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Abstract
This paper presents the first incremental learning
algorithm for input-sensitive TSL languages
(ITSL). We leverage insights from De Santo
and Aksënova (2021)’s ITSL batch-learner to
generalize Lambert (2021)’s string extension
learning approach to online learning of TSL. We
discuss formal properties of the extension, and
evaluate the effectiveness of both the original TSL
learner and the new ITSL learner on a variety of
phonotactic patterns.

1 Introduction

In the mathematical study of linguistic dependencies,
the subregular (McNaughton and Papert, 1971;
Heinz, 2011a,b; Chandlee and Heinz, 2016) class
of Tier-based Strictly Local languages (TSL; Heinz
et al., 2011) has gained prominence due to its ability
to account for a variety of local and long-distance
phonotactic phenomena. TSL as a formal class draws
its linguistic inspiration from autosegmental phonol-
ogy (Goldsmith, 1976), and it is characterized by two
components: i) strictly local constraints on adjacent
segments, and ii) a tier projection mechanism select-
ing string elements from a subset of the alphabet over
which to enforce such constraints. Long-distance de-
pendencies are thus thought of as local dependencies
over strings where irrelevant segments (i.e. segments
not part of the alphabet subset) are masked out.

From a typological perspective, the relativized
adjacency at the core of the tier-based local constraints
has made the TSL class fruitful in characterizing a
vast amount of both local and unbounded phonotactic
phenomena (McMullin, 2016, a.o.), and tier-locality
has been proposed as a general mechanism to account
for unbounded processes across linguistic domains
(Aksënova et al., 2016; Vu et al., 2019; Graf, 2022a,b).
Additionally, a variety of extensions of TSL have
been proposed that take advantage of the relativized
adjacency intuition while enriching the way elements
of the tier are selected (Mayer and Major, 2018;
Graf and Mayer, 2018; De Santo and Graf, 2019).

In particular, De Santo and Graf (2019) observe
that by conditioning tier-membership not just on the
identity of a symbol, but also on its local contexts
(which symbols precede or follow it) it is possible to
generalize TSL to a class of languages (input-sensitive
TSL, or ITSL) capturing the interaction of local and
non-local processes simultaneously.

From a learnability perspective, TSL has been
shown to be efficiently learnable in the limit from
positive data only (Gold, 1967), assuming a batch-
learning set-up where all data are fed to the learner at
once (Jardine and Heinz, 2016; Jardine and McMullin,
2017) and more recently also in an online learning
setting (Lambert, 2021). As Lambert (2021) observes,
online learning of subregular classes seems to be a
fundamental step in exploiting mathematical insights
to develop learning algorithms that are plausible from
a human perspective — given that batch learning as-
sumes simultaneous access to all prior input. Moving
beyond TSL, De Santo and Aksënova (2021) propose
an efficient batch learning algorithm for (multiple)
ITSL grammars with tier-constraints bounded to
k=2, extending the TSL learner of Jardine and Heinz
(2016) and the multiple TSL learner of McMullin
et al. (2019). In this work, we leverage the insights
of De Santo and Aksënova (2021), and we show
how a minor modification to the definition of symbol
allows us to extend Lambert (2021)’s TSL learner to
an online ITSL learner. We thus contribute the first
online learning algorithm for ITSL, including an open
source Python 3 implementation of both the new
ITSL extension and the original online TSL learner.
We also follow the lead of Aksënova (2020) and
Johnson and De Santo (2023), and offer a preliminary
evaluation of the performance of both algorithms on
data representing a variety of phonotactic patterns.

We start with some formal preliminaries (Section
2) necessary to ground our modification of the work
in Lambert (2021), and provide some background
on TSL and ITSL in Section 3. Section 4 presents
the core intuitions behind the existing online TSL
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learner, and then our extension to an ITSL learner.
Finally, we conduct a preliminary evaluation of both
algorithms on natural and artificial datasets (Section
5), and conclude with a broader discussion of current
results and future steps.

2 Notation and Terminology

We assumes familiarity with set notation, specifically
the union operator ∪, the element operator ∈, the
subset operator ⊆, and the power set function P(·).
Sets are denoted as surrounded by curly braces {},
whereas angle brackets ⟨⟩ are used for ordered tuples.

Σ is used to denote some finite set of symbols,
the alphabet. Σ∗ is the set of all strings of finite
length that can be formed using 0 or more instances
of symbols from Σ. Σk ⊆Σ∗ denotes the set of all
strings that can be formed using exactly k instances
of symbols from Σ. Likewise, Σ≤k⊂Σ∗ denotes the
set of all strings that can be formed using k or fewer
instances of symbols from Σ.

A language L is some subset of Σ∗. A grammar G
can be thought of as a way to determine membership
of a string in a stringset. If we denote the language
associated with a grammar G as L(G), G can be
defined as a function to determine, for any string w,
whether w∈L(G).

In this paper, strings are denoted in monospace

font, and ε denotes the empty or 0-length string.
|w| indicates the length of, or number of symbols
in, a string w. The variable σ is commonly used to
represent individual symbols, while the variables
u,v,w,x,y are commonly used to represent strings.
The concatenation of strings u and v, denoted uv, is
the simple concatenation of the sequence of characters
making up that string. That is, given u = ab and
v=cd, the concatenation uv=abcd. Concatenation
is notated identically for individual symbols: given
σ1=e,σ2=f, uvσ1σ2=abcdef.

A string u is a substring of a string w iff ∃x,y∈Σ∗

such that xuy =w. Intuitively, this means that u is
a substring of w if w contains u within it, without
skipping or reusing symbols. A string u= σ1···σ|u|
is a subsequence of a string w iff ∃x1,···,x|u|+1∈Σ∗

such that σ1x1···x|u|σ|u|x|u|+1 =w. Intuitively, this
means that u is a subsequence of w if w contains u
within it, without reusing symbols.

