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Introduction

Measuring the amount of information carried
by a linguistic signal is fundamental to the
computational modelling of language processing.
Such quantifications are used in psycholinguistic
and neurobiological models of human language
processing (Futrell and Levy, 2017; Armeni
et al., 2017), algorithmic linguistic theories of
utterance acceptability (Lau et al., 2017), to study
the processing mechanisms of neural language
models (e.g., Futrell et al., 2019; Sinclair et al.,
2022), to power sampling algorithms for natural
language generation (Wei et al., 2021; Meister
et al., 2023), and as a learning and evaluation
criterion. The amount of information carried by
a linguistic signal is intrinsically related to its
predictability, as summarised in the definition of
the surprisal of a unit u (Shannon, 1948), perhaps
the most widely used measure of information:
I(u) = − log2 p(u). Predictable units carry low
amounts of information—i.e., low surprisal—as
they are already expected to occur given the
context in which they are produced. Conversely,
unexpected units carry higher surprisal.

Estimation of the surprisal of an utterance in
the space of natural language strings would require
computing probabilities over a high-dimensional,
structured, and ultimately unbounded event space.
It is thus common to resort to chaining token-level
surprisal estimates, nowadays typically obtained
from neural language models (Giulianelli and
Fernández, 2021; Meister et al., 2021; Wallbridge
et al., 2022). However, such token-level autore-
gressive approximations of utterance probability
conflate different dimensions of predictability
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(see, e.g., Arehalli et al., 2022; Kuhn et al., 2023),
which makes it difficult to appreciate whether the
information carried by an utterance is a result,
for example, of the unexpectedness of its lexical
material, syntactic arrangements, semantic content,
or speech act type.

Alternative-Based Information Value

We propose an intuitive characterisation of the
information carried by utterances which computes
predictability over the space of full utterances
and explicitly models multiple dimensions of
uncertainty, thereby offering greater interpretability
of utterance predictability estimates. Given a
linguistic context, x, the information value of an ut-
terance y is defined as the distribution of distances
between y and the set of contextually expected
alternatives Ax, measured with a distance metric d:

I(Y =y|X=x) := d(y,Ax) (1)

Distributions skewed towards large distances
indicate that y differs substantially from expected
utterances, and thus that y is a surprising contri-
bution to discourse, with high information value.

In practice, computing the information value of
an utterance requires (1) a method for obtaining
alternative sets Ax, (2) a metric with which to mea-
sure the distance of an utterance from its alterna-
tives, and (3) a means with which to summarise
distributions of pairwise distances.

Generating alternative sets. Since the ‘true’ al-
ternative sets entertained by a human comprehen-
der are not attainable, we generate them using neu-
ral autoregressive language models (LMs). For
dialogue response generation, we use GPT-2 (Rad-
ford et al., 2019), DialoGPT (Zhang et al., 2020),
and GPT-Neo (Black et al., 2021). For text gener-
ation, we use GPT-2, GPT-Neo, and OPT (Zhang
et al., 2022). The text models are pre-trained, while
dialogue models are fine-tuned on the respective
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datasets. Further details on fine-tuning and perplex-
ity scores are in (Giulianelli et al., 2023b). The
resulting dataset, which contains 1.3M generations,
is publicly available.1

Measuring distance from alternatives. We
quantify the distance of a target utterance from
an alternative production using three interpretable
distance metrics, as defined by Giulianelli et al.
(2023a). Lexical: Fraction of distinct n-grams in
two utterances, with n ∈ [1, 2, 3] (i.e., the num-
ber of distinct n-gram occurrences divided by the
total number of n-grams in both utterances). Syn-
tactic: Fraction of distinct part-of-speech (POS)
n-grams in two utterances. Semantic: Cosine and
euclidean distance between the sentence embed-
dings of two utterances (Reimers and Gurevych,
2019). These distance metrics characterise alter-
native sets at varying levels of abstraction (Katzir,
2007; Fox and Katzir, 2011; Buccola et al., 2022),
enabling an exploration into the representational
form of expectations over alternatives in human
language processing.

Summarising distance distributions. Informa-
tion value is a distribution over distances between
an utterance y and the set of plausible alternatives
(Equation 1). To summarise this distribution, we ex-
plore mean as the expected distance or the distance
from a prototypical alternative, and min as the dis-
tance of y from the closest alternative production,
implicating that proximity to a single alternative is
sufficient to determine predictability.

Analysis

We study comprehension behaviour as recorded
in contextualised acceptability judgements in
text (CLASP; Bernardy et al., 2018) and in di-
alogue (SWITCHBOARD, DAILYDIALOG; Wall-
bridge et al., 2022) as well as eye-tracked (PROVO;
Luke and Christianson, 2018) and self-paced read-
ing times (BROWN; Smith and Levy, 2013).

Explaining psychometric data. Using informa-
tion value, we investigate which dimensions of pre-
dictability effectively explain acceptability judge-
ments and reading times. We also examine the
effect of contextualisation on comprehension be-
haviour by defining two measures derived from
information value, context informativeness and
out-of-context information value (for definitions,

1AltGen: https://doi.org/10.5281/zenodo.10006413.

SWITCHBOARD DAILYDIALOG PROVO

Surprisal 6.63 5.08 59.04
Information value

Lexical 8.32 10.88 12.17
Syntactic 2.49 6.71 21.80
Semantic 34.20 30.41 6.86
All 43.11 35.42 45.19

Joint
+ Lexical 14.08 10.23 72.60
+ Syntactic 9.77 8.05 75.70
+ Semantic 34.37 26.98 68.61
+ All 44.11 30.55 93.08

Table 1: ∆LogLik for surprisal, information value, and
joint mixed effect models.

see Giulianelli et al., 2023b). We evaluate each
model relative to a baseline model which includes
only control variables. As an indicator of predic-
tive power, we report ∆LogLik, the difference in
log-likelihood between a model and the baseline
(Wilcox et al., 2020). We find that acceptability
judgements factor in base rates of utterance accept-
ability (likely associated with grammaticality) but
are predominantly driven by contextually modu-
lated semantic expectations. In contrast, reading
times are more influenced by the inherent plausibil-
ity of lexical items and part-of-speech sequences.

Relation to Surprisal. Focusing on acceptability
judgements in the dialogue corpora and the reading
times in PROVO, the psychometric measures for
which we observed the highest explanatory power
for information value, we fit linear mixed effect
models with surprisal and information value in iso-
lation and jointly as fixed effects. Table 1 sum-
marises the results of this analysis. Information
value is a stronger predictor of acceptability in writ-
ten and spoken dialogue and is complementary to
surprisal for predicting eye-tracked reading times.

Conclusion

Information value is a new way to measure pre-
dictability of utterances in terms of their distance
from plausible continuations of the current linguis-
tic context. It draws inspiration from the tradition
of alternatives in semantics and pragmatics, and its
psychometric predictive power is either higher or
comparable, and almost always complementary, to
that of aggregates of token-level surprisal. We hope
information value will enable further investigation
into the mechanisms involved in human utterance
processing, and that it will serve as a basis for
cognitively inspired learning rules and inference
algorithms in computational models of language.
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