
Psycholinguistic Adequacy of Left-corner Parsing for Minimalist
Grammars

Lei Liu
Institute of Linguistics

Leipzig University
lei.liu@uni-leipzig.de

1 Introduction

How difficult a sentence is to process by humans
is affected by, among many factors, the syntactic
structure of the sentence. For example, in English,
a center-embedding structure (1a) is generally more
difficult to process than left- and right-embeddings
(2a and 3a). As the number of layers increases,
center-embeddings quickly become impossible to
process (1b), while processing difficulties for left-
and right-embeddings (2b and 3b) stay relatively
the same.

(1) Center-embedding
a. The rat that the cat bit is here.
b. # The cheese that the rat that the cat bit ate is

here.

(2) Left-embedding
a. The rat’s cheese is here.
b. The rat’s cheese’s eyes are missing.

(3) Right embedding
a. The rat that ate cheeses is here.
b. The rat that ate the cheese that had eyes is here.

According to Resnik (1992), this processing dif-
ficulty difference between embedding structures is
accounted for by the memory storage requirements
of a parser to build corresponding structures. A
left-corner (LC) parser for context-free grammars
(CFGs) requires a memory space that is propor-
tional to the height of the syntactic tree when build-
ing center-embedding structures. In contrast, when
it builds left- and right-embeddings, only a constant
amount of memory space is needed irrespective of
the number of embedded layers. Based on the mod-
eling results, Resnik (1992) argues that left-corner
parsing is psychologically plausible as a model for
human sentence processing.

Subsequent studies adopt the more sophisticated,
better linguistically motivated Minimalist Gram-
mars (MGs, Stabler 1996, 2011), aiming to develop
a linking theory between processing phenomena
and grammar formalisms. Studies have shown that

the processing contrast between center- and right-
embedding structures is derivable from the memory
resources needed by a top-down parser for MGs
(Kobele et al., 2013; Graf et al., 2017, among oth-
ers). It is a common hypothesis in the psycholin-
guistic literature that processing difficulties cor-
relate with memory usage (Kaplan, 1975; Joshi,
1990; Gibson, 1998, 2000, among others). Cru-
cial to memory usage measurement in MG parsing
models is the concept of Tenure, which measures
the duration parse items remain in memory. Studies
along this line have shown that tenure-based com-
plexity metrics are successful in accounting for
many processing phenomena cross-linguistically
(e.g., verb-clusters (Kobele et al., 2013); stack
relative clauses in Mandarin and English (Zhang,
2017), attachment ambiguity in English and Korean
(Lee, 2018), gradient of difficulty in Italian relative
clauses (De Santo, 2019), end-weight preference in
English and Mandarin (Liu, 2022), among others).

However, just like in top-down CFG parsing,
complexity metrics in top-down MG parsing can-
not model the processing contrast between left- and
center-embedding (Kobele et al., 2013). Moreover,
while LC parsing for CFGs can model how hu-
mans process left-, center-, and right-embeddings,
less is known about whether the results hold in LC
parsing for MGs. Even less is understood regard-
ing possible complexity metrics for this processing
model.

This paper aims to address these gaps. We
show that when modeling left-, center-, and right-
embeddings, LC parser for MGs behaves similarly
to that for CFGs: the parser requires memory re-
sources that are proportional to the number of em-
bedding layers to parse center-embedding struc-
tures. In contrast, only a constant amount of mem-
ory resources is needed to parse left- and right-
embeddings. In doing so, we propose a complexity
metric derived directly from the concept of tenure.
The results, if on the right track, indicate that left-

275
Proceedings of the Society for Computation in Linguistics (SCiL) 2024, pages 275-280.

Irvine, California, June 27-29, 2024



corner parsing for MGs is psycholinguistically ade-
quate as a model for human sentence processing.

2 Left-corner Parsing for Minimalist
Grammars

The left-corner parser for MGs used in this study is
based on Stanojević and Stabler (2018) and Hunter
et al. (2019). Intuitively, for any parsing step, the
parser can perform one or more of the following
operations: shift, which reads in the next word; LC
predict, which creates and stores a parse item of
the form A => B1 where A is the sister node and B
the mother node of the current input; and complete,
which replaces a parse item A => B with B when
A is built or confirmed from the input. In addition,
arc strategies are specified based on whether stored
parse items can connect with one another. Also,
following Hunter et al. (2019), the parser is allowed
to directly predict the landing site when the current
word is a movement licensor (unmove).

