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Abstract

Fitz and Chang (2019) argue that event-related
brain potentials during sentence comprehen-
sion result from the detection and incorporation
of word-prediction error. Specifically, the N400
component would correlate with prediction er-
ror while the P600 component would be indica-
tive of error backpropagation in the language
system. The current work evaluates this hypoth-
esis on a corpus of EEG data recorded during
naturalistic sentence reading. Word-prediction
error and backpropagated error were estimated
by an LSTM language model that processed
the same 205 English sentences as the human
participants. At each word, the word’s surprisal
and the total gradient of recurrent-layer con-
nections were collected for comparison to the
sizes of the N400 and P600 components. Con-
sistent with the theory, higher surprisal resulted
in stronger N400 while higher gradient resulted
in stronger P600, and ERPs on content words
were more sensitive to surprisal whereas ERPs
on function words were more sensitive to gradi-
ent. However, a detailed analysis of the neural
signal’s time course indicates that the apparent
P600 effect could be interpreted as a reversed
N400 effect.

1 Introduction

1.1 Event-related brain potentials
When people engage in language comprehension,
their brains display particular patterns of electrical
activity, a small part of which can be picked up by
electrodes on the scalp. This method, known as
electroencephalography (EEG), has revealed sev-
eral typical deflections in measured voltage in re-
sponse to word perception. These deflections are
known as event-related brain potentials (ERPs) and
particular ERP components can be identified by
their timing and scalp distribution.

Arguably the two most studied components are
the N400 and the P600. The first of these com-
ponents is a negative-going voltage deflection that

peaks at around 400 ms after word onset, hence the
name N400. The second ERP component goes in
the positive direction and peaks at around 600 ms
after word onset, hence the name P600.

The N400 is well know to be stronger (i.e., more
negative) on words that are syntactically correct
but semantically odd (Kutas and Hillyard, 1980),
or simply have lower occurrence probability as es-
timated by human judgements (Kutas and Hillyard,
1984) or language models (Frank et al., 2015). A
stronger P600 was originally thought to be indica-
tive of syntactic violations and anomalies (Oster-
hout and Holcomb, 1992) but has also been found
in different types of well-formed sentences, for
example in response to a word that completes a
long-distance dependency (Kaan et al., 2000) or is
used ironically (Regel et al., 2014).

1.2 Models of the N400 and P600
Several computational models have been proposed
as explanations of N400 and P600 effects in lan-
guage comprehension (Brouwer et al., 2017, 2021;
Fitz and Chang, 2019; Li and Futrell, 2022, 2023).
These models agree that the N400 is stronger in
response to a word that was less expected, although
they differ in how this prediction error is quantified.
As for the P600, all models assume that its size cor-
relates with the extent to which the incoming word
results in an update of some representation, but
they disagree on the content of this representation.

According to the Retrieval-Integration account
by Brouwer et al. (2017, 2021), the P600 corre-
sponds to the update of a representation of the sit-
uation described by the sentence or text, which in
their model is represented at the output layer of a
recurrent neural network. In contrast, the model by
Li and Futrell (2022, 2023) assumes that the P600
reflects the update in the reader’s (or listener’s)
beliefs about the word sequence processed so far.
Finally, Fitz and Chang’s (2019) Error Propagation
account claims that processing a word can lead
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to an update of language knowledge, that is, to
learning about the language’s statistics or syntactic
patterns. The P600 would reflect the size of this
knowledge update, which can be quantified as the
backpropagated word-prediction error in a neural
network.

Fitz and Chang (2019) tested their theory in
the Dual-Path model (Chang et al., 2006), a re-
current neural network (RNN) that differs from
most language models in that it splits processing
into two paths: a syntactic path that takes care of
word ordering and a semantic path that maps propo-
sitional meaning onto sentences. During model
training, each word’s prediction error backpropa-
gates through both paths but converges on a sin-
gle recurrent layer. Fitz and Chang (2019) take
the summed absolute gradients of recurrent-layer
connection weights as their predictor of the P600
induced by the word, and show that this accounts
for many results from human P600 experiments,
such as the stronger P600 response to syntactic
violations (compared to grammatically correct al-
ternatives) caused by subject-verb number disagree-
ment or incorrect verb-tense inflections. More re-
cently, Verwijmeren et al. (2023) demonstrated that
the Error Propagation account, implemented in a
bilingual version of the Dual-Path model (Tsoukala
et al., 2021) can explain why subject-verb number
disagreement results in an enhanced N400 in be-
ginning second-language learners but an enhanced
P600 in more advanced learners.