3 Background: TSL and ITSL

As mentioned, TSL (Heinz et al., 2011) formalizes
the linguistic notion of a phonological tier (Goldsmith,
1976). We can think of a tier T as a subset (e.g.,

only sibilants) of the original alphabet available to a
language. Then, given a string w, tier projection can
be understood as forming a relativized locality domain
by “masking out” all segments in w that do not belong
to the tier alphabet, while preserving the ordering
relations among segments in T . Long-distance depen-
dencies (restrictions over segments that are non ad-
jacent in the original string) can then be characterized
as local dependencies within such relativized domain,
and can thus be enforced by strictly local constraints
of width k (i.e. k-grams). In terms of its fundamental
components then, TSL is parameterized by the width
(k) of the tier-constraints and by T — which defined
the elements that are relevant to the dependencies. The
interested reader is referred to Lambert and Rogers
(2020) for a detailed characterization of this class in
terms of model and automata theory, as well as to
De Santo and Graf (2019) and Lambert and Rogers
(2020) for a discussion of its closure properties.

While TSL has been shown to provide insightful
characterizations for a variety of unbounded depen-
dencies (Heinz et al., 2011; McMullin, 2016; Graf,
2017, a.o.), phonotactic studies cross-linguistically
have revealed substantial limits to its expressivity tied
to its projection mechanism — how tier-membership
is evaluated (McMullin, 2016; Mayer and Major,
2018; Baek, 2017; Graf and Mayer, 2018; De Santo
and Graf, 2019).

For example, in the Ineseño Chumash language
of Southern California, a regressive sibilant harmony
with unbounded locality ([s] and [S] may not co-occur
anywhere within the same word, cf. a) overrides a
restriction against string-adjacent ∗st, ∗sn, ∗sl that
results in a pattern of dissimilation (Applegate, 1972;
McMullin, 2016). For instance, /sn/ surfaces as [Sn]
(cf. b, c) unless there is an [s] following in the string,
in which case it surfaces as [sn] (cf. d):
1) Unbounded sibilant harmony

a. /k-su-Sojin/ kSuSojin “I darken it"

2) /s/ → [S] when preceding (adjacent) [t, n, l]

b. /s-niP/ SniP “his neck"
c. /s-nanP/ SnanP “he goes”

3) Long-distance harmony overides palatalization

d. /s-net-us/ snetus “he does it to him"

Figure 1 exemplifies why this overall pattern,
involving an interaction of local and non-local
constraints, is not TSL. Since [sn] is sometimes
observed in a string-adjacent context (as in d), it must
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Figure 1: Example of a failed TSL analysis of Ineseño
Chumash, adapted from De Santo and Graf (2019).
Sibilants and [t,n,l] are tier symbols.

be permitted as a 2-gram on a tier — even though it
is only allowed when a segment such as [s] follows
them later in the string. But then, a TSL grammar
would have no means of banning ∗sn when there is no
subsequent [s] in the string. Vice-versa, if we ban ∗sn
on T , then the grammar will not be able to allow it
when another [s] follows on the tier. Additionally, we
might point out that the difference between (b) and (d)
could be resolved by extending the tier-grammar to
consider 3-grams. However, in order to ban ∗sn, every
occurrence of [n] in the string must projected on the
tier (and in fact, to really capture the generalization,
every occurrence of t and l too). Since the number of
[n,t,l] segments between two sibilants is potentially
unbounded, no TSL grammar can generally account
for this pattern, independently of the dimension of
the tier k-grams.

In light of this, De Santo and Graf (2019) suggest to
approach such limit by extending the locality window
of the TSL projection. The m-Input-sensitive Tier-
based Strictly k-Local (m-ITSLk) class is thus defined
by allowing the projection mechanism to consider the
m-local context of a segment (i.e., its local surround-
ing environment) before projecting it on a tier.

See Figure 2, adapted from De Santo and Graf
(2019), for a sketch of how this approach allows us to
characterize the Ineseño Chumash pattern: by increas-
ing the locality of the projection to 2 the grammar is
allowed to project [n] iff it is immediately preceded
by a sibilant in the input string, and then use 3-local
tier constraints to ban {∗sn(¬s),∗Sns}, in addition
to the factors needed to enforce the usual sibilant
harmony patterns. Thus, the possible unboundedness
of /n/ is not a problem, since/n/ is now relevant for
the projection only when adjacent to a sibilant.

More formally, ITSL is characterized by establish-
ing tier-projection as an input strictly local function
(Chandlee and Heinz, 2018) over m segments. This
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Figure 2: Example of an ITSL analysis of Ineseño
Chumash, adapted from De Santo and Graf (2019).
Assume a 2-local projection and 3-local tier constraints.
[n,t,l] are projected on the tier only when immediately
preceded by [s,S]. ⋊ and ⋉ are word-boundaries.

modification takes full advantage of the original
definition of tier-projection by Heinz et al. (2011), and
extends TSL to a class that retains all its well-behaved
subregular properties while significantly increasing
its typological coverage.

From a learnability perspective, learning a TSL
grammar from data alone implies being able to
infer not only the relevant constraints, but also (or
especially) the content of T . This is even more
challenging for ITSL, since it relies on a more
complex mechanism to establish tier membership.
However, TSLk and m-ITSLk grammars have both
been shown to be efficiently (polynomial in time and
input) learnable in the limit from positive data in the
sense of Gold (1967), even when the tier-alphabet is
not known a priori (Jardine and Heinz, 2016; Jardine
and McMullin, 2017; De Santo and Aksënova, 2021).
Additionally, Lambert (2021) has recently proposed
an algorithm for incremental learning of TSL. In what
follows, we overview Lambert (2021)’s TSL learner
and show how it can be extended to ITSL.

