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Abstract

A deep learning model, Phonet, was used to
examine the degrees of lenition (weakening)
of Spanish stop consonants produced by native
English speakers during their study abroad. In-
stead of traditional quantitative acoustic meth-
ods, recurrent networks were trained to identify
the posterior probabilities of sonorant and con-
tinuant phonological features. The results con-
firmed the expected factors affecting lenition
patterns in L1 Spanish. These findings support
the effectiveness of this approach as an alter-
native or complement to quantitative acoustic
measures for studying lenition.

1 Introduction

Lenition, or consonant weakening, is a prevalent
phonological process in Spanish. Most non-word-
initial voiced stops /b, d, g/ are lenited to ap-
proximants [, 9, Y], respectively (Hualde, 2005).
Voiced stop lenition is a gradient process, span-
ning from fricatives to full deletion. This range of
realizations is influenced by environmental char-
acteristics, such as syllable stress, adjacent vowel
height, and place of articulation (Kingston, 2008).

Learning how and when to produce these voiced
stop allophones presents a challenge for Spanish
second language (L2) learners. Previous stud-
ies have found that native English speakers ac-
quire voiced stop allophones more slowly than
other new Spanish sounds (Face and Menke, 2009).
Zampini (1994) noted that English speakers strug-
gle with Spanish voiced stops /b, d, g/ due to
the absence of an allophonic lenition rule in En-
glish and slower learning of the phone [8] com-
pared to [B] and [y]. With more Spanish experi-
ence, L1 English speakers adopt more native-like
phonetic cues in their stop pronunciations (Shea
and Curtin, 2011). Learners lenite more strongly
in word-medial and unstressed positions (Nagle,
2017). However, acquisition of lenition is subject
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to large individual differences, with Salinas (2015)
finding both improvements and regressions among
low-intermediate and advanced learners. Overall,
these studies underscore the complexity of lenition
for L2 learners.

1.1 Phonetic gradience and posterior
probability

To fully capture the varied and gradual degrees of
lenition, it is essential to go beyond the categorical
manifestations of these changes. Computational
methods have been used to capture gradient pho-
netic variation, like pronunciation changes (e.g.,
[d3]-[z] and [ph]—[f] variations in Hindi English
code-mixed speech (Pandey et al., 2020) and ‘g’-
dropping in English (Yuan and Liberman, 2011);
(Kendall et al., 2021)). These studies often use
forced alignment systems, which input word-level
transcriptions and reference pronunciation dictio-
naries to suggest probable pronunciations based on
acoustic properties. For instance, to capture ’'th’
fronting, words susceptible to this variation might
be assigned two pronunciations ([0] and [f]) in the
dictionary. A trained forced aligner then selects the
more probable pronunciation based on the acoustic
evidence.

Yuan and Liberman (2009) expanded on this
method by using log probability scores from forced
alignments to measure variation in /l/-darkness
in American English. This method highlighted
both categorical distinctions and finer degrees of
/l/-darkness depending on the phonetic contexts.
Other approaches like Support Vector Machines
(SVM) have been used to classify r-full and r-less
tokens in English using Mel-Frequency Cepstral
Coefficients (MFCCs) as the acoustic representa-
tion (McLarty et al., 2019). These models, trained
on canonical pronunciations, estimate variable re-
alizations based on acoustic similarities.

Priva and Gleason (2020) demonstrate the po-
tential of different modeling methods to capture
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lenition processes, suggesting that comparing sur-
face forms can effectively represent various lenition
processes, irrespective of their underlying forms.
Specifically, they used three methods to model le-
nition in American English, (e.g. /t/ — [d]) . One
method compared surface forms only (all [t] and
[d]), the second focused on surface forms that share
the same underlying form ([t] and [d] from under-
lying /t/), and the third evaluated only unchanged
segments (/t/ — [t], /d/ — [d]). Remarkably, all
three approaches produced consistent results, indi-
cating that various acoustic manifestations of a le-
nition process, such as /t/ — [d], can be effectively
captured by comparing relevant pairs of surface
segments, without reference to their underlying
forms.

1.2 Phonological features and lenition

Lenition can be conceptualized abstractly as a
change in certain phonological feature classes.
Phonological features are abstract categories that
group phonemes based on shared phonetic traits.
The [continuant] class involves sustained airflow:
[+continuant] includes fricatives, approximants,
and vowels, allowing ongoing airflow despite par-
tial closure, while [-continuant] sounds like stops
and nasals, block airflow completely. In this study,
two major phonological features classes are consid-
ered. The [+sonorant] class comprises phonemes
like nasals, approximants, and vowels that allow
relatively free airflow and resonance. Phonemes
that are [-sonorant], such as stops and fricatives,
which are produced with a substantial or complete
obstruction of airflow through the vocal tract (see
Hayes, 2008 for further detail on phonological fea-
tures).