1.3 The current study
In spite of its successes, evaluation of the Error
Propagation account has been hampered by the
limitations of training the Dual-Path model, which
requires each sentence to be paired with its propo-
sitional semantics. In practice, this means that the
model can only be trained on artificial, toy versions
of real languages. Although this often suffices for
investigating specific psycholinguistic phenomena,
it makes broad-coverage validation on natural lan-
guage impossible. Crucially, Fitz and Chang (2019)
did also investigate the Dual-Path model’s ERP
predictions when the semantic path was removed,
in effect reducing it to a normal simple recurrent
network (Elman, 1990) trained on the same toy lan-
guage as the full Dual-Path model. Results were
similar to those of the full model (at least, as far
as the P600 was concerned) suggesting that the se-
mantic path contributed little, if anything, to the
P600 prediction.

If semantic knowledge is indeed not required to
explain P600 effects, the Error Propagation account
can also be evaluated in a way that is more similar
to common practice in computational linguistics:
train a neural language model on a natural language
corpus and then test it on a novel sample of sen-
tences. This is exactly the approach I take here.
An RNN is used to estimate word surprisal and the
word-induced gradients of recurrent-layer connec-
tion weights, at each word of English sentences that
were also read by native English speakers while
their EEG was recorded. Next, linear regression
predicts the human N400 and P600 sizes from the
model-derived surprisal and gradient values.

The results of the current study show that, as pre-
dicted by the Error Propagation account, higher sur-
prisal correlates with stronger N400 while higher
gradient correlates with stronger P600. Unexpect-
edly, however, higher surprisal and gradient also
correspond to weaker P600 and N400, respectively.
This suggests that the two predictors in fact have
the same effect on the EEG signal (albeit in oppo-
site directions) and the apparent separable effects
on the N400 and P600 components are an artifact
caused by their spatiotemporal overlap. This in-
terpretation is supported by additional regression
analyses: Across time and scalp locations, surprisal
and gradient show similar effects on the EEG sig-
nal. Hence, backpropagated word-prediction error
may thus correspond to weaker N400s as opposed
to stronger P600s.

2 Methods

2.1 EEG data

Frank et al. (2015) published EEG data recorded
on 32 electrodes, from 24 native English speak-
ers reading 205 English sentences that were ex-
tracted from novels. The sentences were presented
word-by-word1 at a fixed location to minimize eye
movements that interfere with the EEG signal. The
duration between consecutive word onsets was at
least 627 ms and increased by 20 ms per character,
that is, it was word-length dependent.

Time-locked to each word onset, the EEG sig-
nals were averaged over different combinations of
scalp electrodes and time windows to obtain six
ERP components that have been investigated in the
psycho- and neurolinguistic literature (see Frank
et al., 2015, for details). The baseline level for each

1Punctuation marks were attached to the preceding word
and contractions were presented as single words.
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component was the average over that component’s
electrodes during the 100 ms leading up to word
onset. Here, I investigate only the N400 and P600
components. The N400 is defined as the average
voltage from 300 to 500 ms after word onset, over
12 centro-parietal electrodes. The P600 is the av-
erage from 500 to 700 ms after word onset, over
18 electrodes that include the N400 electrodes but
also more temporally located ones.

2.2 Language model2

2.2.1 Model architecture

As mentioned in Section 1.2, Fitz and Chang (2019)
tested their theory in an RNN next-word prediction
model that has both a semantic and a syntactic path-
way (although they found the semantic pathway not
to be critical to the P600 predictions). In order to
stay as close as possible to that architecture while
allowing it to be trained on a natural language cor-
pus, I sacrificed the semantic pathway, leaving a
plain, single-layer RNN; more specifically, a Long
Short-Term Memory model (LSTM; Hochreiter
and Schmidhuber, 1997) with 400-dimensional in-
put embeddings and a 500-unit recurrent (LSTM)
layer followed by a 400-unit hidden layer before
the softmax output layer.

2.2.2 Model training

Training sentences were extracted from the first
7 slices of the ENCOW16 corpus of English sen-
tences from the web (Schäfer, 2015). First, a vo-
cabulary was created comprising the 20,000 most
frequent tokens in the first slice of ENCOW16 plus
all tokens from the 205 experimental stimuli sen-
tences.3 Next, all sentences were selected that con-
tain only vocabulary tokens and are no less than 3
and no more than 50 tokens in length. This resulted
in a total of just under 81.6M training sentences
with over 1.4B tokens of 21,918 types. All tokens
from the experimental stimuli were attested in this
training set. The training set was presented to the
network for 1 training epoch.