4 Online Learning Algorithms

Following Lambert (2021), we restrict this discussion
to learning in the limit in the sense of Gold (1967).
In this sense, given a set of strings W ⊆ L(G), for
some target grammar G, a learner function φ should
output a learned grammar G′ which is equivalent to
G for sufficient data. This discussion is also restricted
to incremental learning specifically. That is, the
learner does not consider all the input at once, but
instead evaluates a single item from the input (and
a previously proposed grammar) at each step.

Lambert (2021) develops an incremental learner
for TSL in the style of Heinz (2010). Heinz (2010)
overviews several subregular classes of string lan-
guages sharing the common property that each string
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in the language can be mapped to an element in the
grammar, in terms of general String Extension Learn-
ers (McNaughton and Papert, 1971; Simon, 1975;
Rogers and Pullum, 2011). The fundamental intuition
centers around the notion of a factor, a connected
substructure of a string. For strictly local languages
(McNaughton and Papert, 1971), for example, a factor
is an adjacent sequence of symbols. A stricly local lan-
guage is the set of all strings containing only allowed
(or not containing any forbidden) factors — and it is
fully characterized by the set of all factors. Lambert
(2021) exploits the fact that this property extends to
TSL, where factors need to be defined over a subset
of salient symbols in the alphabet (the tier), to provide
a structural representation of TSL grammars that nat-
urally lends itself to online learning efficienty in the
learning paradigm of Gold (1967).

4.1 Learning TSL Online (Lambert, 2021)

Lambert (2021) identifies two core components of
a TSLk grammar that need to be identified by the
learner, when T is not provided a priori: a) the set
of underlying constraints (the strictly local factors of
width k and b) the set of symbols that are salient to
such constraints — the elements in T . In order to in-
fer which elements belong to T then, Lambert (2021)
relies two necessary and sufficient properties of any
element not in T : free insertion and free deletion
(Lambert and Rogers, 2020). Intuitively, if a segment
is not salient to tier-constraints, that it is essentially in-
visible to the grammar: that is, there should be no way
to restrict its distribution. Thus, such elements should
be freely insertable and freely deletable in all strings
without chance of affecting the well-formedness of
such strings with respect to the grammar. Once the
set of salient symbols has been defined, the learner
can then infer strictly local constraints over the input
filtered of irrelevant symbols.

Formalizing these observations, a TSL grammar
is represented as the pair ⟨Gℓ,Gs⟩, where Gℓ is the
set of attested factors of width bounded above by
k+1 and Gs is the set of augmented subsequences
of length bounded above by k.

For a given k, the set of attested factors can be used
to define salience, and it is bound to k+1 so to allow
for an evaluation of both free insertability (so adding
one symbol to k) and free deletability. For instance,
the set of attested factors for a TSL2 grammar for
the string cabacba is: {ε,a,b,c,ab,ac,ba,ca,cb,aba,
acb,bac,cab,cba}.

As mentioned, once the set of salient symbols has

Subsequence Intervener Sets
ε {{}}
a {{}}
b {{}}
c {{}}
aa {{b},{b,c}}
ab {{},{c}}
ac {{}}
ba {{}}
bb {{a,c}}
bc {{a}}
ca {{},{b}}
cb {{},{a}}
cc {{a,b}}

Table 1: Augmented Subsequences extracted from
cabacba by a TSL learner with k=2, example adapted
from Lambert (2021).

been detected, the next step is to infer the relevant
k-local constraints. In batch learning, it would be
possible to do a first pass over the input to infer
tier-membership, and then a second pass over the
same input with all non-salient symbols masked
out in order to select constraints. However, in an
online setting performing a second pass on the input
would require to retaining every observed item, thus
resulting in unbounded space requirements. Lambert
(2021) gets around this obstacle by relying on the
notion of augmented subsequences.

A subsequence is a factor over relativized adja-
cency: that is, a sequence of symbols that appear
in order but not necessarily adjacent to each other.
An augmented subsequence is a pair consisting
of an attested subsequence, and a set of symbols
that is attested to intervene among elements of
such subsequence. Importantly, the same symbol
cannot be both part of the subsequence and of the
the intervening set. To illustrate this concept, the
set of attested augmented subsequences for a TSL2

grammar for the string abbacb is in Table 1.
For a given width k the space requirement to store

all possible subsequences would still be exponential
in the size of the alphabet and k. However, Lambert
(2021) observes that storing all augmentations is
in fact not necessary, due to subsumption relations
between interveners. Consider for example the
subsequence ab as attested in cabacba. Possible
interveners for cabacba are both {} and {c}. But for
{} to be in the intervener set, it means that a and b can
be immediately adjacent to each other: then, it does
not matter how adjacency is relativized. That is, if {}
is an intervener then {c} trivially also is, and we do
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not need to maintain both. This observation general-
izes to any subset/superset relation between intervener
sets, so that the learner only has to maintain the
smallest observed ones (partially-ordered by subset).