Based on those operations, we can already calcu-
late the steps any parse item is stored in the parser’s
memory – this is precisely the definition of tenure
in top-down MG parsing literature. In our calcu-
lation, we assume that the parser always finds the
correct structure if there is one. This highlights
how syntactic structures affect processing predic-
tions. For example, (4) is a record of the LC MG
parser’s behavior when it builds the sentence (with
functional heads) The rat t v ate cheeses. We can
see, for instance, that the parse item v’ => vP
remains in memory at steps 4 and 5. It has a tenure
of 2. We call this item tenure to distinguish from
the same concept used in top-down MG parsing
work.

(4) Step parse item

1. shift the:: the::

2. LC the:: NP => DP

3. shift rat:: + complete DP:

4. LC the rat: v’ => vP

5. shift t:: t::
v’ => vP

6. LC t:: + unmove + connect v’ => TP

7. shift v:: v::
v’ => TP

1This is a much simplified representation of parse items.
For example, tree nodes are used instead of lexical items and
their features. Information such as string span and movement
chains is also ignored.

8. LC v:: + connect VP => TP

9. shift ate: ate::
VP => TP

10. LC ate:: + connect DP => TP

11. shift cheeses:: + complete TP

With the current setup of parser operations and
steps, we have tree annotations that are condensed
yet complete representations of the parser’s behav-
iors. We still use superscript (index) and subscript
(outdex) to indicate when a node is introduced to
and removed from the memory. To faithfully repre-
sent LC parser’s behavior, additional specifications
are needed.

First, a LC parser can update its prediction re-
garding a particular node a few times. For example,
a node in a LC parse can generally be predicted
twice: once as a mother node and once as a sis-
ter node in two separate LC predictions. Also, in
an arc-eager parse, structures already built can be
used to form new structures. When this happens,
the parser updates its predictions regarding the “old”
nodes that now form new structures. We append
to a node’s index all the steps at which the parser
makes updates to it and connect them with a dash
(“-”).

Second, a node is removed from the memory
when the parser LC predicts or unmoves based on
that node, or for an arc-eager parse, when two parse
items connect at that particular node. We put these
steps to the outdex of the node.

After specifying how indices and outdices are as-
signed, we are ready to represent a LC MG parser’s
behavior using tree annotations. For example, (5)
is a tree annotation for the same sentence discussed
earlier.

(5) TP

T’

t vP

DP

the rat

v’

v VP

ate cheeses

1

2

2-3

4

2-3

3

4-6

6

4-6-8

8

5

6

6

6

6-8-10-11

11

7

8

8-10

11

9

10

10-11

11

If we zoom in to the node 4-6-8v’8, the index 4-6-
8 indicates that the parser updates its predictions
regarding the v′ node three times. First, the node
is predicted at step 4 from a LC prediction based
on its sister node, DP . The corresponding parse

276



item created and stored at this step is v’ => vP.
Second, v′ is updated at step 6, when the parse
item containing the node is connected to higher
structures. Finally, it is updated again at step 8
from a LC prediction based on v. The outdex of v′

is also 8 because at step 8, v′ is where two parse
items connect (VP => v’, v’ => TP).

Tree annotation allows for a visually easier cal-
culation of item tenure. On the same node 4-6-8v’8,
the steps between its first and second updates are 2,
which is the item tenure of the item v’ => vP. We
have seen this when discussing the parsing steps.
The steps between its second and third updates are
also 2. This is the item tenure of the item v’ =>
TP. We can recover this by looking for the nodes
with matching update records.

Based on item tenure, one can come up with a
variety of complexity metrics. Here we explore
just one such possibility: Maximal item tenure
(MaxTitem), which is the maximal duration that
any item remains in memory. For example, (5) has
a MaxTitem of 2, found on multiple nodes. Next, I
show that MaxTitem is successful in predicting the
processing differences between left-, center-, and
right-embeddings.

3 Modeling Results and Conclusions

The processing phenomena we model are the pro-
cessing contrasts between left-, center-, and right-
embedding structures. For each embedding di-
rection, we include two layer conditions, 1-layer
and 2-layer. For each parse, both an arc-standard
and an arc-eager variant are used. A total of 12
(= 3 × 2 × 2) parses are constructed. Only the
arc-eager results are discussed in this paper. All
the target sentences are in (1-3).

We expect to derive that center-embedding is
more difficult to process than both left- and right-
embedding under both layer conditions. We also
expect to find a constant difficulty measurement
for left- and right-embedding under the two layer
conditions, but a steep difficulty increase for center-
embedding as the number of layers increases.