2The language model’s PyTorch (Paszke et al., 2019) code,
training data, and trained models can be downloaded from
https://osf.io/a6g4f

3Sentences from another psycholinguistic study were also
included but these are irrelevant to the current work. The
corpus sentence tokenization was adapted to that of the EEG
experiment by merging the parts of a contraction (e.g., the
two corpus tokens “do n’t" become the single token “don’t”).
Punctuation marks remained individual tokens.

2.2.3 Model testing
At several points during training, the LSTM pro-
cessed the 205 sentences from the Frank et al.
(2015) EEG study and estimated each word’s sur-
prisal (Hale, 2001; Levy, 2008), that is, the neg-
ative log-probability of the word conditioned on
the sentence so far. Surprisal values quantify word-
prediction error and are expected to correlate with
the size of the N400 component, as was already
shown by Frank et al. (2015) on the same EEG data
but using surprisal estimates from much smaller
language models.

Each word’s prediction error is backpropagated
through the network (Rumelhart et al., 1986) result-
ing in a gradient for each connection weight. Fol-
lowing Fitz and Chang (2019), I take the summed
absolute values of the gradients in the recurrent
layer; an aggregate measure I simply refer to as ‘the
gradient’. Unlike Fitz and Chang’s (2019) simple
recurrent network’s units, LSTM units have four
types of connection (for the memory cell, and the
input, output, and forget gates). The gradient mea-
sure is computed over all these weights together.
Note that the gradients are computed for the 205
experimental sentences but not actually applied dur-
ing model testing, that is, the connection weights
are not updated.

2.3 Data analysis

Following Frank et al. (2015), I exclude from anal-
ysis all sentence-initial words, words attached to
punctuation, and any data point from part of the
EEG signal that was considered an artifact (mostly
due to eye blinks). This left a total of 33,476 data
points (i.e., combinations of participants and word
tokens) for analysis. Statistical models were fit by
the MixedModels package (Bates et al., 2023) in
Julia (Bezanson et al., 2017).4

2.3.1 Standard ERP analysis
Separate sets of linear mixed-effects regression
analyses were run with N400 size or P600 size
as the dependent variable. Both analyses included
surprisal and gradient as predictors, and the fol-
lowing covariates of no interest: the component’s
baseline, the position of the sentence in the experi-
ment session, the position of the word in the sen-
tence, the log-transformed frequency of the word in
the British National Corpus, and the word’s length

4Analysis code and EEG data can be downloaded from
https://osf.io/a6g4f.
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(number of characters). All predictors were stan-
dardized. The regression models included a by-
token random intercept and slope of sentence posi-
tion, and a by-participant random intercept and
slopes of surprisal, gradient, sentence position,
word position, log-transformed word frequency,
and word length.

I take the t-statistics of surprisal and gradient as
measures of the extent to which they are predic-
tive of ERP size. A negative t-value of surprisal
is expected in the N400 analysis (higher surprisal
leads to a stronger, i.e., more negative-going N400)
and a positive t-value of gradient in the P600 anal-
ysis (higher gradient leads to a stronger, i.e., more
positive-going P600). When |t| > 2, this roughly
corresponds to an effect that is statistically signifi-
cant with p < .05.

2.3.2 Regression ERP analysis
A follow-up analysis does not take the ERP sizes
as dependent variables but follows the ‘regression
ERP’ (rERP) approach of Smith and Kutas (2015).
This comes down to fitting a regression model to
the set of EEG samples at each time point (rela-
tive to word onset) and electrode, and then plotting
the coefficients of the predictors of interest as if
they are ERP curves. All these regression models
have both surprisal and gradient as predictors, with
the same covariates and random-effect structure as
in the standard ERP analysis discussed above. To
reduce computation time, this analysis is only per-
formed for the 7 most central electrodes, using only
the fully trained network’s surprisal and gradient
estimates.

3 Results

3.1 Surprisal and gradient measures

Figure 1 shows how the per-sentence averages of
surprisal and gradient, as well as the correlation
between them, change over network training. As
expected, surprisal decreases with more training,
indicating the the network makes increasingly ac-
curate next-word predictions. Put differently: it is
learning the statistical patterns of English.