We can now overview the full procedure of the
Online TSL learner. Initially, the learner assumes an
empty grammar (represented as ⟨{},{}⟩). For each
input string w from the language, the learner updates
the grammar, making use of the following functions:

• f :Σ∗→P
(
Σ≤k+1

)
extracts all factors of w of

width≤k+1

• x : Σ∗ → P
(
Σ≤k×P(Σ)

)
extracts the valid

augmented subsequences of width ≤k

• r : P
(
Σ≤k×P(Σ)

)
→ P

(
Σ≤k×P(Σ)

)

removes all augmented subsequences that
are already entailed by other augmented
subsequences, that is, r(S)⊆S

The learning function φ : ⟨P
(
Σ≤k+1

)
×

P
(
Σ≤k×P(Σ)

)
⟩ × Σ∗ → ⟨P

(
Σ≤k+1

)
×

P
(
Σ≤k×P(Σ)

)
⟩ is as follows:

φ(⟨Gℓ,Gs⟩,w)=⟨Gℓ∪f(w),r(Gs∪x(w))⟩
To recap, for each string w as input to the learner,

Gℓ is updated to Gℓ∪f(w) (that is, the factors of w of
width ≤k+1 are added to Gℓ), and Gs is updated to
r(Gs∪x(w)) (that is, the augmented subsequences of
w of width ≤k are added to Gs and any redundancy
is removed). Table 2 shows an example of how the
grammar is updated as the learner receives strings one
by one.

4.2 Generalizing to Online ITSL Learning
To generalize the algorithm presented above to ITSL
grammars, it is worth contrasting the formal defini-
tions of the projection function for TSL and ITSL. As
discussed, TSL languages have k-local constraints
only apply to elements of a tier T ⊆Σ. A projection
function (also called erasing function) is thus defined
as deleting (or masking) all symbols that are not in T .

Definition 1 (TSL Proj.; Heinz et al. (2011))

ET (σ):=

{
σ if σ∈T
ε otherwise

In order to extend the notion of tier in TSL
languages to consider local properties of the segments
in the input string, De Santo and Graf (2019)
follow Chandlee and Heinz (2018) and define an
input-sensitive projection function in terms of local
contexts (segments adjecent to a target symbol within
a context window of width m).

Definition 2 (Contexts; De Santo and Graf (2019))
A m-context c over alphabet Σ is a triple σ,u,v such
that σ∈Σ, u,v∈Σ∗ and |u|+|v|≤m. A m-context
set is a finite set of m-contexts.

Definition 3 (ISL Proj.; De Santo and Graf (2019))
Let C be a m-context set over Σ (where Σ is an ar-
bitrary alphabet also containing edge-markers ⋊,⋉).
Then the input strictly m-local (ISL-m) tier projection
πC maps every s∈Σ∗ to π′

C(⋊m−1,s⋉m−1), where
π′
C(u,σv) is defined as follows, given σ∈Σ∪ε and

u,v∈Σ∗:

ε if σuv=ε,
σπ′

C(uσ,v) if σ,u,v∈C,
π′
C(uσ,v) otherwise.

In essence, the notion of tier in ITSL is expressed
by the set of contexts C, which is the set of tier seg-
ments augmented with locality conditions necessary
for them to be salient to the tier constraints. Note
also that an ISL-1 tier projection only determines
projection of σ based on σ itself, showing that this
projection function is really just an extension of what
happens for TSL languages.

From an algorithmic perspective then, De Santo
and Aksënova (2021) observe that having to evaluate
salience of tier-segments based on m-local contexts
(thus a segment plus its m−1 left or right context)
can be understood as treating m-grams as unitary
elements of the language. Thus, if we characterize
every structure previously defined over individual
segments over this more complex definition of
symbol instead, we can directly lift the rest of the
inference procedures for TSL. With this in mind, we
can generalize the existing TSL online learning to
ISTL in the same way De Santo and Aksënova (2021)
generalized TSL batch learning.

For an m-ITSL learner, rather than considering
w to be a string of |w| symbols σ1,··· ,σ|w| ∈Σ, we
consider it a string of width-m overlapping substrings
of w: σ1···m,σ2···m+1,···,σ|w|−m+1···|w|∈Σm. We can
then apply the TSL learning algorithm as sketched
above, unchanged.

To illustrate these concepts, consider an ITSL gram-
mar with m = 2 (the contexts) and k = 2 (the tier
constraints): the string cabacba is represented as
⟨ca,ab,ba,ac,cb,ba⟩. Thus the set of attested fac-
tors for k = 2 becomes: {⟨⟩,⟨ab⟩,⟨ac⟩,⟨ba⟩,⟨ca⟩,
⟨cb⟩, ⟨ab, ba⟩, ⟨ac, cb⟩, ⟨ba, ac⟩, ⟨ca, ab⟩, ⟨cb, ba⟩,
⟨ab,ba,ac⟩,⟨ac,cb,ba⟩,⟨ba,ac,cb⟩,⟨ca,ab,ba⟩,} (re-
call again that at this step we collect factors up to width
k+1). Note that each unary symbol is now actually
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w Gℓ Gs

{} {}
cabacba {ε,a,b,c,ab,ac,ba,ca,cb,aba,acb,bac,cab,cba} {⟨ε,{}⟩,⟨a,{}⟩,⟨b,{}⟩,⟨c,{}⟩,⟨aa,{b}⟩,⟨ab,{}⟩,

⟨ac,{}⟩,⟨ba,{}⟩,⟨bb,{a,c}⟩,⟨bc,{a}⟩,⟨ca,{}⟩,
⟨cb,{}⟩,⟨cc,{a,b}⟩}

abca {ε,a,b,c,ab,ac,ba,bc,ca,cb,aba,abc,acb,bac,
bca,cab,cba}

{⟨ε,{}⟩,⟨a,{}⟩,⟨b,{}⟩,⟨c,{}⟩,⟨aa,{b}⟩,⟨ab,{}⟩,
⟨ac,{}⟩, ⟨ba,{}⟩, ⟨bb,{a, c}⟩, ⟨bc,{}⟩, ⟨ca,{}⟩,
⟨cb,{}⟩,⟨cc,{a,b}⟩}

abbacc {ε,a,b,c,ab,ac,ba,bb,bc,ca,cb,cc,aba,abb,abc,
acb,acc,bac,bca,bba,cab,cba}

