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1 Introduction

We present a solution to the problem of exemplar
production from variable-duration tokens. Incor-
porating time-series alignment and clustering al-
gorithms, our model MNEMORPHON1 stores and
outputs tokens of phonetically detailed acoustic rep-
resentations of recorded speech. We show qualita-
tively that model outputs retain high-level phonetic
characteristics, and quantitatively that they contain
sufficient detail for statistical classification.

2 Time in exemplar models

Within and across speakers, distinct utterances of
a given word vary widely in duration, as shown
in Figure ??; this variability is a core obstacle to
modeling exemplar-based production from tokens
of real speech, e.g. raw audio, or spectrograms.2

A central component of any exemplar-based
model is a means of computing distance or sim-
ilarity between exemplars (Johnson, 2007). This
computation must be robust to length-wise varia-
tions; a naive application of point-wise distance
computation on unaligned inputs is likely to result
in uninterpretable measurements of outputs. Such
an algorithm in fact already exists in the speech
recognition and time series literature; we show be-
low how to incorporate it into an exemplar produc-
tion model.

2.1 Distances between unequal-length
sequences

Dynamic time warping (Vintsyuk, 1968; Sakoe and
Chiba, 1978, DTW) is an algorithm for computing
the distance between a pair of discrete sequences
of potentially differing lengths. Given sequences
X = (x0, ..., xm) and Y = (y0, ..., yn) whose ele-

1Code for all experiments described here will be available
at https://github.com/calicolab/mnemorphon.

2We focus on speech here but believe our approach applies
mutatis mutandis to signed languages.

Figure 1: DTW alignment between two tokens of the
Turkish word belki (“maybe”) uttered by the same
speaker. Each pixel in the grid represents the Euclidean
distance between the corresponding frames of the mel
spectrograms on the axes; darker pixels are closer. The
white line represents the alignment path that minimizes
the sum of frame-wise distances, the circled section
illustrates an instance of many-to-one alignment.

ments are embedded in a shared parametric space
M equipped with a distance function dM (xi, yj),
DTW finds the optimal alignment between X and
Y via the following minimization:

DTWπ(X,Y ) = argmin
π

√ ∑

(i,j)∈π
dM (xi, yj)2

(1)
where π is an alignment or warping path, a se-
quence of pairs [(i0, j0), ..., (ik, jk)] whose mem-
bers are indices of positions in X and Y , respec-
tively, subject to conditions on monotonicity, end-
point index alignment, and exhaustiveness. The
DTW distance between X and Y is the sum of
element-wise distances dM (xi, yj) over the opti-
mal alignment.

Intuitively, warping in DTW corresponds to
stretching or compressing signals along the tem-
poral dimension. For the discrete case, this cor-
responds to single indices in one sequence being
aligned with multiple indices in the other, as illus-
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trated in Figure 1.3

3 Generalization in exemplar production

The task of exemplar production is to generate an
appropriate output token, given a target category
of previously stored exemplars. One trivial method
is to select a memorized exemplar from the cate-
gory and directly output it. On this approach the
model becomes a look-up table, incapable of out-
putting a form it has not previously stored. A core
desideratum of linguistic theories and models is the
capacity to generalize beyond prior experience, a
hallmark of linguistic cognition.

Pierrehumbert (2001) presents a model that im-
plements a simple but effective method of exem-
plar composition for generalization in production.
Given a vowel category V instantiated by points
in formant space, generation of an output exem-
plar proceeds as follows: first, a seed exemplar v
is randomly selected from V , next all exemplars
within a fixed distance of v are collected into an
exemplar cloud, and finally an output exemplar v̂
is generated by computing a weighted average of
the cloud. Mailhot (2010) extends this approach
to fixed-length sequential tokens in an exemplar
production model of vowel harmony; below we
draw inspiration from these approaches and show
how they can be extended to sequences of varying
lengths.

3.1 Averages of unequal-length sequences
Our task is to generate an average of a set of
variable-length exemplars, a problem that is known
to be computationally intractable (Elias, 2006). Pe-
titjean et al. (2011) introduce DTW barycenter av-
eraging (DBA), a theoretically motivated approxi-
mation method.