Perhaps more surprisingly, gradient initially re-
mains low, so not much of the prediction error in
the output units results in changes in the recurrent
connection weights. After approximately 100K
training sentences, prediction error is increasingly
backpropagated to the LSTM layer until the gradi-
ent more or less stabilizes after 10M sentences.

Figure 1: Average surprisal (top), average gradient (cen-
ter), and their correlation (bottom) as a function of
the number of training sentences. Shaded areas indi-
cate 95% confidence intervals. Averages, correlations,
and confidence intervals are computed over the 205
per-sentence averages because within a sentence, the
word-level values do not constitute independent mea-
surements.

There is a medium-sized, negative correlation
between surprisal and gradient until about 300K
training sentences, but after the network has been
trained on 1M sentences the correlation is no longer
statistically significant. The negative correlation
early in training may seem hard to reconcile with
the fact that output prediction error (quantified
by surprisal) is backpropagated and then forms
the driving force behind connection weight update
(quantified by gradient). I return to this issue in
Section 4.2.

3.2 Standard ERP analysis

Figure 2 shows how the fit of surprisal and gradi-
ent to ERP size changes as the number of training
sentences increases. Clearly, high surprisal leads
to a stronger (more negative-going) N400, and this
effect of surprisal increases as the model is more
thoroughly trained. The effect of gradient on P600
size is weaker, but it is in the positive direction and
also increases with more training.

N400 effects are known to be mostly driven by
content words (Frank et al., 2015) while the P600
has often been associated with syntactic processing.
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Figure 2: t-statistics for the effects of surprisal (blue
triangles) and gradient (red circles) on N400 size (top)
and P600 size (bottom), as a function of the number of
training sentences.

To investigate if this distinction is apparent in the ef-
fects of surprisal and gradient, content and function
words were also analyzed separately.5 As Figure 3
shows, surprisal is more predictive of ERP size on
content words than on function words, whereas the
same is not the case for gradient.

3.3 Regression ERP analysis

In addition to the expected effects of surprisal and
gradient, the standard ERP analysis of Section 3.2
revealed that higher surprisal results in weaker
P600 and that higher gradient results in weaker
N400 (although the latter effect decreases after
about 3M training sentences). This is most likely
due to spatio-temporal overlap between the two
ERP components (Brouwer and Crocker, 2017),
which raises the question whether the apparent
P600 effect of gradient truly is a P600 or if it could
be a reversed effect on the N400 that only looks
like a P600 because the two components are not
fully separated in time and electrode location.

The results of the rERP analysis in Figure 4
suggest that this is indeed the case: The positive
effect of gradient peaks at around 400 ms instead
of 600 ms after word onset.

5This follows the content/function-word split provided by
Frank et al. (2015), where 53.2% of words were designated
as content words and 46.8% as function words. Contractions
were excluded.

Figure 3: Absolute values of the t-statistics for the ef-
fects of surprisal (blue) and gradient (red), after training
on the full dataset, analyzed separately for content and
function words. Solid lines and round markers denote
N400 effects; dashed lines and square markers denote
P600 effects.

4 Discussion

4.1 The Error Propagation account

According to the Error Propagation account of
language-related ERPs, the N400 during sentence
comprehension reflects word-prediction error and
the P600 corresponds to the (potential) update in
language knowledge caused by word processing.
Fitz and Chang (2019) quantify the size of this
update in terms of the gradients of recurrent con-
nection weights in an RNN. So far, this hypothesis
had only been evaluated by comparing P600-size
predictions between pairs of input sentences that
constituted ‘toy’, artificial versions of controlled
stimuli from psycholinguistics experiments. The
current study, in contrast, is the first to validate
the Error Propagation account on EEG data from
a naturalistic sentence comprehension experiment,
extracting the N400 and P600 predictions from
a neural language model trained on a reasonably
sized corpus of natural language text.

The results partially support Fitz and Chang’s
(2019) theory: prediction error (surprisal) is predic-
tive of the N400 and backpropagated error (gradi-
ent) corresponds to a positive-going ERP. Also, the
finding that only surprisal effects are stronger for
content words than for function words (Figure 3)
is consistent with the idea that surprisal mainly
affects the N400 and gradient the P600. Clearly,
surprisal and gradient have separable effects in the
expected directions. However, the regression-ERP
analysis revealed that what was assumed to be an
P600 in fact has a time course that is more like that
of an N400 (one that is weaker for higher gradient)
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Figure 4: Topographic map of rERP curves. Each plot corresponds to one electrode and the curves show the effects
(regression coefficients) of surprisal (blue) or gradient (red) on voltage at the electrode, time-locked to word onset.
Shaded areas indicate standard errors.

and may therefore not be a true P600 ERP compo-
nent. To summarize, the findings are inconclusive:
There is an effect of gradient although it may not
be exactly the effect predicted by the theory. The
question remains whether surprisal and gradient
indeed form qualitatively different linking hypoth-
esis between properties of the language model and
properties of the EEG signal, or if there are merely
two sides of the same coin, with gradient modulat-
ing (i.e., weakening) the effect of surprisal on the
N400.