{⟨ε,{}⟩,⟨a,{}⟩,⟨b,{}⟩,⟨c,{}⟩,⟨aa,{b}⟩,⟨ab,{}⟩,
⟨ac, {}⟩, ⟨ba, {}⟩, ⟨bb, {}⟩, ⟨bc, {}⟩, ⟨ca, {}⟩,
⟨cb,{}⟩,⟨cc,{}⟩}

baba {ε,a,b,c,ab,ac,ba,bb,bc,ca,cb,cc,aba,abb,abc,
acb,acc,bab,bac,bca,bba,cab,cba}

{⟨ε,{}⟩,⟨a,{}⟩,⟨b,{}⟩,⟨c,{}⟩,⟨aa,{b}⟩,⟨ab,{}⟩,
⟨ac, {}⟩, ⟨ba, {}⟩, ⟨bb, {}⟩, ⟨bc, {}⟩, ⟨ca, {}⟩,
⟨cb,{}⟩,⟨cc,{}⟩}

Table 2: Progression of Lambert (2021)’s Online TSL learner over an handful of presented strings. The first row includes
the empty grammar as initially assumed by the learning algorithm.

Subsequence Intervener Sets
⟨⟩ {{}}
⟨ab⟩ {{}}
⟨ac⟩ {{}}
⟨ba⟩ {{}}
⟨ca⟩ {{}}
⟨cb⟩ {{}}

⟨ab,ac⟩ {{ba}}
⟨ab,ba⟩ {{}}
⟨ab,cb⟩ {{ac,ba}}
⟨ac,ba⟩ {{cb}}
⟨ac,cb⟩ {{}}
⟨ba,ac⟩ {{}}
⟨ba,ba⟩ {{ac,cb}}
⟨ba,cb⟩ {{ac}}
⟨ca,ab⟩ {{}}
⟨ca,ac⟩ {{ab,ba}}
⟨ca,ba⟩ {{ab}}
⟨ca,cb⟩ {{ab,ac,ba}}
⟨cb,ba⟩ {{}}

Table 3: Augmented Subsequences extracted from
cabacba by an ITSL learner with k=2 and m=2.

a width-2 string over the original alphabet (a width-2
substring of the input string), and thus we represent
ITSL factors as tuples, with unary ITSL symbols sep-
arated by commas ⟨σ1σ2,σ3σ4,...⟩. Then, the set of
attested augmented subsequences is as listed in Table
3. Finally, Table 4 exemplifies a run of the new ITSL
learner on the same example strings as in Table 2.

In terms of space/time complexity, the orig-
inal TSL learner total time complexity is
O(nk/(k − 1)! · |Σ| log |Σ|), and its space com-

plexity O
((

|Σ|
|Σ|/2

))
. These results generalize to

the ITSL learner, with an additional variable tied to
the need of extracting subsequences and interveners

defined over complex input symbols. However, Lam-
bert (2021) observes how the TSL learner as defined
above can be thought of two separate learners run in
parallel and that, thanks to free deletability of the non
salient symbols, in most situations the left component
of this composite grammar (Gl) is sufficient to both
determine salience and function as an acceptor. Thus,
an optimization is presented such that the TSL learner
can converge in O(nk log |Σ|) time and O(|Σ|k+1)
space, where n is the number of strings to learn over,
k is the width of the dependencies within the tier and
|Σ| is the size of the alphabet.

This optimization generalizes as is to ITSL, since
nothing was changed in the structure of the learning
procedure itself, and thus we only have to incorpo-
rate the additional complexity in deriving the salience
of the contextually enriched “symbols”. Accordingly,
the ITSL learner learns in O(nklog(|Σ|m)) time and
O((|Σ|m)k+1) space, preserving the linear time and
constant space requirements of the TSL version rela-
tive to the input size. Additionally, time and space com-
plexity for the ITSL learner are exponential in the con-
text width, and context and factor width, respectively.

5 Evaluating Online TSL and ITSL

The learning algorithm presented above offers formal
convergence guarantees tied to the representation of
ITSL and its impact on possible structural restrictions
on the hypothesis space of the learner, assuming
an input sample fully representative of the target
language. In this last part of the paper, we offer a
preliminary evaluation of the empirical performance
of both the new ITSL learner and of Lambert (2021)’s
TSL learner, in terms of consistency with the grammar
generating the input (Aksënova, 2020). In particular,
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{} {}
cabacba {⟨⟩, ⟨ab⟩, ⟨ac⟩, ⟨ba⟩, ⟨ca⟩, ⟨cb⟩,

⟨ab, ba⟩, ⟨ac, cb⟩, ⟨ba, ac⟩, ⟨ca, ab⟩,
⟨cb, ba⟩, ⟨ab, ba, ac⟩, ⟨ac, cb, ba⟩,
⟨ba,ac,cb⟩,⟨ca,ab,ba⟩,}.

{⟨⟨⟩, {}⟩, ⟨⟨ab⟩, {}⟩, ⟨⟨ac⟩, {}⟩, ⟨⟨ba⟩, {}⟩, ⟨⟨ca⟩, {}⟩,
⟨⟨cb⟩,{}⟩,⟨⟨ab,ac⟩,{ba}⟩,⟨⟨ab,ba⟩,{}⟩,⟨⟨ab,cb⟩,{ac,ba}⟩,
⟨⟨ac, ba⟩, {cb}⟩, ⟨⟨ac, cb⟩, {}⟩, ⟨⟨ba, ac⟩, {}⟩,
⟨⟨ba, ba⟩, {ac, cb}⟩, ⟨⟨ba, cb⟩, {ac}⟩, ⟨⟨ca, ab⟩, {}⟩,
⟨⟨ca,ac⟩,{ab,ba}⟩,⟨⟨ca,ba⟩,{ab}⟩,⟨⟨ca,cb⟩,{ab,ac,ba}⟩,
⟨⟨cb,ba⟩,{}⟩}

abca {⟨⟩, ⟨ab⟩, ⟨ac⟩, ⟨ba⟩, ⟨bc⟩, ⟨ca⟩, ⟨cb⟩,
⟨ab, ba⟩, ⟨ab, bc⟩, ⟨ac, cb⟩, ⟨ba, ac⟩,
⟨bc,ca⟩,⟨ca,ab⟩,⟨cb,ba⟩,⟨ab,ba,ac⟩,
⟨ab,bc,ca⟩,⟨ac,cb,ba⟩,⟨ba,ac,cb⟩,
⟨ca,ab,ba⟩,}.