The results are summarized in Table 1.

Parser Left center right
LCMG (arc-standard) O(1) O(n) O(n)
LCMG (arc-eager) O(1) O(n) O(1)
C.f. Human parser O(1) O(n) O(1)

Table 1: Modeling results (Format and human parser
results from Resnik 1992, Arc-standard results not dis-
cussed in this paper)

Following Resnik (1992), O(1) means constant
memory cost, and O(n) means memory cost that is
proportional to the size of the tree (n). Overall, for
the arc-eager variant of LC parsing for MGs, as the
number of layers increases, MaxTitem remains the
same for left- and right-embeddings, but grows as
the number of layers grows in center-embeddings.
Tree annotation excerpts for arc-eager parses of all
the target sentences can be found in Appendix A.

For left-embeddings, MaxTitem is 2 under both
layer conditions, predicting that the parser requires
only a constant amount of memory space to pro-
cess left-embeddings. This prediction is the same
as that based on a LC parser for CFGs. Given the
syntactic assumptions in our model, the DP s con-
taining left-embeddings are structurally the same
as those derived via CFGs. We thus expect similar
behaviors and similar processing predictions from
the two parsers.

For center-embeddings, MaxTitem is 10 under
1-layer condition, and 24 under 2-layer condition.
This predicts that as the number of layers increases,
center-embeddings become increasingly difficult
to process. Center-embeddings are object relative
clauses where the object linearly precedes the sub-
ject and its verb. Accordingly, the LC parser builds
the relativized object and stores the parse item that
has the object as its left-corner. Only when the
parser operates on the verb can it use the parse item
waiting in memory to build new structures. Dur-
ing the wait, the parser builds the subject, whose
size grows with the number of embedding layers.
MaxTitem found on the waiting item reflects ex-
actly this proportional increase in memory require-
ment when the number of embedding layers in-
creases for center-embeddings.

For right-embeddings, MaxTitem is 6 under both
layer conditions. This predicts that the parser,
like in the left-embedding case, requires a con-
stant amount of memory space to process right-
embeddings. Based on a promotion analysis of
relative clauses, the item stored for the longest du-
ration is held in memory between the parser oper-
ating on the first input word (the) and the relative
pronoun (that). Increasing the number of layers
does not add more material – i.e., more work for
the parser – between the two input words. Hence
a constant memory load is expected across layer
conditions for right-embeddings.

To conclude, the modeling results suggest that
left-corner parsing for MGs successfully derives
human processing differences in left-, center-, and

277



right-embeddings. MaxTitem is shown to be a valid
complexity metric for our processing model. The
results extend the parsing account for this process-
ing contrast to another grammar formalism, MGs
and suggest that left-corner parsing for MGs is vi-
able as a psycholinguistically adequate model for
human sentence processing. The proposed tree
annotation scheme invites future research on the
space of proper complexity metrics for LC parsing
for MGs.

References
Aniello De Santo. 2019. Testing a minimalist grammar

parser on italian relative clause asymmetries. In Pro-
ceedings of the Workshop on Cognitive Modeling and
Computational Linguistics, pages 93–104.

Edward Gibson. 1998. Linguistic complexity: Locality
of syntactic dependencies. Cognition, 68(1):1–76.

Edward Gibson. 2000. The dependency locality theory:
A distance-based theory of linguistic complexity. Im-
age, language, brain, 2000:95–126.

Thomas Graf, James Monette, and Chong Zhang. 2017.
Relative clauses as a benchmark for minimalist pars-
ing. Journal of Language Modelling, 5(1):57–106.

Tim Hunter, Miloš Stanojević, and Edward Stabler.
2019. The active-filler strategy in a move-eager left-
corner minimalist grammar parser. In Proceedings of
the Workshop on Cognitive Modeling and Computa-
tional Linguistics, pages 1–10.

Aravind K Joshi. 1990. Processing crossed and nested
dependencies: An automation perspective on the psy-
cholinguistic results. Language and cognitive pro-
cesses, 5(1):1–27.

Ronald M Kaplan. 1975. Transient processing load in
relative clauses. Ph.D. thesis, Harvard University.

Gregory M Kobele, Sabrina Gerth, and John Hale. 2013.
Memory resource allocation in top-down minimalist
parsing. In Formal Grammar, pages 32–51. Springer.

So Young Lee. 2018. A minimalist parsing account of
attachment ambiguity in english and korean. Journal
of Cognitive Science, 19(3):291–329.