Given a set of sequences S and an initial “best-
guess” sequence ŝ (randomly generated or sampled
from S), DBA repeatedly iterates over two phases:
(i) compute DTWpath(ŝ, s) for each s ∈ S and for
each element of ŝ store the set of elements from
each s it was aligned with, (ii) update each element
of ŝ to be the centroid of its associated coordinates
from the alignment phase.

Iterating over these phases progressively con-
verges to a locally optimal barycenter ŝ∗ of S , the
sequence that minimizes the sum of squared DTW
distances to all s ∈ S:

3Kirchner et al.’s (2010) PEBLS exemplar model also
makes use of DTW, although its production algorithm differs
significantly from MNEMORPHON’s.

ŝ∗ = argmin
ŝ

∑

s∈S
DTW (ŝ, s)2 (2)

DBA is guaranteed to converge as the quantity
in Equation 2 stays the same or decreases at each
iteration; the update either moves the barycenter’s
coordinates to be closer to their aligned cloud el-
ements, or else a lower-cost DTW alignment is
found.

3.2 MNEMORPHON

With the above pieces in place, we intro-
duce our own model of exemplar production.
MNEMORPHON is intended as a partial model of
human phonology. It stores word-sized exemplars,
encoded as mel-scaled spectrograms of recorded
speech, along with a quasi-phonemic string repre-
sentation of the word category. There is no repre-
sentation of sub-lexical units such as segments or
syllables.

MNEMORPHON uses DBA as its core produc-
tion algorithm, with the possibility of similarity-
weighting by inverse DTW distance. Note that
DBA is not applied to each mel band individually
as this would likely cause alignment issues. Instead
the alignment is frame-wise, which each slice of
the spectrogram considered as a single element of
a multi-dimensional time series.

4 Experiments

We conduct two sets of experiments: the first in-
vestigates the quality of DBA-generated outputs
and its dependence on cloud size, and the second
shows that MNEMORPHON’s outputs contain suf-
ficient information to be accurately phonetically
categorized.

4.1 The data
For the experiments described below our raw data
set is a corpus of Turkish speech.4 The corpus
comprises microphone recordings from 120 speak-
ers who each read 40 sentences sampled from a
triphone-balanced set of 2462 Turkish sentences
(16KHz sample rate, balanced across binarized gen-
der; age 19–50 years, mean=23.9).5 Each recorded
sentence is transcribed in standard Turkish orthog-
raphy as well as an ASCII-compatible phonemic
orthography called METUbet (Özgül Salor et al.,

4https://catalog.ldc.upenn.edu/LDC2006S33
5Additional metadata for each speaker includes dates of

birth and recording, places of birth and residence, and level of
education.
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2002). The corpus also includes word- and phone-
level alignments.

Inspection revealed a subset (n=23) of the speak-
ers in the corpus to have mismatches between audio
and transcript files. These were filtered out, leav-
ing 97 speakers (m=49, f=48) for all experiments
described below.

4.2 Data processing

As mentioned, MNEMORPHON’s inputs are words;
these are segmented from the corpus speech files
using the provided word-level alignments. Each
segmented word is stored with its METUbet string
representation as category label, along with speaker
ID, gender marker, and a within-speaker token in-
dex. The segmented word audios are then encoded
as mel-scaled spectrograms, with the following pa-
rameters:

• window length: 46ms

• hop length: 12ms

• 80 mel bands

As can be seen in Figure 1, these spectrogram
parameters generate comparatively coarse narrow-
band spectrograms. Our choice of spectrogram pa-
rameters was constrained by our evaluation method-
ologies, discussed below.

For our second experiment we used the phone-
level alignments to segment vowel tokens from our
training corpus and MNEMORPHON’s outputs.

4.3 Experiment 1: Averaging as an output
strategy

For each word in our corpus with ten or more as-
sociated exemplars, we uniform randomly selected
one token as the seed exemplar and used subsets
of varying sizes of the remaining tokens as the
“cloud” from which a barycenter was computed;
the sampling and averaging blind to speaker iden-
tity or indexical information such as gender. Fig-
ures 2 and Figure 3 plot properties of the seed and
DBA-computed outputs for various cloud sizes for
a representative token.