{⟨⟨⟩, {}⟩, ⟨⟨ab⟩, {}⟩, ⟨⟨ac⟩, {}⟩, ⟨⟨ba⟩, {}⟩, ⟨⟨bc⟩, {}⟩,
⟨⟨ca⟩, {}⟩, ⟨⟨cb⟩, {}⟩, ⟨⟨ab, ac⟩, {ba}⟩, ⟨⟨ab, ba⟩, {}⟩,
⟨⟨ab, bc⟩, {}⟩, ⟨⟨ab, ca⟩, {bc}⟩, ⟨⟨ab, cb⟩, {ac, ba}⟩,
⟨⟨ac, ba⟩, {cb}⟩, ⟨⟨ac, cb⟩, {}⟩, ⟨⟨ba, ac⟩, {}⟩,
⟨⟨ba, ba⟩, {ac, cb}⟩, ⟨⟨ba, cb⟩, {ac}⟩, ⟨⟨bc, ca⟩, {}⟩,
⟨⟨ca, ab⟩, {}⟩, ⟨⟨ca, ac⟩, {ab, ba}⟩, ⟨⟨ca, ba⟩, {ab}⟩,
⟨⟨ca,cb⟩,{ab,ac,ba}⟩,⟨⟨cb,ba⟩,{}⟩}

abbacc {⟨⟩, ⟨ab⟩, ⟨ac⟩, ⟨ba⟩, ⟨bb⟩, ⟨bc⟩, ⟨ca⟩,
⟨cb⟩,⟨cc⟩,⟨ab,ba⟩,⟨ab,bb⟩,⟨ab,bc⟩,
⟨ac, cb⟩, ⟨ac, cc⟩, ⟨ba, ac⟩, ⟨bb, ba⟩,
⟨bc,ca⟩,⟨ca,ab⟩,⟨cb,ba⟩,⟨ab,ba,ac⟩,
⟨ab,bc,ca⟩,⟨ac,cb,ba⟩,⟨ba,ac,cb⟩,
⟨ca,ab,ba⟩}.

{⟨⟨⟩, {}⟩, ⟨⟨ab⟩, {}⟩, ⟨⟨ac⟩, {}⟩, ⟨⟨ba⟩, {}⟩, ⟨⟨bb⟩, {}⟩,
⟨⟨bc⟩,{}⟩,⟨⟨ca⟩,{}⟩,⟨⟨cb⟩,{}⟩,⟨⟨cc⟩,{}⟩,⟨⟨ab,ac⟩,{ba}⟩,
⟨⟨ab,ba⟩,{}⟩,⟨⟨ab,bb⟩,{}⟩,⟨⟨ab,bc⟩,{}⟩,⟨⟨ab,ca⟩,{bc}⟩,
⟨⟨ab, cb⟩, {ac, ba}⟩, ⟨⟨ab, cc⟩, {ab, ac, ba, bb}⟩,
⟨⟨ac,ba⟩,{cb}⟩,⟨⟨ac,cb⟩,{}⟩,⟨⟨ac,cc⟩,{}⟩,⟨⟨ba,ac⟩,{}⟩,
⟨⟨ba, ba⟩, {ac, cb}⟩, ⟨⟨ba, cb⟩, {ac}⟩, ⟨⟨ba, cc⟩, {ac}⟩,
⟨⟨bb, ac⟩, {ba}⟩, ⟨⟨bb, ba⟩, {}⟩, ⟨⟨bb, cc⟩, {ac, ba}⟩,
⟨⟨bc, ca⟩, {}⟩, ⟨⟨ca, ab⟩, {}⟩, ⟨⟨ca, ac⟩, {ab, ba}⟩,
⟨⟨ca,ba⟩,{ab}⟩,⟨⟨ca,cb⟩,{ab,ac,ba}⟩,⟨⟨cb,ba⟩,{}⟩}

baba {⟨⟩, ⟨ab⟩, ⟨ac⟩, ⟨ba⟩, ⟨bb⟩, ⟨bc⟩, ⟨ca⟩,
⟨cb⟩,⟨cc⟩,⟨ab,ba⟩,⟨ab,bb⟩,⟨ab,bc⟩,
⟨ac, cb⟩, ⟨ac, cc⟩, ⟨ba, ab⟩, ⟨ba, ac⟩,
⟨bb, ba⟩, ⟨bc, ca⟩, ⟨ca, ab⟩, ⟨cb, ba⟩,
⟨ab,ba,ac⟩,⟨ab,bc,ca⟩,⟨ac,cb,ba⟩,
⟨ba,ac,cb⟩,⟨ba,ab,ba⟩,⟨ca,ab,ba⟩}.