This study broadens examination of lenition be-
yond individual segment comparisons to encom-
pass entire classes of segments defined by specific
phonological features. Unlike the method used by
Priva and Gleason (2020), which focuses on seg-
ment pairs, this approach categorizes segments into
groups. Specifically, it assesses the probability of
the [continuant] feature, which distinguishes stops
from non-stops, and the [sonorant] feature, which
separates stops and fricatives from non-stops and
non-fricatives. These features encapsulate the pri-
mary categorical outcomes of stop lenition in Span-
ish. A high [continuant] probability coupled with a
low [sonorant] probability indicates a fricative-like
transformation, while both high [continuant] and
[sonorant] probabilities suggest an approximant-
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like realization (Table 1). This approach diverges
from Yuan and Liberman’s (2009) method, which
calculated phonetic variation from log probability
differences between two alignments (dark /1/ vs.
light /I/). Instead, it reflects degrees of lenition
through the probabilities of phonological features
derived from the acoustic properties of the signals.

To summarize, this study quantifies the lenition
of Spanish stop sounds among native speakers of
English over the course of a study-abroad program
using a deep learning model, Phonet, that calcu-
lates posterior probabilities of phonological fea-
tures to measure lenition continuously (Vasquez-
Correa et al., 2019). This gradient approach can
provide more detail on both the frequency and de-
gree of lenition, and thereby a more nuanced view
of the learning process. In addition, the measure-
ment method is largely automatic, and can be tai-
lored to any language and phonological feature set.

Stop | Fricative | Approx.
Continuant 0 1 1
Sonorant 0 0 1

Table 1: Voiced stop allophone feature values.

2 Methods

2.1 Data

Data comes from the LANGSNAP project
(MacWhinney, 2000; Mitchell et al., 2014).
Twenty-seven native English speakers studying
abroad in either Spain (n = 18) or Mexico (n =
9) participated in the project. All were students in
a four-year Spanish program at a British university.
The third year was comprised of a study-abroad
for the entire the academic year. Comparison data
was provided by ten native Spanish speakers from
Spain (n = 8) and Mexico (n = 2) studying in the
UK.

Participants completed three picture description
tasks. After viewing a series of pictures, they re-
told the story depicted in their own words. The
native Spanish-speakers completed the task once
for each of the three sets of pictures, while the L2
learners completed the task for each set of pictures
twice over the course of the project, for a total of
six test times: pretest, three times while abroad,
immediately after returning (posttest), and one year
after returning (delayed posttest). The number of
tokens for each target phoneme in word-initial and
word-medial positions is displayed in (Table 2).



Phoneme | Word-Initial | Word-Medial
p/ 2617 394
b/ 1095 3644
1t/ 1002 1312
/d/ 22717 2128
/k/ 2195 865
g/ 363 155

Table 2: Counts of target phonemes by word position.

2.2 Phonet

To derive gradient measures for [continuant] and
[sonorant], we employ Phonet (Vasquez-Correa
et al., 2019), a neural network model that pre-
dicts discrete phonological features from acous-
tic data. Phonet was designed for use with patho-
logical speech, but this study expands it to non-
pathological L2 speech. Phonet chunks the input
signal into half-second segments, then computes
the log energy signal distributed across 33 triangu-
lar filters along the Mel scale. This calculation is
done for each 25-ms window in the chunk. Using
this acoustic data and the force-aligned transcripts,
Phonet learns the typical acoustic energy patterns
of each phoneme. It uses two bidirectional GRUs
(gated recurrent units) to account for coarticulation
by considering the acoustic energy of the previous
phone and following phones as well. This method
is also used to learn the typical acoustic energy
patterns for individual features.

We first force-aligned the audio and transcripts
from LANGSNAP using the Spanish Montreal
Forced Aligner (McAuliffe et al., 2017). These
became the model input. We then trained a
Phonet model on a corpus of Argentinian Span-
ish (Guevara-Rukoz et al., 2020), maintaining de-
fault parameters.!. The phonemes /b, d, g/ were
excluded from the initial training process, since
they would be featurally ambiguous. After train-
ing, the model was applied to all stop phonemes:
/b, d, g, p, t, k/ in the LANGSNAP dataset. The
model performed binary classification for each fea-
ture (see Table 1), and generated a corresponding
posterior probability. Predictions were computed
over 10ms windows. The model was quite accurate
at predicting continuant (91%) and sonorant (92%)
features.