At the global level we see that the general acous-
tic properties (e.g. areas of high or low energy
across different frequencies and frame sequences)
are retained, although DBA clearly introduces
noise as cloud size increases. Inspection of individ-
ual mel bands shows that DBA is able to compute a
meaningful average for temporally variable signals,
reliably locating the main energy peak and troughs.

Figure 2: Seed and MNEMORPHON output spectrograms
(cloud size: 20) for belki exemplar.

Figure 3: Mel bands 16, 32, 48, 64 of seed and DBA-
generated spectrograms for belki.

4.4 Experiment 2: Output categorization

Here we ask whether slices of DBA-generated out-
puts retain sufficient phonetic detail to be statisti-
cally classified according to a standard phonetic
feature, vowel frontness/backness.6

Although MNEMORPHON has no representation
of sub-lexical units, they are useful in the context of
this extrinsic analysis. For this experiment, we ex-
tracted all vowels from the audio corpus using the
included alignments and labeled them according to
the METUbet vowel symbol they were transcribed
as. We converted them directly to mel spectro-
grams as above, resulting in a total of 82360 sam-
ples, which were randomly shuffled and divided via
stratified split into train, development, and test sets
representing 80, 10, and 10 percent of the corpus
samples.

Our classifier is a convolution neural network.
They are known to perform well on spectrograms
and in fact form the backbone of many contem-
porary speech recognition systems (Gulati et al.,
2020). Our network has 4 layers of 2-d convo-
lutions (5x5 in the first layer and 3x3 for subse-
quent layers), a max-pooling layer, and a final
fully-connected layer projecting to a binary out-
put (representing [± back]). Kernel sizes, learning
rate and batch size were tuned on the development
split; the final training run was for 25 epochs.7

6We examine this feature in particular in the context of
in-progress work assessing MNEMORPHON’s ability to model
vowel harmony and other morphophonological alternations.

7The accompanying repository has fuller details of the
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4.4.1 Data augmentation
Neural networks, like other supervised learners, are
sensitive to distribution shift, where features rele-
vant to classification are differently distributed in
the training and evaluation sets. This is the situation
in the current experiment; our training data con-
sists solely of “clean” spectrograms directly com-
puted from audio while the target spectrograms are
“noisy” for reasons discussed above. For this reason
our initial attempts at classifying MNEMORPHON’s
outputs fared poorly, with performance at or near
chance.

In order to mitigate the effect of this dispar-
ity we augmented our training data with DBA-
generated samples; for each vowel category we
added 1000 samples, each created by running
distance-weighted DBA over 10 tokens uniform
randomly sampled from the given category’s exem-
plars in the training set.

4.5 Results
We evaluated the trained classifier on a set of held-
out spectrograms computed via DBA-based averag-
ing over our test split. As shown in Table 1, DBA
produces vowels with spectral characteristics that
correspond to the correct harmonic feature suffi-
ciently well for classification.

class precision recall F1 support
front 0.850 0.752 0.798 218
back 0.793 0.877 0.833 236
accuracy 0.817 454

Table 1: Precision, recall, F1 score, and accuracy of
CNN classifier on held out DBA-generated vowel tokens

5 Conclusions and Future Work

We have presented an exemplar-based production
algorithm leveraging dynamic time warping and
DTW barycenter averaging operating over pho-
netically rich, temporally-variable instance repre-
sentations, overcoming a core challenge for exem-
plar production models. The work here represents
an initial step toward a fully articulated model of
exemplar-based phonetic and phonological compe-
tence and performance.

In ongoing work we are investigated means of
mitigating the noisiness of MNEMORPHON’s out-
puts via principled reductions in exemplar cloud

data generating process, network architecture, and training
procedure.

size e.g. exploiting indexical information such as
speaker identity, pitch, rate, as well as distance-
based restrictions as in Pierrehumbert’s 2001 origi-
nal approach.

In addition, we believe that the work here opens
a path modeling productive morphophonological
alternations such as Turkish vowel harmony or En-
glish past tense.
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