{⟨⟨⟩, {}⟩, ⟨⟨ab⟩, {}⟩, ⟨⟨ac⟩, {}⟩, ⟨⟨ba⟩, {}⟩, ⟨⟨bb⟩, {}⟩,
⟨⟨bc⟩,{}⟩,⟨⟨ca⟩,{}⟩,⟨⟨cb⟩,{}⟩,⟨⟨cc⟩,{}⟩,⟨⟨ab,ac⟩,{ba}⟩,
⟨⟨ab,ba⟩,{}⟩,⟨⟨ab,bb⟩,{}⟩,⟨⟨ab,bc⟩,{}⟩,⟨⟨ab,ca⟩,{bc}⟩,
⟨⟨ab, cb⟩, {ac, ba}⟩, ⟨⟨ab, cc⟩, {ab, ac, ba, bb}⟩,
⟨⟨ac,ba⟩,{cb}⟩,⟨⟨ac,cb⟩,{}⟩,⟨⟨ac,cc⟩,{}⟩,⟨⟨ba,ab⟩,{}⟩,
⟨⟨ba, ac⟩, {}⟩, ⟨⟨ba, ba⟩, {ab}⟩, ⟨⟨ba, ba⟩, {ac, cb}⟩,
⟨⟨ba, cb⟩, {ac}⟩, ⟨⟨ba, cc⟩, {ac}⟩, ⟨⟨bb, ac⟩, {ba}⟩,
⟨⟨bb, ba⟩, {}⟩, ⟨⟨bb, cc⟩, {ac, ba}⟩, ⟨⟨bc, ca⟩, {}⟩,
⟨⟨ca, ab⟩, {}⟩, ⟨⟨ca, ac⟩, {ab, ba}⟩, ⟨⟨ca, ba⟩, {ab}⟩,
⟨⟨ca,cb⟩,{ab,ac,ba}⟩,⟨⟨cb,ba⟩,{}⟩}

Table 4: Progression of the Online ITSL grammar over an handful of presented strings. The first row includes the empty
grammar as initially assumed by the learning algorithm.

we implement the “two parallel learners” version of
each algorithm as presented above in Python 3, both
for the TSL learner and for our ITSL generalization.1

We then evaluate performance when trained on input
samples representative of patterns corresponding to
various subregular classes and designed to mimic
natural phonotatic phenomena. 2

In particular, we conduct evaluations on 11
different training datasets, eight of which were
artificially generated from a defined target grammar,
and three were word-lists extracted from three
natural language corpora with simplified alphabets

1A Haskell implementation of the TSL learner
is available as part of the Language Toolkit at
https://github.com/vvulpes0/Language-Toolkit-2.

2Our code repository, with data for training
and testing of both algorithms is available at https:
//github.com/jacobkj314/online_itsl.

(see Aksënova, 2020, for details). Specifically, our
testing suite includes: word-final devoicing (strictly
local); two vowel harmony patterns with a single
constraint type (TSL); two vowel harmony patterns
with multiple constraints to be evaluated over a single
tier (TSL); and three types of ITSL patterns. For
the ITSL dependencies, we consider an unbounded
tone-plateauing pattern (Hyman and Katamba, 2010;
Jardine, 2016) and a pattern of local dissimilation
in which the tier consists of o, e, and a, where oe

is a restricted bigram over the tier, but instances of
o are only projected to the tier when followed by
x. 3 We also test a first-last harmony pattern, which

3This pattern was originally inspired by the ITSL analysis of
Yaka nasal harmony (Hyman, 1995; Walker, 2000) as presented
in De Santo and Aksënova (2021). Such analysis hinges on Yaka
having nasal-stop clusters. A reviewer points out that it might
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establishes a harmonic dependency between the first
and the last element in the string. While this pattern
has been argued to be unattested in natural languages
(Lai, 2015; Avcu, 2017), it is a dependency worth
testing in addition to the ones above, as it requires
both elements in the constraint to be sensitive to their
local context (the end and start symbols, respectively).

We train each learner on 1000 strings randomly
sampled from the language generated by the target
grammar for the artificial datasets, and on up to 130K
words for the simplified natural language corpora
(see Table 5). First, we set evaluation criteria defined
according to the same pipeline as in Aksënova (2020),
and comparable with the evaluation of the 2-ITSL2

batch learner of De Santo and Aksënova (2021) as
presented in Johnson and De Santo (2023). Embed-
ding the learned grammar in an acceptor function, we
filter strings from Σ∗ in length-lexicographical order
until 5000 strings are accepted. These 5000 strings are
then additionally fed into an acceptor incorporating
the original target grammar.4 Therefore, the score
reported for each learner/target grammar pair in Table
6 indicates what proportion of the strings generated by
the learned grammar were accepted by the target gram-
mar. For the artificial languages, both learning and
testing were repeated over 10 separate trials using a
different set of input strings, and we report the average
score over these 10 iterations of the full algorithm.

As shown in Table 6, both learners output highly
consistent grammars for each of the SL and TSL
patterns, even considering the relatively small input
size. These results extend to the ITSL learner’s
performance over the three ITSL patterns, fully
consistently with theoretical expectations.5

Interestingly, the TSL learner shows (somewhat
unexpected) differential performance on the ITSL
data. As expected, this learner performs below or at
chance for two of these patterns, but the consistency
between learned and target grammars on the last ITSL
pattern is strikingly high. Recall now that in an ITSL
set-up, symbols are only relevant to the tier when con-
ditioned by the appropriate local context. Thus, ITSL
patterns viewed from a TSL perspective might look

be more appropriate to treat these not as sequences but as pre-
nasalized stops and affricates, in which case the harmony pattern
would simply be TSL. While getting the linguistic facts right is
crucial for a subregular understanding of Yaka, for the sake of
this paper what matters is that the abstract example is ITSL, and
we keep it for comparison with Johnson and De Santo (2023).

4For the natural datasets, each acceptor function incorporates
a grammar built to reproduce the underlying pattern, even if that
grammar was not technically used to generate the input data.