4.2 Correlation between surprisal and
gradient

Figure 1 revealed an unexpected and fairly large
negative correlation between surprisal and gradient
during early stages of network training. Although
error backpropagation can only occur to the extent

that there is prediction error, gradient and surprisal
are not simply the same measure because the gra-
dient of a connection’s weight also depends on
the activation going into that connection. More-
over, there can be confounding variables between
surprisal and gradient. Possibly, a confound with
word frequency is responsible for the observed neg-
ative correlation between surprisal and gradient.
Word frequencies will be among the first statistics
learned by the network, where they are encoded in
the output units’ biases. As is visible from Figure 1,
at the point in training when surprisal and gradi-
ent are negatively correlated, average surprisal has
dropped but gradient remains close to 0, indicating
that very little prediction error is backpropagated:
learning mostly takes place at the output connec-
tions and biases. Presumably, the output units rep-
resenting high-frequency words are the first to have
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fairly stable biases, so prediction errors on these
words are the first to be backpropagated, resulting
in non-zero gradients in the LSTM layer. Mean-
while, prediction error on low-frequency words
still mostly leads to changes in output biases. As
a consequence, gradients in the LSTM layer will
be higher on higher-frequency (and, consequently,
lower-surprisal) words, that is, the surprisal and
gradient measures are negatively correlated.

4.3 Evaluation on experimental versus
naturalistic items

P600 effects in sentence comprehension are mostly,
if not exclusively, investigated on sentences that
result in comprehension difficulty, be it due to
(morpho)syntactic violations (Coulson et al., 1998),
garden-path structures (Osterhout and Holcomb,
1992), long-distance dependencies (Kaan et al.,
2000), or semantic incongruity (Kuperberg et al.,
2003). The same is true for all models of ERP
effects discussed in Section 1.2. In contrast, the
Frank et al. (2015) test sentences were sampled
from novels and are therefore not expected (nor
manipulated) to evoke any specific difficulty. It
is not impossible that for such easy-to-understand
sentences, the P600 occurs earlier, coinciding with
the N400. Future research may reveal if the Error
Propagation account, in combination with a neural
language model trained on natural text, predicts
more standard P600 effects on the hand-crafted
sentences from psycholinguistic experiments.

Note that such an evaluation on realistic data
is not possible with the Retrieval-Integration ac-
count (Brouwer et al., 2017, 2021) because that
account takes the P600 to reflect the update of a
representation of the described situation, and there-
fore requires such a representation – something
that is not easily formalized for natural language.
In contrast, the Li and Futrell (2022, 2023) model
only requires knowledge of syntactic word-order
patterns and therefore can be (and, in fact, has been)
evaluated using the actual stimuli of psycholinguis-
tic experiments.

4.4 Improving the language model
Another potential avenue for future research is to
investigate whether improving the quality of the
language model also improves its ERP predictions.
The current work stayed as close as possible to
that of Fitz and Chang (2019), using a single-layer
RNN. Increasing the network’s size (e.g., adding
layers), changing the architecture (e.g., a Trans-

former instead of an LSTM), and increasing the
amount of training data will certainly result in a
more accurate language model. In general, better
language models more accurately fit human pro-
cessing measures, be it from EEG, eye tracking,
or fMRI (Merkx and Frank, 2021; Schrimpf et al.,
2021). With multiple network layers to extract the
gradient measure from, it may also be possible to
distinguish between P600s resulting from different
aspects of language processing.

5 Conclusion

This study tested Fitz and Chang’s (2019) Error
Propagation account of event-related brain poten-
tials during sentence comprehension, by extract-
ing N400 and P600 predictions from a neural lan-
guage model that processed the same sentences
as humans in an EEG study. In line with the the-
ory, the model’s word-prediction error (surprisal)
correlated with N400 size. Backpropagated word-
prediction error, which quantifies the potential up-
date of the reader’s language knowledge, is mea-
surable in the EEG signal but it remains unclear
whether this takes the form of a stronger P600 or a
weaker N400.
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