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Abstract

Word embeddings have proven a boon in NLP
in general, and computational approaches to
morphology in particular. However, methods to
assess the quality of a word embedding model
only tangentially target morphological knowl-
edge, which may lead to suboptimal model se-
lection and biased conclusions in research that
employs word embeddings to investigate mor-
phology. In this paper, we empirically test this
hypothesis by exhaustively evaluating 1,200
French models with varying hyperparameters
on 14 different tasks. Models that perform well
on morphology tasks tend to differ from those
which succeed on more traditional benchmarks.
An especially critical hyperparameter appears
to be the negative sampling distribution smooth-
ing exponent: Our study suggest that the com-
mon practice of setting it to 0.75 is not appro-
priate: its optimal value depends on the type of
linguistic knowledge being tested.

1 Introduction

Word embeddings have changed the NLP landscape
by introducing a data-driven approach to mean-
ing. They have found widespread application in
NLP, computational semantics, and more recently,
morphology (e.g. Zeller et al., 2014; Bonami and
Guzmán Naranjo, 2023).

While architectures specifically intended to cap-
ture morphology exist (Cao and Rei, 2016; Cot-
terell et al., 2016; Cotterell and Schütze, 2015),
embeddings with these properties are generally not
employed because not available off the shelf pre-
trained on the languages of interest to the morphol-
ogist. A notable exception is fastText (Bojanowski
et al., 2017), an architecture specifically tailored
to factor in spelling information which has been
tested on a diverse and wide collection of languages
(Grave et al., 2018). Despite claims that this archi-
tecture is suited to model morphology due to its at-
tention to subword information, this has rarely been

properly tested on morphological benchmarking.
Additionally, this type of embedding is explicitly
avoided by researchers who do not wish to smuggle
in the assumption that the units of morphology are
primarily based on formal contrasts, rather than on
more abstract contrasts of meaning (as argued by
e.g. Štekauer, 2014).

The adoption of word embeddings in morpholog-
ical research has therefore largely targeted general
purpose embeddings, with architectures that are not
optimised for capturing morphological structure.
However, the evaluation of these models mostly
relies on tasks that were not built with morphol-
ogy in mind. Common NLP benchmarks used by
models for morphological purposes generally tar-
get semantics: To take a concrete example, Lenci
et al. (2022) provide an exhaustive evaluation of
distributional semantics models on a wide array of
tasks. They study a spate of benchmarks target-
ing target semantics, such as synonymy detection,
analogy solving, sentiment analysis and natural lan-
guage inference; but only two of their tasks involve
morphology: the analogy task (whose methodolog-
ical and ethical limitations are well documented,
e.g., Linzen, 2016; Bolukbasi et al., 2016); and
POS-tagging (where some morphological knowl-
edge may be of use, although it is not explicitly
required). This trend may be in part ascribed to
the Anglo-centric approach of most NLP research:
English is a language with relatively scarce inflec-
tional morphology, which therefore has received
comparatively little interest from morphologists
interested in the subject.

The tension between the increasingly
widespread use of general-purpose word
embeddings in morphology and their evaluation
on non-morphological benchmarks begs the
engineering question of how to adapt the knowl-
edge the community has developed for English
to other languages, in a way that encompasses
morphological applications in addition to semantic
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ones. In the present paper, we investigate whether
a discrepancy exists between NLP evaluation
methodologies and morphology applications of
word embeddings. We define eight tasks, probing
for both inflection and derivation, evaluating both
the geometry of the vector space and its usability in
downstream scenarios, and exhaustively compare
the behavior of 1200 continuous bag-of-words
negative sample embedding models (Mikolov et al.,
2013, “CBOW-NS”) on traditional NLP semantic
benchmarks as well as our proposed morphology
tasks. We find that optimal hyperparameter set-
tings are task-specific, and that there is a tradeoff
between performance on tasks targeting different
kinds of linguistic knowledge. We also stress the
importance of the negative sampling distribution
smoothing exponent hyperparameter, which we
find to have a crucial role in our experiments
despite its lack of notoriety.

2 Related works

Systematic studies of word embeddings. Works
attempting to exhaustively evaluate word embed-
dings abound. These studies often delineate their
area of focus to a specific architecture, language
or hyperparametrization. For instance, Vulić et al.
(2020) extensively study BERT models across six
languages and five tasks. On the other hand, Lenci
et al. (2022) provide an exhaustive overview of mul-
tiple English embeddings, across a diverse array of
tasks and hyperparameters. Ulčar et al. (2020) and
Grave et al. (2018) both limit their studies to fast-
Text embeddings and the analogy task, but cover
9 and 10 languages respectively.Lastly, especially
relevant to our present inquiry is the work of Köhn
(2015), who focuses on the (morpho-)syntactic fea-
tures captured in a diverse array of embedding ar-
chitectures for Basque, English, French, German,
Hungarian, Polish, and Swedish.

Architectures that capture morphology. A sig-
nificant focus of interest concerns the development
of embedding architectures designed to specifically
capture some aspects of morphology. Chief of
these is the fastText model of Bojanowski et al.
(2017), which supplements the skip-gram model
of Mikolov et al. (2013) with subword informa-
tion. Cao and Rei (2016) propose an unsupervised
character-level method that ranks each segment by
its context-predictive power to capture information
about morphological boundaries as well as morpho-
logical features. Cotterell et al. (2016) introduce

a semisupervised architecture trained on a combi-
nation of raw and morphologically annotated text,
which creates embedding spaces where morpho-
logically similar words cluster together. Cotterell
and Schütze (2015) present a latent-variable Gaus-
sian graphical model trained on an embedding set
and a lexical resource to smooth an existing set
of word embeddings in a way that encourages the
encoding of morphology. With the exception of
Bojanowski et al.’s (2017) fasttext, these models
have not yet reached widespread adoption among
morphologists—in part due to their restricted typo-
logical coverage, as exemplified by the challenges
non-concatenative morphology poses for subword-
centric approaches (e.g., Amrhein and Sennrich,
2021).

Word embeddings and morphology. Word em-
beddings are a somewhat recent adoption in the
study of morphology. A short survey of the litera-
ture outlines three main use-cases for embeddings.