5While omitted here because of space constraints, all learned
grammars are available in the repository associated with this paper.

Mean Length (SD)
Word-final devoicing

A 10
NG 14.90 (3.70)
Single vowel harmony without blocking
A 10
NF 13.92 (3.82)

Single vowel harmony with blocking
A 10

Several vowel harmonies without blocking
A 10
Several vowel harmonies with blocking

A 7.32 (1.08)
NT 7.85 (2.48)

Unbounded tone plateauing
A 5

First-Last Assimilation
A 10

Locally-driven long-distance
assimilations (ITSL restriction)

A 6.20 (0.93)

Table 5: Mean length of the strings in the datasets used
for training the learners, based on the union of all sets of
strings used by each trial. NG: German; NF: Finnish; NT:
Turkish. Where omitted, SD=0

relatively unconstrained: that is, no symbol evaluated
in isolation might fit the no free deletion/insertion
requirements needed to be considered salient for
the tier. A preliminary qualitative evaluation of the
output of the TSL learner over this pattern reveals that
this is probably the reason for the high acceptance
performance: the learner has converged to a strictly
local grammar with no tier constraints.

Slightly in contrast with this observation though,
the evaluation metric adopted above does not penalize
strings that are accepted by the target grammar but
rejected by the learned grammar, thus potentially
favoring over-restricting grammars (i.e. under-
generalization). As a preliminary investigation of
this issue, we conduct a second batch of experiments.
Table 7 shows, for all the artificial datasets, the
proportion of the first 5000 strings accepted by the
target grammar that are also accepted by the learned
grammar. Together with the results of the previous
experiment, these results support the intuition that
the ITSL learner converges to more restrictive
grammars than the TSL one, as it needs more data
to infer that a segment is involved in a dependency
independently of context. Still, the high performance
of the TSL learner on the ITSL patterns, as well as
the performance of both learners on TSL patterns
with and without blocking deserve further attention.
A more careful investigation of the learned grammars
is needed to fully gain insights into the different
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TSL ITSL
Word-final devoicing

T ✓ ✓

A 100% 100%
NG 100% 100%
Single vowel harmony without blocking
T ✓ ✓

A 100% 100%
NF 100% 100%

Single vowel harmony with blocking
T ✓ ✓

A 100% 100%
Several vowel harmonies without blocking
T ✓ ✓

A 100% 100%
Several vowel harmonies with blocking

T ✓ ✓

A 100% 100%
NT 100% 100%

Unbounded tone plateauing
T ✗ ✓

A 9.97% (0.51%) 100%
First-Last Assimilation

T ✗ ✓

A 50.02% 100%
Locally-driven long-distance

assimilation (ITSL restriction)
T ✗ ✓

A 94.88% (0.15%) 100%

Table 6: Results for Experiment 1. (T)heoretical expec-
tations and performance as mean (and standard deviation)
consistency (based on the first 5000 strings accepted by the
learned grammar) of the grammars learned by Online TSL
and Online ITSL learners on (A)rtificial and simplified
(N)atural language input data-sets, measured over 10
iterations. NG: German; NF: Finnish; NT: Turkish. Where
omitted, SD=0.

performance of these learners. Understanding the
kind of grammars more/less expressive learners
converge onto when trained on theoretically less/more
expressive patterns might also offer predictions for
learnability expectations in human experiments.

6 Conclusion

Formal language theoretical insights have been argued
to help bridge typological observations to learnabil-
ity considerations (Lambert et al., 2021; De Santo
and Rawski, 2022). While ITSL offers a good ac-
count of phonotactic dependencies from a descriptive
characterization perspective, its overall relevance to
this broader enterprise is limited by the implausibility
of batch learning for humans. In this paper we pre-
sented a straightforward generalization of Lambert
(2021)’s TSL incremental learner to ITSL, leveraging
a more complex definition of tier-symbols in order

TSL ITSL
Word-final devoicing

A 99.96% 71.22% (2.64%)
Single vowel harmony without blocking

A 9.24% 7.78%
Single vowel harmony with blocking

A 86.54% 18.64% (1.25%)
Several vowel harmonies without blocking
A 12.64% 10.26%

Several vowel harmonies with blocking
A 99.82% 56.90% (1.53%)

Unbounded tone plateauing
A 99.96% 99.86%

First-Last Assimilation
A 78.14% 73.01% (0.81%)

Locally-driven long-distance
assimilation (ITSL restriction)

A 99.96% 59.79% (1.23%)

Table 7: Results for Experiment 2. Performance as mean
(and standard deviation) completeness (based on the
first 5000 strings accepted by the target grammar) of
the grammars learned by Online TSL and Online ITSL
learners on Artificial language input data-sets, measured
over 10 iterations. Where omitted, SD=0.

to determine salience. Taking into account the addi-
tional complexity brought by moving segments from
unigrams to m-grams, this learner maintains the com-
plexity constraints of the original TSL learner, and
its convergence guarantees. An evaluation of learning
performance over a variety of patterns also demon-
strates the viability of this learning approach beyond
theoretical guarantees. Moreover, as already suggested
by Johnson and De Santo (2023), we argue that im-
plemented grammatical inference algorithms allow to
probe the information about target patterns present in
phonotactic corpora, facilitating the study of the rela-
tion between data and learnability in humans and ma-
chines. In the future, it would be interesting to explore
the extent to which this approach can be used to extend
Lambert (2021)’s learner to the input-output languages
of Graf and Mayer (2018), to stochastic counterparts
to TSL and ITSL (Mayer, 2021), and to multiple in-
dependent TSL constraints (De Santo and Graf, 2019;
McMullin et al., 2019; De Santo and Aksënova, 2021).
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