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Abstract

Many phonological processes – including ex-
emplars of local harmony, iterative spreading,
and long-distance harmony patterns – have
been shown to belong to the Output (Tier-
based) Strictly Local (O(T)SL) functions. This
article provides an algebraic analysis of these
processes. The algebraic approach to subreg-
ular pattern complexity is important because
it unifies the computational characterizations
of constraints and processes, while leverag-
ing a wealth of results in theoretical computer
science on the structural properties of these
classes. These structural properties are useful
because they underlie algorithms for classify-
ing and learning.

The first result shows that the O(T)SL class
has no corresponding algebraic characteriza-
tion. The second result establishes that canoni-
cal examples of these processes belong to the
definite and reverse definite classes, or their
tier-based extensions, some of the simplest al-
gebraic classes. The third result provides a sin-
gle learning algorithm for these classes which
identifies them in the limit from positive data.

1 Introduction

Local harmony, iterative spreading, and long-
distance harmony processes are ubiquitous in
natural languages and have been the subject of
much linguistic (Walker, 1998, 2011, 2014; Rose
and Walker, 2004; Hansson, 2010; Nevins, 2010;
van der Hulst, 2018) and computational (Heinz
et al., 2011; Heinz and Lai, 2013; Chandlee et al.,
2015; Aksënova and Deshmukh, 2018; Burness
and McMullin, 2019; Burness et al., 2021; Lam-
bert, 2023) research. Much of this latter work stud-
ies the computational properties of these processes
when viewed as string-to-string functions.

Following Filiot et al. (2019), we consider al-
gebraic analyses of such functions. Each function
can be associated with a semigroup and classified

p @ N a w a s a n

Figure 1: Two analyses of iterative spreading

according to properties of that semigroup. For ex-
ample, Lambert and Heinz (2023) proved that, con-
sidering only total functions, the input strictly local
functions (ISL) (Chandlee et al., 2014) are pre-
cisely the algebraic variety of definite functions.

Output Strictly Local (OSL) functions (Chandlee
et al., 2015) are one way to characterize and repre-
sent phonological processes such as local harmony
and iterative spreading (Chandlee and Heinz, 2018),
and when combined with tiers, long-distance har-
mony (Burness et al., 2021). These processes are
commonly understood as output-oriented because
the output at any given point appears to depend on
some prior output.

As an example, consider iterative spreading in
Johore Malay where /p@Nawasan/ ‘supervision’ is
pronounced as [p@Nãw̃ãsan] with nasalization on
a successive sequence of vowels and semivowels
(Heinz, 2010). Consider the rules shown below.

[−cons]→ [+nas]/[+nas]__ (1)

[−cons]→ [+nas]/[+nas][−cons]∗__ (2)

In order for Rule 1 to account for the nasal itera-
tive spreading in Malay, it must apply iteratively
from left to right. Consequently, the second [ã]
is nasalized because the preceding glide has been
nasalized in an earlier iteration of the rule. On the
other hand, Rule 2 can apply simultaneously. The
analysis with Rule 1 is considered output-oriented,
but not the analysis with Rule 2. The applications
of Rules 1 and 2 are schematized in Figure 1 in
red and blue respectively. This issue is relevant
today: Walker (2014) argues on empirical grounds
that some harmony processes in some languages
should be analyzed in the way suggested by Rule 2,
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though her analysis uses Optimality Theory.
This article contains three main results. The

first is that every finite semigroup is the syntactic
semigroup of some OSL function. Since there are
sequential functions that lie outside of this class,
no algebraic variety can contain all and only the
O(T)SL functions.

The second result is an algebraic analysis of a
sample of canonical local harmony, iterative spread-
ing, and long-distance harmony processes. By
“canonical”, we mean specific patterns in the lit-
erature that served to motivate the Output Strictly
Local class and other related classes (Chandlee
et al., 2015; Burness et al., 2021). The focus is less
on the processes themselves, and more on the alge-
braic techniques by which they are classified. We
make no claim that these processes are represen-
tative of the most complex of attested phenomena,
which is often the subject of debate (see for exam-
ple Kula and Syed, 2020).