The first case involves using the features of
trained embeddings as input to prediction tools,
with the aim to create resources or investigate the
morphological system. One such instance is Zeller
et al. (2014) employ embeddings to validate the
construction of a derivational lexicon. Straka and
Straková (2017) details the use of embeddings as
input features for tasks where morphology is rele-
vant, such as lemmatization or tokenization. Bafna
and Žabokrtský (2022) study how subword embed-
dings can be used for cross-lingual transfer between
morphologically similar, diachronically related lan-
guages. Another related approach is that of Marelli
and Baroni (2015), who propose to learn linear
maps to model affixation.

Related but distinct from this approach, a second
set of works use embeddings as tools for gathering
quantitative evidence about morphology. A variety
of topics have been covered: Lapesa et al. (2018)
quantitatively assess the difference between even-
tive and non-eventive -ment formations in French;
Guzmán Naranjo and Bonami (2021) rely on em-
beddings to discuss overabundance; Varvara et al.
(2021) addresses the question of semantic trans-
parency; Bonami and Guzmán Naranjo (2023) de-
rive quantitative evidence in favor of a paradig-
matic conception of derivation from embeddings.

The third case is the use of embeddings for the
purposes of defining a morphologically coherent
group of items by the properties of the position they
occupy in the geometrical space—the analysis of
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neighborhoods thus constructed may be qualitative
(e.g. Wauquier, 2020) or quantitative (e.g. Huyghe
and Wauquier, 2020). Varvara (2017) uses distri-
butional representations to quantitatively evaluate
neighborhood contents, and how they differ for
event nominalizations and verbal nouns, A related
trend of research involves performing operations
on embeddings directly to derive quantifiable data—
e.g., to study the difference between inflection and
derivation (Bonami and Paperno, 2018; Rosa and
Žabokrtský, 2019) or the status of specific morpho-
logical processes (Mickus et al., 2019).

3 Methodology

We set out to answer the question of whether it is
in fact problematic to evaluate models we use for
morphology on tasks which chiefly target lexical
semantics. We do so by evaluating the performance
of the same model on a diverse range of tasks tar-
geting different kinds of linguistic knowledge. Be-
cause of its rich morphology and availability of
resources documenting morphological relations,
we elect to work on French. We wish to make
as few assumptions as possible about whether we
expect any systematic differences in performance
between tasks and about what they might be caused
by should they manifest—we adopt a grid-search
approach and evaluate models trained with an ex-
haustive combination of values for a wide range of
hyperparameters.

Models We train Continuous Bag-Of-Word neg-
ative sample models (Mikolov et al., 2013, CBOW-
NS). Models are implemented with gensim (Ře-
hůřek and Sojka, 2010), trained on a 300M French
sentences subset of Oscar (Ortiz Suárez et al., 2019)
We include a presentation of the word2vec algo-
rithm and a few remarks on the linguistic signifi-
cance of its hyperparameters in Appendix A.

Models defined with varying hyperparameters:

(i) window size w ∈ {5, 10, 15, 20, 25};
(ii) number of negative examples per positive ex-

ample N ∈ {5, 10, 15, 20, 25};
(iii) number of epochs e ∈ {1, 3, 5};
(iv) negative sampling distribution exponent α ∈

{−1.4,−1.0,−0.6,−0.2, 0.2, 0.6, 1.0, 1.4};
(v) dynamic uniform sampling of window size

s ∈ {True,False}.

All models have a dimension of d = 50, which
we do not modify so as to avoid spurious concen-

tration effects in higher-dimensional spaces.1 All
combination of hyperparameters are tested, for a
total of 1200 different models. As hyperparameters
(i), (ii) and (iii) are frequently encountered in the
literature, we refer the reader to the original paper
by Mikolov et al. (2013) as well as to Appendix A.2
for details.

The negative sampling smoothing hyperpa-
rameter α in (iv) is not frequently tuned, but
Caselles-Dupré et al. (2018) suggest it might have
application-specific relevance. It is used to define
the probability distribution q under which negative
examples are randomly sampled:

q(w) ∝ p(w)α

where p(w) is the relative frequency of each word
in the training corpus. Mikolov et al. (2013) note
that α allows one to mix unigram and uniform dis-
tributions over vocabulary items: Setting a value
closer to 0 allows one to sample more from the tail
of the vocabulary’s frequency distribution. More
precisely, remark that α = 0 entails sampling neg-
ative examples uniformly over the entire vocabu-
lary sorted by frequency; α = 1 matches the uni-
gram frequency distribution in corpus; α > 1 over-
emphasizes frequent words, and α < 0 overempha-
sises infrequent ones. The relative dearth of studies
on the effects of α on CBOW-NS representations
to this day motivates us to be particularly thorough
when testing this hyperparameter.

The dynamic uniform sampling s in (v) is a
gensim-specific re-implementation of the distance-
based weighting of context words. It consists in ran-
domly sampling, for each training example, an ef-
fective window size ŵ uniformly between 1 and the
maximum window size parameter allowed by the
w hyperparameter, or more formally ŵ ∼ U(1, w).
In practice, this entails that context words that are
k ≤ w tokens apart from the target word are dis-
carded in k/w of the training instances. Therefore,
context words that are closer to the target word are
more likely to be taken into account for prediction.

Common NLP benchmarks. All models are
tested on the SimLex-999 French translation by
Barzegar et al. (2018), the FEEL lexicon of Ab-
daoui et al. (2017), the automatic translation to
French of the Google Analogy Test Set (GATS)
provided by Grave et al. (2018), and a POS-tagging

1This low value of d mitigates the computational costs of
running exhaustive experiments. For the same reason, models
varying across epoch e only correspond to different check-
points of the same training procedure.
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task. For GATS results, we separately keep track
of the accuracy on three groups of analogical re-
lations: semantic, derivational and inflectional;2

groups can be found in Appendix B.1. The POS-
tagging data was selected from the French section
of OMW (Bond and Paik, 2012), by selecting, for
each lemma, all POS-tags it could correspond to.