Lei Liu. 2022. Phrasal Weight Effect on Word Order.
Ph.D. thesis, State University of New York at Stony
Brook.

Philip Resnik. 1992. Left-corner parsing and psycho-
logical plausibility. In COLING 1992 Volume 1: The
14th International Conference on Computational Lin-
guistics.

Edward Stabler. 1996. Derivational minimalism. In
International Conference on Logical Aspects of Com-
putational Linguistics, pages 68–95. Springer.

Edward P Stabler. 2011. Computational perspectives on
minimalism. Oxford handbook of linguistic minimal-
ism, pages 617–643.

Miloš Stanojević and Edward Stabler. 2018. A sound
and complete left-corner parsing for minimalist gram-
mars. In Proceedings of the Eight Workshop on Cog-
nitive Aspects of Computational Language Learning
and Processing, pages 65–74.

Chong Zhang. 2017. Stacked Relatives: Their Structure,
Processing and Computation. Ph.D. thesis, State
University of New York at Stony Brook.

A Tree annotations for Left-, right-, and
center-embeddings based on arc-eager
LC MG parser

TP

T’

t:: vP

DP

DP

the rat

pos’

’s cheese

v’

is here

10-12-13

13

1

2

2-3

3

2-3

4

4-6-7

8

4-6

6

5

6

6-7

7

8-10-12

12

8-10

10

9

10

10

10

11

12

12-13

13

TP

T’

t:: vP

DP

DP

DP

the rat

pos’

’s cheese

pos’

’s eyes

v’

are missing

14-16

17

1

2

2-3

3

2-3

4

4-6

6

4-6-7

8

5

6

6-7

7

8-10

10

8-10-11

12

9

10

10-11

11

12-14-16

16

12-14

14

13

14

14

14

15

16

16-17

17

Figure 1: Tree annotations for left-embedding

278



...

DP

the:: NP

NP

that:: TP

T’

t:: vP,-nom

DP, -nom

the:: cat::

v’

v:: VP

bit:: DP -rel

d-rel:: rat

1

2

2-8

8

2-8-14-16-17

18

3

4

4-5

5

4-5

6

6-16-17

17

6-16

16

7

8

8-14

14

8

8

9

10

10-11

11

10-11

12

12-14-16

16

12-14

14

13

14

14

14

15

16
←MaxTitem

MaxTitem→

...

DP

the NP

NP

that TP

T’

t:: vP

DP

the NP

NP

that TP

T’

t:: vP

DP

the cat

v’

v:: VP

bit DP

d-rel rat

v’

v VP

ate DP

d-rel cheese

1

2

2

8

2-8-28-30-31

32

3

4

4-5

5

4-5

6

6-30-31

31

6-30

30

7

8

8-28

28

8

8

9

10

10-16

16

10-16-22-24-25

26

11

12

12-13

14

12-13

13

14-24

25

14-24

24

15

16

16-22

22

16

16

17

18

18-19

19

18-19

20

20-22-24

24

20-22

22

21

22

22

22

23

24

26-30

30

26-28

28

27

28

28

28

29

30
←MaxTitem

↙MaxTitem

Figure 2: Tree annotations for center-embedding

279



...

DP

the:: NP

NP

that:: TP

T’

t:: vP

DP

d-rel:: rat

v’

v:: VP

ate:: cheeses
13

14

14-15

15

12-14

14

11

12

7

8

8

8

1

2

2-8-10-12-14-15

16

2-8

8

8-10

10

10

10

9

10

3

4

4-5

6

4-5

5

6-10-12

12

6-10

10

←MaxTitem

←MaxTitem

...

DP

the:: NP

NP

that:: TP

T’

t:: vP

DP

d-rel rat

v’

v:: VP

ate:: DP

the:: NP

NP

that:: TP

T’

t:: vP

DP

d-rel:: cheese::

v’

v:: VP

had:: eyes::

1

2

2-8

8

2-8-10-12-14-16-22-24-26-28-29

30

3

4

4-5

5

4-5

6

6-10

10

6-10-12

12

7

8

8

8

8-10

10

9

10

10

10

11

12

12-14

14

13

14

14-16

16

15

16

16-22

22

17

18

18-19

19

18-19

20

20-24-26

26

20-24

24

21

22

22

22

22-24

24

23

24

24

24

25

26

26-28

28

27

28

28-29

29

←MaxTitem

←MaxTitem

←MaxTitem

Figure 3: Tree annotations for right-embedding

280