For each process, we provide an algebraic analy-
sis and discuss the classes in which it lies. We find
that the patterns we consider have their behaviors
fixed by either the k most recent symbols encoun-
tered or the first k symbols encountered, poten-
tially projected onto a tier. This corresponds to the
(tier-based) definite or (tier-based) reverse-definite
classes of formal languages. In other words, the
actual processes the O(T)SL functions were intro-
duced to describe actually belong to some of the
simplest and most restrictive algebraic classes. Fur-
thermore, in the case of iterative spreading and
long-distance harmony, the algebraic analysis indi-
cates an interpretation akin to Rule 2. In this way,
this paper provides a deeper insight into processes
that have been described as output-oriented in the
phonological literature.

Third, we present a learning algorithm, based
on the smallest algebraically natural class which
includes these functions, and prove it is learnable
in the limit from positive data. As such, this algo-
rithm does not take into account the output-oriented
nature of the processes considered.

Section 2 recalls some relevant definitions. Then
§3 shows how to conduct an algebraic analysis us-
ing post-nasal voicing as a running example. Then
§4 demonstrates that no algebraic property can dis-
tinguish the output (tier-based) strictly local func-
tions from arbitrary other sequential functions. §5
follows by providing algebraic analyses for several
other processes that have been analyzed as output-
oriented. §6 presents a learning algorithm based

on SOSFIA (Jardine et al., 2014) that is powerful
enough to handle the processes considered. Discus-
sion and concluding remarks follow in §7.

2 Preliminaries

This section recalls basic definitions and notation.
Given a finite alphabet Σ, let Σ∗ denote the set of
finite strings over Σ. Let λ denote the string of
length 0 and |w| the length of string w. For all
strings w ∈ Σ∗, define Suffk(w) to be the string
v if there exists u ∈ Σ∗ such that w = uv and
|v| = k and to be w otherwise.

A tier T is a subset of Σ and the tier projection
of a string w is defined recursively as follows. For
the base case, πT (λ) = λ, and for the inductive
case, πT (wa) = πT (w)a iff a ∈ T and πT (w)
otherwise. Symbols in Σ − T are called neutral
letters and symbols in T are called salient.

A semigroup is a set S closed under an associa-
tive multiplication operation. An element a of S is
idempotent whenever aa = a. If all elements of
S are idempotent, then S is a band.

A finite-state transducer is an abstract machine
that reads an input sequence, one symbol at a time,
and produces one or more sequences as output
(Raney, 1958). In this work, we are concerned
only with total, sequential transducers, the subset
of these machines in which computation is deter-
ministic and each input sequence produces one
and only one output sequence (Schützenberger,
1977). Formally, such a machine is a 8-tuple:
A = ⟨Q,Σ,Γ, δ, q0, ρ, σ⟩, where Q is a finite set
of states, Σ a finite set of input symbols, Γ a fi-
nite set of output symbols, δ : Q× Σ→ Q× Γ∗ a
transition function, q0 ∈ Q an initial state, ρ ∈ Γ∗

a prefix prepended to all output sequences, and
finally σ : Q→ Γ∗ a suffixing function.

The machine processing function µ is defined
recursively. For the base case, let µ(q, λ, v) =
vσ(q). The recurrence is given in Equation 3 below
where a ∈ Σ, δ(q, a) = (q′, w).

µ(q, au, v) = µ(q′, u, vw) (3)

Then the function f : Σ∗ → Γ∗ that A computes is
f(w) = µ(q0, w, ρ).

For every sequential function f , there is a unique
(up to isomorphism) sequential transducer repre-
senting it, which is its minimal onward form. In-
formally, onwardness means the output is produced
as early as possible. Readers are referred to Chof-
frut (2003) for technical details. The transducers
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introduced in this article, upon which the algebraic
analyses are based, are all in minimal onward form.