Results for PoS-tagging and FEEL correspond
to macro-F1 scores of multi-layer perceptrons3

trained to predict the labels provided in the resource
as binary vectors. Performance on SimLex-999
is evaluated as the Spearman correlation between
human rating and cosine similarity. GATS perfor-
mance corresponds to a 3CosAdd on a vocabulary
restricted to the 300k most frequent words.

Inflectional tasks. To test a model’s performance
on inflectional morphology specifically, we set up
four different tasks. Given that the community uses
embeddings both as features (predictors to plug into
another models, e.g., Straka and Straková, 2017)
and as representations for manual exploration (e.g.
Wauquier, 2020), we consider both classifier-based
tasks and geometric evaluations. A second orthog-
onal distinction is whether these probing tasks in-
volve one word form or multiple word forms at
once: this, in essence, captures distinct approaches
to morphology, depending on whether they focus
on individual words or relationships between them.
Data for all four of these tasks consisted of verbal
paradigms taken from the GLàFF (Hathout et al.,
2014), a large inflected lexicon of French. The data
set used focused on words without homographs,
and cells that are in current use in the French lan-
guage. Only words that had more than 50 occur-
rences in our Oscar sample were included in the
testing; cf. also Appendix B.2.

The first task involves a classifier over singu-
lar items: In our single cell prediction (SCP) task,
we classify input verb forms depending on which
paradigm cell they correspond to. The second task,
a paired cells prediction (PCP) task, consists in pre-
dicting whether two input verb forms correspond
to the same paradigm cell. We compare models on
these two predictions tasks using macro-F1. In our
third task, a single cell clustering (SCC) task, we as-
sess with silhouette scores whether the embeddings
of forms cluster according to their cell. Lastly, in

2The latter two are often grouped in a “syntactic” category;
here we follow the taxonomy of Gladkova et al. (2016).

3One 25D layer with ReLU activation, optimized with
Adam (lr. of 0.001, β = (0.9, 0.999)) for up to 10,000 itera-
tions, implemented in scikit-learn (Pedregosa et al., 2011).

our fourth task, a paired cell clustering (PCC) task,
we report the silhouette score obtained by cluster-
ing pairs of forms depending on which relation they
instantiate. For this last PCC task, we define pairs
of verb forms as matrices of shape [2× d], distance
between two pairs PA and PB is then computed
using the Froebenius norm ∥PA − PB∥F .

Derivational tasks. To evaluate how accurately
models capture derivational morphology, we set
up four tasks. Data for these tasks was taken
from Namer et al. (2023), a database of French
derivational relationships. They feature a variety
of relationships between different parts of speech,
reported in Appendix B.2. Semantics labels are
attributed by grouping formal exponents in the re-
source following the clustering proposed by Guz-
man Naranjo and Bonami (2023). Only words that
had more than 50 occurrences in our Oscar sample
were kept; cf. Appendix B.2 for details.

Following the same logic as for our inflectional
task, we consider two prediction tasks and two
classification tasks. Independently from this, we
also note that there is ongoing discussion in the
theoretical morphology community about whether
derivational relations should be defined by means
of formal or semantic regularity (Štekauer, 2014).
We therefore decide to consider as labels either the
formal exponent of the derived form (e.g. -ité), or
the semantics associated with it (e.g., adjective-to-
property-noun conversion). The two predictions
tasks are set up as simple logistic regression classi-
fiers that predict the derivational cell (defined based
on semantics vs formal exponents for DerPS and
DerPF respectively); we report the corresponding
macro-F1 scores. The two clustering tasks reem-
ploy the same protocol as the PCC inflectional task:
we construct [2×d] matrices for each derivationally
related pair in our dataset, and compute the silhou-
ette score for clustering them along their exponents
in the DerCF task or the semantics of the process
in the DerCS task.

4 Results

Given the high number of models and tasks, we first
study how and to what extent specific hyperparam-
eters shape performance; we defer an overview of
actual performances to Appendix C.2 to focus pri-
marily on global trends. To attribute the observed
variance across scores to specific factors, we apply
gradient boosting trees (Friedman, 2001) to the set
of all (task-standardized) scores, using as predic-
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α task e N w s

0.69 0.23 0.18 0.08 0.08 0

Table 1: mean absolute SHAP value from boosting trees
predicting performance.

Task top 1 top 10 top 100
mean median mean median

simlex 0.20 0.20 0.20 0.20 0.20
FEEL 0.20 0.24 0.20 0.36 0.20
GATS/sem 0.20 0.20 0.20 0.09 0.20

GATS/D 0.20 0.20 0.20 0.24 0.20
DerCF 0.60 0.76 0.60 0.70 0.60
DerCS 0.20 0.24 0.20 0.35 0.20
DerPF 0.60 0.64 0.60 0.73 0.60
DerPS 0.60 0.80 0.80 0.80 1.00
POS 0.60 0.88 1.00 0.84 1.00

GATS/I 0.20 0.28 0.20 0.36 0.20
SCP 1.40 1.40 1.40 1.20 1.40
PCP 1.40 1.40 1.40 1.32 1.40
SCC 1.00 1.24 1.40 1.06 1.00
PCC 1.00 0.88 1.00 0.86 1.00

Table 2: The mean and median α of the top 1, top 10
and top 100 performing models for each task.

tors the hyperparameters as well as the task, before
computing SHAP values (Lundberg and Lee, 2017).
Corresponding results can be seen in Table 1: The
model had a residual mean standard error (RMSE)
of 0.17 on the test set (one third of the data). Re-
markably, the most important predictor was found
to be the negative sampling distribution smoothing
exponent α, with a mean absolute SHAP value of
0.69. Across most tasks, we find that values of α
tend to produce natural clusters of model scores
(see Figure 2 in Appendix C).

A summary of the distribution of performance
for α values by task is reported in Table 2. We
observe that common NLP benchmarks (FEEL,
simlex, as well as all categories of analogies in
GATS), appear to benefit from an α value of 0.2,
while the tasks we devised to target inflectional
morphology fare best with α ≥ 1. Derivational
tasks lie somewhere in between: in DerCS, where
processes are grouped by their semantics pattern
close to semantic tasks, the optimal α is slightly
higher than 0.2; in the three other tasks, optimal
α values range from 0.6 to 0.8. POS appears to
perform best with values in between those of in-
flection and derivation, with α slightly lower than
1. Data from GATS does not pattern as expected
given the analogical relation type.

