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Phonologists and cognitive scientists have long debated about the types of generalizations that
humans infer from the observations of the applications of morpho-phonological processes [1-3].
For instance, upon observing the following alternations, one can form two possible hypotheses.

Observe (data from [1]) Segmental generalization Sub-segmental generalization

piki-mi tudu-mu V—-iliC_. V—-ou/uC_ V —J[aback]/[aback] C_
geemee-mi dapa-mu V—-ileC_ V—-u/aC_
tipae-mi napu-mu

These hypotheses about human knowledge have been explored extensively via artificial language
learning experiments [1-2] and infant learning experiments [3], but little is known about what is
inferred by machines that observe morpho-phonology. Previous work has probed at the
generalization abilities of recurrent neural networks (RNNs) by observing how they inflect novel
stems or comparing production probabilities to human ratings of such inflections [4-5]. Success
on these measures demonstrate that RNNs can learn to appropriately inflect, but do not
differentiate between the types of generalizations. Symbolic models of morpho-phonological
learning that build in sub-segmental information and generalization algorithms have also shown
success in predicting human behavior on inflection tasks [6-7]. Do RNNs implicitly learn and
utilize the sub-segmental information necessary to succeed in an inflection task?

In this work, we explore the hypothesis that the contrasting types of generalizations can be
distinguished through analyses of the learned phoneme embeddings. This was tested on RNNs
performing a noun inflection task in Turkish, which involved the learning of Turkish complex
vowel harmony. Descriptively, vowels harmonize in [+ front] and [+ round] and neutralize to the
[a front, o round, +closed] vowel. After observing the full range of vowel harmony alternations
present in Turkish noun inflection, two contrasting generalizations can be formed:

Segmental generalization Sub-segmental generalization
V—il{i,elC_ V- w/{w, alC_ [t+closed] — [a front, o round] /
V-oyl/{y ce}C_ V —u/{u, o}C_ [a front, o round] C_

We conjecture that, if a sub-segmental feature is represented in an RNN, we expect a consistent
mapping between principal component (PC) projections of minimal pairs that differ by that
feature. In this case study, we expect consistent mappings of [+ front] minimal pairs {i/w, e/a,
y/u, ce/o} and [+ round] minimal pairs {i/y, e/ce, w/u, a/o}. To test whether these distinctions are
used in the system, we neutralize by subtracting the strongly contributing PCs from the [+front]
(or [+round]) phoneme. If the feature is used in the RNN, then we expect that test stems with
final [+front] vowels have harmony behavior consistent with their [-front] counterparts.
Consistent mappings
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Model. 100,461 inflected nouns that obey the Turkish harmony system were selected from the
UniMorph-Turkish dataset [8]. The inputs to the RNN are strings that start with three syntactic
tokens and a stem, e.g., <PL> <PSS1P> <NOM> g r u p. The RNN learns to output the inflected
form of the stem combined with its syntactic specifications,e.g., g r u p 1 a r wm u z.
Overall performance was at 97.0%, with minimal differences between syntactic categories
(range: [96.7%, 97.2%], 52 categories, 11,000 test items). Phoneme embeddings (d = 100) were
shared across encoder and decoder. All following reported results are an average of five models.

All phoneme embeddings were submitted to a principal components analysis with all PCs (n =
56) extracted, such that we have a covariance matrix M and a projection v for each phoneme
embedding u (u = Mv). First, we inspect whether there exists a consistent mapping between [+
front] minimal pairs (and likewise, for [+ round]), restricting our search of mappings to the
addition of a constant vector, i.e., for any [+ front] minimal pair embeddings v and vi g, Vi1 =
w + vpq. This is akin to the visual inspection of analogical relationships in word embeddings in
PC space, e.g., king — man = queen — woman [9]. Statistically, we consider a mapping to be
consistent if the average pairwise Euclidean distance between pairs (e.g., 4 minimal pairs — 6
pairwise distances) is rejected from a null, randomly-permuted, distribution. For both [+ front]
and [+ round], we found a consistent mapping between their minimal pairs (pictured above).

We then ask whether numerically neutralizing some feature-representing PCs can behaviorally
render the same effect as replacing the vowel with its minimal counterpart. A PC is considered to
be “feature-representing” if the difference vector w has accounted for a significant amount of
variance within the vowel embeddings on that PC dimension, and we “neutralize” a PC p by
subtracting w, from the [+front] or [+round] phoneme projection (illustrated above as the
mapping of the brown point to the orange). We neutralize the top two feature-representing PCs,
generating a new embedding set each for [+ front] and [+ round]. If these the distinctions
encoded in these feature-representing PCs are subsequently utilized in the RNN, we should
expect that a model with the respective neutralized embeddings to be functionally equivalent to a
model tested with altered inputs, where the last stem vowel is replaced with its [-front] or
[-round] counterpart. For example, the numerical neutralization of the front vowel [y] to its back
counterpart [u] should, by hypothesis, inflect the stem [dy[] ‘dream’ as [dy/u] instead of [dy[y].

We tested the model with the neutralized embeddings on the original test set and compared the
outputs against (i) the original model with the same test set and (ii) the original model with an
altered test set (last vowel neutralized). Strikingly, we found that the neutralized model had no
difference in output to (i) — the neutralized embeddings across five runs rendered the same
outputs. This is unexpected because we anticipated at least some perturbation of the outputs. At
first blush, this suggests that whatever distinction is encoded in latent embedding space ends up
being overlooked or outweighed by other information in the stem. This is partially supported by
the fact that in the outputs of (ii), we anecdotally notice (and plan to quantify) that altered items
tend to follow the vowel harmony pattern that was consistent with their original stems,
suggesting the importance of other information present in the stem (e.g., tendency for harmonic
stems). However, these results do not necessarily indicate that there is no symbolic-like
manipulation within RNNs — it could be that symbolic manipulations occur post-embedding, e.g.,
after the encoding of the stem, in which case our embedding neutralizations techniques do not
end up taking effect after multiple non-linear transformations.
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