2.3 Statistical Analysis

Linear mixed effect regression models were run in
R with sonorant and continuant posterior probabil-
ities as dependent variables. Following Kingston

"https://phonet.readthedocs.io/en/latest/
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(2008), predictor variables were session (the six
study-abroad timepoints, plus native speakers), syl-
lable stress, stop voicing, stop place of articulation,
word position (word-initial, word-medial), preced-
ing vowel height (high, mid, low), and following
vowel height. Session, place of articulation, and
vowel heights were forward-difference coded, and
the other variables were contrast-coded. To mini-
mize coarticulatory effects, only intervocalic word-
initial and word-medial stops were included in the
regression analysis. Phones longer than two win-
dows (20 ms) were filtered to only the middle third
of the phone. Then posterior probabilities for these
windows were averaged to give one posterior prob-
ability per phone.

3 Results

3.1 Continuant Posterior Probability

As expected, voiceless stops had a lower con-
tinuant posterior probability than voiced stops
(b= —.262,t = —48.867,p < .001), and word-
initial stops had a lower continuant posterior prob-
ability than word-medial stops (b = —.079,t =
14.398,p < .001) 1. Stops in stressed syllables
had a lower continuant posterior probability than
stops in unstressed syllables (b = —.015,t =
—2.863,p < .001).
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Figure 1: Continuant Posterior Probability by test time,
voicing, and word position.

Dental stops had a higher continuant poste-
rior probability than velar stops(b = .032,t =
4.483,p < .001). Stops followed by a mid
vowel had higher continuant posterior probabil-
ities than stops followed by either high vowels
(b = —.016,t = 2.192,p = .028) or low vow-
els (b =.020,¢ = 3.405, p = .001).

Mean posterior probabilities across all target
phonemes by test time and word position for the
learners compared to those of the native speak-



ers are shown in Figure 2. The results of the
regression models indicated that there was a sig-
nificant increase in continuant posterior probabil-
ity between pretest and the first abroad test time
(b =—.049,t = —2.931,p = .003) but a signif-
icant decrease between the posttest and delayed
posttest (b = .042,t = 2.496,p = .014). Native
Spanish speakers also had a larger continuant poste-
rior probability than L2 learners at delayed posttest
(b = —.100,t = —6.025,p < .001). These re-
sults suggest that L2 learners learn to lenite voiced
stops to some degree while abroad, but regress after
leaving the immersion environment.

me 1
e 1
e |
e I
L session
T Pretest
[} I
e I

1

Abroad 1
Abroad 2

density

Abroad 3
Postlest
Delayed Postiest
Native

continuant.postprob

Figure 2: Continuant Posterior Probability by Test Time.

3.2 Sonorant Posterior Probability

As expected, voiceless stops had a lower sono-
rant posterior probability than voiced stops (b =
—.229,t = —43.655,p < .001), and word-initial
stops had a lower posterior probability than word-
medial stops (b = .047,¢t = 8.784, p < .001) (Fig-
ure 3). There was no effect of stress.
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Figure 3: Sonorant Posterior Probability by test time,
voicing, and word position.

Bilabial stops had a higher continuant poste-
rior probability than dental stops (b = .014,t =
2.567,p = .01), and stops preceded by a mid vowel
had higher continuant posterior probabilities than

stops preceded by a high vowel (b = —.026,¢ =
—5.066, p < .001).

There were no significant effects of session
across any of the study-abroad timepoints. There
was a significant difference between the delayed
posttest and native speakers (b = —.121,¢ =
—6.419,p < .001), suggesting that L2 speakers
never demonstrated approximant-like productions
(Figure 4.
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Figure 4: Sonorant Posterior Probability by Test Time

4 Discussion

These results show some acquisition of Spanish
voiced stop lenition by L2 learners studying abroad.
While their voiced stops became more continuant
while abroad, L2 learners’ voiced stops never in-
creased in sonorance. The combination of high
[continuant] and low [sonorant] posterior proba-
bilities indicates a fricative production, signally
that advanced learners learn when to lenite, but
not how strongly. Furthermore, Phonet’s posterior
probability estimates of [continuant] and [sonorant]
reliably measure lenition. These results show ex-
pected patterns of stronger lenition in word-medial,
unstressed, and voiced environments, as in Nagel
(2017). The increased gradience of our approach
enabled us to see that even though learners made
progress towards native-like acoustic cues, they
never produced them in a native-like way.

Future work will also consider post-nasal stops,
which do not undergo lenition, and post-lateral
stops, an environment where /b, g/ lenite, but not
/d/ (Hualde, 2005). Examining these post-nasal and
post-lateral stops can show if learners overgeneral-
ize lenition to all non-word-initial environments.
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