Figure 1: Spearman correlation for performance of mod-
els with α > 0 on the different tasks.

We can further observe that values of α < 0 tend
to yield lower scores: Mann-Whitney U-tests in-
dicate that with the sole exception of GATS/sem,4

scores for positive values of α are significantly
greater (p < 10−30, common language effect
size: 0.6902 ≤ f ≤ 0.9993). Training boost-
ing trees only on models with α > 0 degrades
the fit (RMSE = 0.26 on the test set) but also re-
distributes the importance of the predictors, with
tasks playing a dominant role (0.44 mean absolute
SHAP) and α remaining a close second (0.37 mean
absolute SHAP).

These different optimal settings strongly suggest
that models that fare well on traditional NLP tasks
likely do not dominate on morphology tasks. To
establish whether this expectation is borne out, we
compute the correlation of scores for each pair of
tasks. Given the low scores for negative values of
α we have established, we restrict our observations
to values of α > 0; we refer the reader to Ap-
pendix C.4 for related results across all models. Re-
sults are shown in Figure 1. We observe that NLP
benchmarks (all subsets of GATS, SimLex-999,
FEEL) correlate well with each other, but less well
with the morphological tasks we devised (SCC,
PCC, SCP, PCP for inflection; DerCF, DerCS,
DerPF and DerPS for derivation), where correla-

4In fact, for GATS/sem, we find the opposite trend: Higher
values of α lead to lower scores (p < 10−5, f = 0.4266).
This is due to the fact that the highest values of α lead to even
greater decreases in performance than the lowest values of α.
Values of α ∈ {−0.2, 0.2} yield the highest scores.
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tion is lower and occasionally even negative. With
the exception of DerCS, derivational tasks pattern
in the middle, being highly correlated with each
other, and having middling levels of correlation
with both inflectional and semantic tasks.

5 Discussion

Two types of distributional information. The
results we observe in Section 4 suggest that models
exhibit a range of behaviours between two poles,
defined by whether the task is testing knowledge of
semantics or of morphosyntactic properties. Perfor-
mances on inflectional morphology on the tasks we
devised were uncorrelated or even anticorrelated to
SimLex-999 and GATS/sem results, the tasks that
targets lexical semantics in the most narrow sense
in our set. Why is that we observe such extreme
trade-offs—where better performances on semantic
similarity entail lower performances on inflection,
with derivation and POS-tagging patterning in the
middle? One possible answer lies in the theoretical
framework underpinning static word embeddings
such as word2vec, i.e., distributional semantics.

As Sahlgren (2008) and Gastaldi (2021) outline,
the distributional semantics framework of Harris
(1954) has historical ties with linguistic structural-
ism, through the works of Bloomfield (Bloomfield,
1933) and indirectly those of de Saussure (de Saus-
sure, 1916). If we consider the objective function
of neural embeddings such as word2vec, we see
that these models broadly attempt to predict a tar-
get word given its context: Embeddings attempt to
capture a conditional probability p(t|c) of targets
t given their context of occurrence c.5 This is the
hallmark of a “paradigmatic model”, as Sahlgren
(2008) puts it: In short, these models are trained to
guess which word might appear in a given context.
To hearken back to linguistic structuralism, we can
say these models attempt to fill in a given paradig-
matic slot in a syntagmatic context, or that they try
to establish associative series—which can involve
either formal relations or semantic relations.

From a distributionalist point of view, contexts
of occurrence constrain words in two different man-
ners: through morphosyntactic dependencies and
through lexical semantic requirements. In fact,
these two different types of constraints are obvious
if we compare the following examples:

5In practice, word2vec models can involve the related prob-
abilities p(c|t) (for skip-gram models) or p(t ∈ c) (for neg-
ative sampling models). Both of these can be related to the
probability of interest through renormalization or Bayes’ rule.

(i) You know, this is the way we eat in .

(ii) I think this game is really .

One can easily surmise that the blanked word in
Example (i) has to refer to a place: In other words,
the distributional cues around this gap constrain the
lexical semantics of words that can fit this specific
context. On the other hand, Example (ii) leaves the
semantics very much unconstrained, but requires
specific morphosyntactic features—valid inserts
range from “easy” to “stupid” to “dark” but their
validity hinges on their adjectival nature.

If we now return to our embeddings evaluation,
we can observe that the two different types of dis-
tributional constraints entail that it is logically pos-
sible that some tasks may show uncorrelated behav-
ior, as they measure a model’s ability to capture one
or the other of these types of constraints. Success
on our inflectional tasks requires a proper model-
ing of morphosyntactic cues, whereas success on
SimLex-999 requires a proper modeling of lexical
semantics. These two sets of tasks are extreme
positions in a trade-off situation: for SimLex-999,
morphosyntactic cues are irrelevant; likewise for
our inflectional tasks, capturing lexical semantics
is much less important—and may actually be detri-
mental to performance. That these two sets of tasks
correspond to extreme positions does suggest that
most distributional representation evaluations tasks
can be classified along two continuums, depending
on the extent to which they probe lexical semantics
and morphosyntactic modeling. These two aspects
are not orthogonal, but it is nevertheless useful to
consider them as distinct—especially given the in-
termediate position of derivational tasks and POS
tagging, as shown by their optimal α values (Ap-
pendix C.1) and correlation patterns (Figure 1).

Derivation in the middle. Derivational tasks in-
herently rely on a combination of morphosyntactic
and lexical semantics knowledge: French dever-
bal nouns in -eur can denote human professions
(recruteur ‘recruiter’), properties of human agents
(fumeur, ‘smoker’) or inanimate instruments (comp-
teur ‘counter’), among others. Properly handling
-eur forms requires that models capture on the one
hand the morphosyntactic regularities surrounding
agent or instrument nouns (e.g. often preceded by
an article, often within short distance of a transitive
verb), and on the other hand the different possible
relationships of lexical semantics between a verbal
base and its noun in -eur (agent, instrument etc).
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Further strengthening our analysis of distribu-
tional constraints as morphosyntactic or semantic,
we find that POS tagging, a task that is inherently
about capturing morphosyntactic relationships, but
which abstracts over individual relationships in or-
der to uncover regularities of a different nature,
patterns in between inflection and derivation.

