that
are not well represented in the TextGrid. For example

1. Hierarchical Information
a. Every phone is contained within one (and

only one) word.
b. Every word contains at least one phone.

2. Precedence Information
a. The phone AO1 follows the phone D.
b. The phone AO1 precedes the phone G

3. Hybrid Hierarchical & Precedence Information
a. G is the last phone within the word dog.
b. The way that AO1 follows D (within a word) is

not the same as the way D follows AH0 (they
cross words).

Quick and easy access to this hierarchical and prece-
dence information may be of interest to researchers for
a number of reasons. For example, in many North
American varieties of English, the vowel quality of /ay/
is raised before voiceless consonants [Davis and Berk-
son, 2021], but not if a word boundary intervenes. In
trying to programmatically identify examples of /ay/
that may be susceptible to raising, a researcher could
not simply depend on examining the i+1 interval, but
rather would have to access information about the word
tier above.

3 The aligned-textgrid approach
The overarching design goal of aligned-textgrid is to
provide users named accessors to linguistically relevant
data within a TextGrid from nearly any starting point,
although, more conventional numerical indexing is also
implemented.

3.1 Precedence Relationships
For example, the susceptibility of a phone to American
Raising could be checked like so.

for phone in phone_tier:
if phone.label == "AY1" \
and phone.fol.label in voiceless_list:
return phone

The .fol accessor returns the following interval in-
stance. In this sense, precedence relationships are de-
fined as a form of linked-list, except they are curtailed
at the edge of the containing interval from the tier
above. If the phone interval were the final phone in

329
Proceedings of the Society for Computation in Linguistics (SCiL) 2024, pages 329-330.

Irvine, California, June 27-29, 2024



accessor description
.fol return the following interval
.prev return the previous interval

Table 1: Precedence Accessors

accessor description
.within return the containing interval
.contains return a list of contained intervals

Table 2: Hierarchy Accessors

the word “my”, phone.fol.label would return "#".

3.2 Hierarchical Relationships

Researchers may also want ready access to the hierar-
chical relationships as well. For example, /ay/ in some
lexical items such as spider undergo exceptional rais-
ing [Fruehwald, 2008]. Still within a single iteration
over the phone tier, the containing word can be ac-
cessed like so:

for phone in phone_tier:
if phone.label == "AY1" \
and phone.within.label == "spider":
return phone

The .within accessor returns the interval from the tier
above that the phone is contained within.

Hierarchical information in TextGrids is usually in-
ferred from the linear order of tiers leading to unex-
pected behavior if researchers order tiers in unconven-
tional ways. aligned-textgrid defines hierarchical rela-
tionships within SequenceTier classes, rather than rely-
ing on the order of the underlying text grid, to ensure
that Words always contain Phones even if the phone tier
is above the word tier.

3.3 Hybrid Relationships

Although .prev and .fol are curtailed by word bound-
aries, there are often reasons to search across word
boundaries. For example, American /t/ flapping can
happen at the end of a word when the following vowel
is unstressed.

for phone in phone_tier:
if phone.label == "T" \
and phone.fol.label == "#" \
and "0" in phone.within.fol.first.label:
return phone

This example demonstrates how a textgrid can be nav-
igated with the chaining of accessors. First .within
returns the word interval. Then .fol returns the fol-
lowing word interval. Finally .first returns the first
phone within the word.

accessor description
.first return the first contained interval
.last return the last contained interval

Table 3: Hybrid Accessors

4 Flexibility
aligned-textgrid comes with default Word and Phone
classes implemented, but also allows for on-the-
fly definition of custom tier hierarchies via a
custom_classes() class factory function, allowing
for larger phrase annotation, or intermediate syllabic or
prosodic annotations to be handled. The library is not
restricted to work with only English or CMU phone la-
bels.

References
Paul Boersma and David Weenink. 2024. Praat: do-
ing phonetics by computer (version 5.0.35) [computer
program] version 6.4.04.

Stuart Davis and Kelly Berkson. 2021. American rais-
ing: An introduction. The Publication of the American
Dialect Society, 106(1):1–12.

Josef Fruehwald. 2008. The spread of raising : Opacity
, lexicalization , and diffusion. Penn Working Papers in
Linguistics, 14(2):83–92.

Kyle Gorman. 2019. TextGrid: Praat TextGrid manip-
ulation.

Tristan Mahr. 2020. readtextgrid: Read in a ’Praat’
’TextGrid’ File. R package version 0.1.1.

Tim Mahrt. 2023. praatio: A library for working with
praat, textgrids, time aligned audio transcripts, and au-
dio files.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017a.
Montreal Forced Aligner: Trainable Text-Speech
Alignment Using Kaldi. In Proc. Interspeech 2017,
pages 498–502.

Michael McAuliffe, Elias Stengel-Eskin, Michaela So-
colof, and Morgan Sonderegger. 2017b. Polyglot and
speech corpus tools: A system for representing, inte-
grating, and querying speech corpora. In Proc. Inter-
speech 2017, pages 3887–3891. ISCA.

Sravana Reddy and James Stanford. 2015. A web ap-
plication for automated dialect analysis. page 71–75,
Denver, Colorado. Association for Computational Lin-
guistics.

Ingrid Rosenfelder, Josef Fruehwald, Christian Brick-
house, Keelan Evanini, Scott Seyfarth, Kyle Gorman,
Hilary Prichard, and Jiahong Yuan. 2022. FAVE
(Forced Alignment and Vowel Extraction) Program
Suite v2.0.0.

Stefan Taubert. 2023. textgrid-tools.

330