Morphological clustering tasks. An important
point to stress is that the clustering tasks always
return negative average silhouette scores. In other
words, on average, any datapoint in the SCC, PCC,
DerCF and DerCS tasks could be better assigned
to some other cluster. This would suggest that
morphosyntactic contrasts do not shape the vector
space landscape in an intuitive, meaningful way,
even when the model has optimal hyperparameters
for the task. This is perhaps because paradigm
cells, despite their foundational role in morpho-
logical theory, need not describe a coherent group
of usages: despite both being plural nouns, chairs
refers to more than one instance of CHAIR while
scissors refers to a singular object. This is an ex-
treme example of a state of affairs that plagues
the concept of paradigm cell. Our tasks are also
defined on imbalanced classes, which intuitively
makes the tasks at hand more challenging. Further-
more, the performances we observe on prediction
tasks (SCP, PCP, DerPF, DerPS) are clearly above
random chance or majority label heuristics:6 This
again confirms that morphosyntactic cues are prop-
erly encoded in suitably hyperparametrized mod-
els, suggesting that poor performance of clustering
tasks is a consequence of the geometry of vector
spaces being defined by permeable boundaries be-
tween paradigm cells rather than a result of models
failing to capture existing patterns.

This fact also explains the behavior of the DerCS
task: while we can expect the information neces-
sary for solving the task to be present in models that
capture morphosyntactic features (as evidenced by
DerPS), the layout of the space makes this infor-
mation hard to retrieve by clustering means. In
addition, the use of semantic labels also entails that
the derivational relation we selected have lexical
semantic correlates, which can be exploited to per-
form well on the task. DerCS performance would
then be reliant on the same cues as semantics tasks,
explaining why it unexpectedly patterns with them.

6Macro-F1 for majority baselines: SCP: 0.019; PCP: 0.370
DerPF 0.006; DerPS: 0.051.

The deal with GATS. Analogy solving is an-
other case where prior assumptions are not borne
out by our experiments. GATS/I and GATS/D
should in principle pattern with inflectional and
derivational tasks respectively—however, all GATS
tasks behave more in line with semantic tasks.

One possible source of this unexpected result
is the frequency of the words employed in GATS.
GATS contains only fairly frequent lexemes, which
are more likely to have more senses, and irregu-
lar semantic and morphological relationships to
their base (Patterson et al., 2001; Baayen and del
Prado Martín, 2005; Wu et al., 2019)—all of which
place GATS/I further along on the lexical seman-
tics gradient than our tasks, which contain words
from all parts of the frequency gradient. GATS
morphological analogies do however occupy a me-
dian position: results on I and D analogies are not
as unrelated to morphological tasks as results for
the semantic-type analogies.

It is also worth noting that one can trivially
obtain high results on morphological analogies
through linear offset methods without having to
encode morphosyntactic features. If vectors only
track lexical semantic distributional constraints,
then we can expect two inflected forms of a given
lemma to have roughly equivalent embeddings. In
such a scenario, morphology-based analogies like
danse:dansait::mange:mangeait would entail that
⃗danse − ⃗dansait ≈ ⃗mange − ⃗mangeait ≈ 0⃗, and

therefore solving these analogies through linear
offsets would devolve into a trivial solution, e.g.:

x⃗ = ⃗danse − ⃗dansait + ⃗mangeait

≈ 0⃗ + ⃗mangeait ≈ ⃗mange

In other words, it is in principle possible for models
that do not encode morphological traits in any rele-
vant way (i.e., that only consider lexical semantic
distributional constraints) to succeed on this sup-
posedly morphological benchmark. Linzen (2016)
raises similar concerns and stresses that cues often
lie close to one another in word2vec space, which is
only one of the major points for which the analogy
task has been criticized (e.g. Rogers et al., 2017;
Schluter, 2018; Garg et al., 2018).

Why α? This gradient take on distributional
benchmarking tasks also explains why shaping the
negative sampling distribution is found to be so im-
pactful. If what is needed to succeed on inflectional
tasks is a good representation of the morphological
contrasts instantiated by the language of interest,

179



negative evidence for learning these contrasts can
be easily found at the very top of the vocabulary’s
frequency list: Contrasting the word of interest
with the full paradigm of a handful of frequent lex-
emes in the language would get one most of the way
to a working representation of morphological con-
trasts. Such extreme selection based on frequency
is not suited for semantic tasks, which benefit from
having a wider variety of negative examples and
thus prefer lower values of the exponent compared
to more purely morphological tasks.

To take a concrete example, consider the word
is. This word is highly frequent, and an exception-
ally poor disambiguator of aptitude to continue a
particular sentence: is can be used to express any
property intrinsic to the subject or circumstantial
(she is good vs he is here), to imply existence (she
thinks therefore she is), as an auxiliary to convey
the tense, aspect and mood of another verb (he is
going out, she is to go there tomorrow). Because
of its wide variety of uses, is may take any noun as
its subject or object, it may be modified by several
adjectives and adverbs, and may be found in a wide
variety of grammatical constructions. The sheer
frequency of the verb exacerbates this feature of its
usage. The distributional representation of is will
therefore collapse all of these uses into the same
representation, leading to a word embedding which
is itself not necessarily helpful in pinning down
the meaning and usage of is, but which is a good
representation of which cues are not particularly in-
formative about a word’s meaning, since they may
co-occur with many outcomes.

Hence we expect word frequency to be an accu-
rate correlate of words that are poor disambigua-
tors: Not only do frequent words by definition
occur in a large amount of linguistic contexts,
they also tend to have more senses (Zipf, 1942)
and to occur in more varied contexts (Dennis and
Humphreys, 2001). It is therefore unsurprising that
disproportionately taking frequent words as nega-
tive examples is helpful for morphological tasks:
because of the variety of contexts they occur in,
they are going to be particularly useful in warding
off unwarranted associations that are not important
for creating a representation of the target word.

Furthermore, frequent words are more likely to
have irregular morphology, while infrequent words
are much more likely to behave regularly (Wu et al.,
2019). While both regular and irregular words may
be frequent, it is very rare to find infrequent ir-
regular words: If a word does not follow regular

patterns, this information must be explicitly en-
coded in the mental lexicon, which is only possible
if the word is frequent enough to have a sufficiently
strong mental representation.7 Calling morphologi-
cal behavior “regular” amounts to saying that the
morphological pattern applies to many words, most
of which will be infrequent. Conversely, one ex-
pects irregular patterns to apply to a few frequent
words (Beniamine, 2018)—i.e., frequent words
have more varied behavior than infrequent words.
Hence, in order for a model to learn morphology, it
must focus on frequent words, which are the locus
of the greatest variety of patterns in the system.

This hypothesis correctly predicts that tasks in
which knowledge of morphosyntactic information
about specific words is being targeted will bene-
fit from the highest values of α: in our case, in-
flectional tasks, closely followed by POS tagging
(which targets more abstract morphosyntactic prop-
erties that aggregate over larger groups of words),
followed by derivational tasks (which target mor-
phosyntactic and lexical semantics information si-
multaneously) and lastly by those targeting lexical
semantics alone (SimLex-999, FEEL, GATS/Sem).
It also predicts that while tasks targeting lexical
semantics might benefit from lower values of α, no
linguistic task will benefit from oversampling from
the tail of the vocabulary with α ≤ 0.

6 Conclusions

In this paper, we showed that the performance of
static embeddings on morphological tasks need
not correlate with their performance on lexical se-
mantic tasks, which constitute most major NLP
benchmarks. Morphological tasks can be shown
to benefit from different hyperparameters than se-
mantic tasks; optimal settings for derivational and
inflectional processes also differ.

This is all the more crucial in theoretical mor-
phology approaches aiming to use distributional
representations as meaning proxies: our findings
highlight that the exact hyperparametrization can
affect the outcome we observe. Choosing hyperpa-
rameters is not theoretically neutral, and different
conclusions may emerge from different settings. In
particular, works in theoretical morphology that
rely on embeddings to compare derivation and in-
flection (e.g. Bonami and Paperno, 2018; Rosa and

7Work on language change supports this statement: Words
taking irregular patterns disappear from the language, or regu-
larize, unless they are frequent enough to have their irregular-
ity memorized (e.g. Lieberman et al., 2007).
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Žabokrtský, 2019) are at risk of reporting conclu-
sions biased in favor of inflection or derivation,
depending on the exact hyperparametrization of
their embeddings.

This methodological point ties in to another con-
tribution of this work, namely that we experimen-
tally underscore that distributional representations
are not purely lexical semantic representations, but
also incorporate morphosyntactic features. This
contrasts with the often held position that distri-
butional models are to be construed as meaning
representations (e.g. Schütze, 1992; Lenci, 2018;
Boleda, 2020; Apidianaki, 2023). The historical
structuralist roots of distributionalism highlighted
by Sahlgren (2008) and Gastaldi (2021) are espe-
cially useful to understand the limits inherent to
this position.

Beyond theoretical remarks, this work also of-
fers perspectives for other applications of distri-
butional models: Applications of (contextualized)
embedding architectures to morphology may have
interest in manipulating the frequency of the exam-
ples shown to the model. In particular, modeling
inflection benefits from paying close attention to
the head of the unigram distribution of words in a
corpus: We plan to explore whether sampling from
different smoothed vocabulary distributions also
helps models such as BERT (Devlin et al., 2019) to
capture inflectional patterns more accurately.

In all, the growing number of applications of
NLP to morphology makes it imperative that we
think more carefully about the data and tasks we
use for evaluation. Research attempting to con-
struct tools for morphology and morphologically
rich languages might be hindered by the Anglo-
centric approach prevalent in NLP. Here, we have
demonstrated for French CBOWs that the com-
mon practice of setting the α hyperparameter to
0.75 following Mikolov et al. (2013) is in fact
inappropriate—not only for morphology model-
ing but also for classical NLP benchmarks. This is
all the more concerning given that French is a well-
documented, resource-rich language with a vibrant
NLP research community, and begs the question
of how inappropriate are Anglo-centric choices for
typologically more distinct languages.
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A Word2vec and what it means to the
linguist

The first difficulty that comes to the linguist with
the adoption of NLP tooling is that of understand-
ing and interpreting the mechanics of the software
at hand. In this section, we start by providing a
brief technical overview of how the CBOW model
of Mikolov et al. (2013) functions in Appendix A.1,
and move on to a linguistics-oriented characteriza-
tion of its hyperparameters in Appendix A.2.

A.1 Algorithmic overview

At their core, distributional semantics models at-
tempt to characterize the distribution of words. For

neural-based models, this almost always entails es-
timating the probability of a token t in its context
c:

Pr(t|c) (1)

where c corresponds to some notion of context:
For CBOW, the context is construed as a sliding
window of words co-occurring in a sentence; For
BERT, contexts are equated to sentences; for causal
language models such as GPT, the context is under-
stood as all preceding words.

The CBOW architecture models probabilities
such as Equation (1) by means of learned vector
representations for words and contexts:

Pr (ti|c = (t1 . . . tm)) ∝ t⃗i · c⃗i (2)

Context representations correspond to sums of
word-level features:

c⃗i =

i−1∑

j=min(1, i−w)

e⃗j +

max(m, i+w)∑

j=i+1

e⃗j (3)

As such, the CBOW model consists in two sets of
vector representations: target vectors t⃗i, which are
solely used for estimating the probability of a word
in context, and input embeddings e⃗j which serve
both as a means to model the context and as input
features for downstream applications. Most studies,
this one included, concerns themselves with the
latter embeddings.

In the specific implementation we rely on (viz.
the gensim implementation, Řehůřek and Sojka,
2010), the window size w can be either fixed or
stochastically determined for every training exam-
ple. In details, this sampling corresponds to re-
placing the window size w in Equation (3) with
an effective window size ŵ uniformly sampled be-
tween 1 and w:

ŵ ∼ U(1, w) (4)

In practice, this entails that context words that are
k ≤ w tokens apart from the target word are dis-
carded in k/w of the training instances. Therefore,
context words that are closer to the target word are
more likely to be taken into account for prediction.

To estimate what probability to assign for a given
token in a given context, a practical approach con-
sists in training the model using both positive and
negative evidence, through a procedure known as
“negative sampling." This is equivalent to maximiz-
ing the objective O listed in Equation (5):

O = Pr (ti|c)−
∑

tn∈N
Pr(tn|c) (5)
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Simply put, a negative-sampling CBOW model is
trained to maximize the likelihood of an attested
word ti in its context c, and minimize the likelihood
of all words in a set N of negative examples (not
attested in this context c). The negative examples
tn ∈ N are randomly sampled for each positive
examples, using a distribution derived from the raw
frequency distribution Pr(t) of word types t in the
training corpus:

pn(t) ∝ Pr(t)α (6)

As is usual with neural networks, the parame-
ters t⃗1 . . . t⃗V and e⃗1 . . . e⃗V are estimated through
stochastic gradient descent, with the goal of max-
imizing the objective O in Equation (5). Rather
than testing for convergence of this objective on a
held-out validation set, it is more usual to expose
all of the available training data to the model for a
pre-determined number of times, or ‘epochs.’

A.2 Interpretation of hyperparameters

A keen reader, having suffered through Ap-
pendix A.1, might notice that the algorithm of a
CBOW negative-sampling model is—at least in
part—linguistically interpretable. In the present pa-
per, we specifically discuss five hyperparameters.

The window size w controls how contexts of oc-
currences are modeled. A large window entails
that more word tokens intervene in the definition
of a context representation c⃗i, whereas a smaller
window narrows the relevant context to the more
immediate surrounding of the target word. Like-
wise, whether or not to employ a dynamic window
size sampling algorithm, as detailed in Equation (4)
also interest the linguist, as this window size sam-
pling is equivalent to assigning a greater weight
to context words closer to the target words. In
other words, to re-purpose Firth’s (1957) famous
quip, the window w controls what company a word
keeps.

The number of negative examples, #N , deter-
mines how to weigh positive and negative evidence.
As a consequence, a larger sample set N of nega-
tive examples entails that the model will be more
penalized for assigned non-negligible probability
mass to negative evidence. Too large a N can how-
ever lead to a detrimental effect, as the model could
be incentivized to focus solely on minimizing the
negative evidence, thereby leading to an incoherent
modeling of the positive evidence. In short, the
size of the negative sample establish a position in

a trade-off between ensuring that spurious asso-
ciations between negative examples and attested
contexts do not arise (when #N is large), and em-
phasizing the importance of fitting to the attested
data (when #N is small).

A related point that will interest the linguist con-
cerns how to sample negative evidence; as we de-
tailed in Equation (6), the CBOW architectures
provide a negative sampling smoothing hyperpa-
rameter α to control this sampling process. Setting
a value closer to 0 allows one to sample more from
the tail of the vocabulary’s frequency distribution.
More precisely, remark that α = 0 entails sam-
pling negative examples uniformly over the entire
vocabulary sorted by frequency; α = 1 matches the
unigram frequency distribution in corpus; α > 1
over-emphasizes frequent words, and α < 0 over-
emphasises infrequent ones.

Lastly, an import hyperparameter to consider is
the number of epochs: Given that this controls how
often the same positive evidence is used to adjust
the model’s parameters, it has natural implications
for the reach of any claim derived from the use of a
CBOW model. From a practical point of view, we
also remark that a lower number of epochs might
result in a model that does not properly capture all
the intricacies of the positive evidence used for its
training—whereas a higher number of epochs can
lead to a model that “over-fits" its training data, i.e.,
does not generalize properly to novel data.

Remark that we have ignored some key hyperpa-
rameters that are often discussed in the NLP litera-
ture. In particular, we do not discuss the dimension
of the trained embedding as it has no obvious sim-
ple linguistic interpretation.

B Data used in experiments

B.1 Analogical relations in GATS

Subset Section

Inflection gram3-present-participle
Inflection gram4-past-participle
Inflection gram5-plural
Inflection gram6-nationality-adjective
Inflection gram7-past-tense
Inflection gram8-plural-verbs

Derivation gram1-adjective-to-adverb
Derivation gram2-opposite

Semantic antonyms-adjectives

(Continued on next column)
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(Continued from previous column)

Subset Section

Semantic capital-common-countries
Semantic capital-world
Semantic city-in-state
Semantic currency
Semantic family

Table 3: Analogical relations in GATS, grouped as
inflection, derivation or semantics.

B.2 Morphological processes in Demonette

Type Process N. pairs

Sem. 1A>N 1324
Sem. 1A>V 423
Sem. 1N>A 3870
Sem. 1N>V 2631
Sem. 1V>A 2960
Sem. action 7520
Sem. agent 2302
Sem. el:N>A 279
Sem. eur:V>A 356
Sem. ième:NUM>A 57

Form. CONVERSION:N>A 182
Form. CONVERSION:N>V 2353
Form. CONVERSION:V>N 2345
Form. PST.PART:V>A 317
Form. Vble:V>A 324
Form. age:V>N 1625
Form. aire:N>A 424
Form. al:N>A 449
Form. ance:V>N 95
Form. ant:V>A 915
Form. el:N>A 279
Form. erie:A>N 99
Form. erie:V>N 85
Form. eur:V>A 356
Form. eur:V>N 1580
Form. euse:V>N 526
Form. eux:N>A 402
Form. ien:N>A 98
Form. ier:N>A 201
Form. if:N>A 372
Form. if:V>A 132
Form. ifier:A>V 50
Form. ion:V>N 1946
Form. ique:N>A 1742
Form. iser:A>V 373

(Continued on next column)

task α e N w s

SimLex-999 0.2 1 15 15 False
FEEL 0.2 5 25 5 False
GATS/sem 0.2 5 25 10 False

GATS/D 0.2 3 25 15 False
DerCF 0.6 3 10 5 False
DerCS 0.2 3 20 5 False
DerPF 0.6 5 5 5 False
DerPS 0.6 5 5 5 False
POS 1.0 5 10 5 False

GATS/I 0.2 5 25 10 False
PCC 1.4 3 25 5 True
SCC 1.4 3 10 5 False
PCP 1.0 5 5 5 False
SCP 1.0 5 20 10 False

Table 5: Hyperparameters of best performing model by
task.

(Continued from previous column)

Type Process N. pairs

Form. iser:N>V 278
Form. itude:A>N 62
Form. ité:A>N 1082
Form. ième:N>A 57
Form. ment:V>N 1285
Form. rice:V>N 196
Form. té:A>N 81
Form. ure:V>N 73
Form. é:V>A 1272
Form. ée:V>N 66

Table 4: Processes from Démonette

C Supplementary results

C.1 Optimal hyperparameters for each task

We provide the optimal hyperparameters for each
task in Table 5 for replication purposes. As noted in
the main text, the most obvious trend we can iden-
tify is the α hyperparameter. We can also remark
that most task benefit from training across multi-
ple epochs (with the exception of SimLex-999),
and most do not benefit from the shrinking s (with
the exception of SCC). Also worth highlighting is
that we do not observe that large windows favor
semantic tasks.
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task highest deciles
score 9th 8th 7th 6th 5th 4th 3rd 2nd 1st

SimLex-999 0.310 0.292 0.282 0.272 0.261 0.250 0.242 0.232 0.223 0.213
FEEL 0.399 0.378 0.372 0.366 0.359 0.348 0.333 0.302 0.266 0.225
GATS/S 0.330 0.283 0.247 0.229 0.200 0.173 0.153 0.130 0.101 0.071

GATS/D 0.176 0.132 0.114 0.098 0.086 0.073 0.060 0.039 0.019 0.008
DerCS −0.005 −0.012 −0.015 −0.019 −0.026 −0.034 −0.050 −0.080 −0.099 −0.112
DerCF −0.026 −0.052 −0.062 −0.071 −0.083 −0.098 −0.135 −0.170 −0.193 −0.210
DerPF 0.549 0.502 0.486 0.471 0.456 0.425 0.355 0.272 0.206 0.157
DerPS 0.746 0.700 0.686 0.674 0.658 0.621 0.523 0.425 0.340 0.275
POS 0.744 0.716 0.704 0.694 0.680 0.651 0.587 0.524 0.462 0.392

GATS/I 0.379 0.332 0.305 0.284 0.259 0.237 0.204 0.183 0.158 0.119
SCC −0.101 −0.168 −0.203 −0.251 −0.303 −0.331 −0.346 −0.354 −0.360 −0.373
PCC −0.099 −0.157 −0.188 −0.221 −0.261 −0.292 −0.304 −0.313 −0.320 −0.329
SCP 0.817 0.778 0.752 0.719 0.600 0.434 0.374 0.325 0.273 0.228
PCP 0.526 0.486 0.475 0.464 0.449 0.403 0.394 0.391 0.389 0.387

Table 6: Maximum and deciles of scores per task

C.2 Highest performances per task

In Table 6, we summarize our models’ scores on
each of the task, by looking at both the maximum
score achieved and deciles. We can make two key
observations: First, as stressed in the main text
scores for morphological clustering tasks are sys-
tematically negative, meaning that embeddings do
not form homogeneous, well-delineated clusters
according to morphological features. Second, the
spread between the first and ninth deciles tends
to be be much more extreme with morphologi-
cal tasks (both inflectional and derivational) than
with semantic task. Whether these results suggest
that morphological distinctions are not adequately
captured by distributional models in general, or
whether the blame is to be pinned on word2vec
more specifically is an intriguing question we in-
tend to pursue in future work.

C.3 Correlation matrices by values of α

We can visualize the difference of quality induced
by the α hyperparameter. can be visualized by plot-
ting, for each pair of task, how individual model
scores relate to one another and what value of α
they use, as shown in Figure 2 for five of the tasks
(simlex, DerPS, PCP, POS, GATS.D and GATS.I).
Correlation in performance across pairs of tasks
tends to be monotonic between our morphological
tasks as well as between traditional NLP bench-
marks, however our morphological tasks do not
appear to align well with traditional benchmarks.
The sole exception to that is the POS-tagging task,

which is found to correlate very strongly with our
morphological derivation prediction tasks (shown
in Figure 2i) and entertains a complex, non-linear
relationship with all other NLP benchmarks. The
α hyperparameter also accounts for much of the
variation we observe: different values of α tend to
produce easily delineated clusters of models, ex-
cept when comparing GATS and SimLex-999 (see
Figures 2j and 2k). In this latter case, note that
values of α produce poorer results on both bench-
marks the further away they stray from the optimal
value of α = 0.2, suggesting that here as well α
determines much of the attested behavior.

C.4 Trends when including α < 0

There are some interesting trends that emerge from
looking at models with α < 0 which we have
not discussed in the main text so as to focus our
argument on more successful models.

One interesting empirical approach that we can
take to highlight the effect of these negative α hy-
perparametrizations consists in performing cluster-
ing analyses as shown in Figures 3a and 3b: in-
flectional, derivational and semantic tasks reliably
clustered closely with tasks of the same linguistic
type but, depending on the specific clustering al-
gorithm, derivational tasks formed superclusters
with inflection (e.g. full linkage clustering) or with
semantics (e.g. UPGMA), confirming the interme-
diate status of derivational tasks. This matches with
the argument we lay out in Section 5. However, if
we instead only focus on α > 0 as in Figures 3c
and 3d, this effect is no longer observed, and deriva-
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2: Selected examples of the correlation patterns found in our task set. α can be seen to account for most
variation in performance.

tion tasks (with the exception of DerCS) always
cluster with inflection tasks.

Another factor to point to is that the core ob-
servations from Section 4 also hold when looking
at all models. For instance, that tasks cluster de-
pending on the type of linguistic knowledge they
target is reflected in Figure 4, although the general
picture is overall less clear than when restricting
the analyses to α > 0.
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(a) UPGMA, all α

(b) Complete linkage, all α

(c) UPGMA, α > 0

(d) Complete linkage, α > 0

Figure 3: Task hierarchical clustering based on observed
scores.

Figure 4: Spearman correlation for performance of mod-
els with all values of α on the different tasks.
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