Sequential functions come in two types: left-
to-right–sequential and right-to-left–sequential.
Left-to-right–sequential are defined as above.
Right-to-left–sequential functions can be repre-
sented by transducers which process the input
string from right to left.1 In general, reversing the
direction of the transducer computes the reversal of
the process. For example, reversing the direction of
a transducer for post-nasal voicing yields pre-nasal
voicing, and reversing the direction of a transducer
for regressive symmetric harmony yields progres-
sive symmetric harmony.

It will be convenient to refer to the first compo-
nent of the transition function. Whenever δ(q, a) =
(q′, w), we write q ∗ a = q′.

For any tier T ⊆ Σ, a is a neutral letter if and
only if for all q ∈ Q it is the case that q ∗ a = q
(Lambert, 2023). In other words, neutral letters are
exactly those which never cause state to change.

A function f is Output Strictly k-Local (k-
OSL) if there is sequential transducer representing
f with the property that the current state is entirely
determined by the k − 1 most recent symbols of
output (Chandlee et al., 2015). In terms of the
recurrence relation (Equation 3), this means that
q′ = Suffk−1(vw).

The Output Tier-based Strictly k-Local (k-
OTSL) functions are defined in the same way, ex-
cept that the suffix is taken after projection to a
fixed set of salient symbols (Burness et al., 2021).
As with sequential functions, O(T)SL functions
come in left-to-right and right-to-left variants.

Input Strictly k-Local (k-ISL) functions are
also defined similarly where the suffix is taken over
the input symbols (Chandlee et al., 2014).2

3 Algebraic Analysis

The algebraic theory of formal languages and func-
tions provides a window into the kind of informa-
tion to which a perceiver must attend when learning
a pattern or when classifying it (Rogers et al., 2012;
Filiot et al., 2016, 2019; Lambert, 2022).3 This sec-
tion explains the fundamentals of algebraic analysis
of string-to-string functions using the phonological

1One way for A to process w right-to-left is to give A the
reverse of w and then reverse its output.

2The left-to-right and right-to-left ISL functions are the
same class.

3A link to open source software for classifying and learning
patterns will be provided upon acceptance.

1λ 2λ

N:ND:D

T:T

V:V

D:D
T:D
V:V

N:N

Figure 2: A minimal transducer for post-nasal voicing.

process of post-nasal voicing as a running example.
As an example, consider the phonological pro-

cess of post-nasal voicing (PNV) in the Puyu Pungo
dialect of Quechua, investigated by Burness et al.
(2021). Here, a voiceless obstruent directly fol-
lowing a nasal becomes voiced. A transducer in
minimal onward form for PNV is shown in Fig-
ure 2, where ‘V’ represents a vowel, ‘N’ a nasal
consonant, ‘T’ a voiceless obstruent, and ‘D’ a
voiced obstruent. States are labeled by an integer
index and the output of the suffixing function σ.
Edges are labeled with their input and output, in or-
der, separated by a colon. The initial state is black.

Because this transducer is small, visual inspec-
tion is sufficient to establish that PNV is both ISL
and OSL. The set of length-one input suffixes that
lead to state 1 are {$,D,T,V}, where $ represents
the beginning of the string, while the set of those
that lead to state 2 is {N}. The sets are disjoint;
thus, the function is ISL. Exactly the same analysis
applies to output suffixes, so the function is OSL.

3.1 Transition Semigroups

Given a finite-state machine, its transition semi-
group) is built from the actions of each letter,
which are the changes they make to the state
space. Formally, given a listing of the states in
Q, ⟨q0, . . . qn⟩, the action given by a ∈ Σ is the
tuple ⟨q0 ∗a, . . . qn ∗a⟩. Note that distinct symbols
may have the same action, which means they ex-
hibit the same behaviors. Importantly, since neutral
letters do not change state, their action is always
the identity action ⟨q0, . . . qn⟩, denoted 1.

The actions given by the letters form the basis of
the transition semigroup. The rest of the semigroup
is generated as follows. Given two actions a and
b, one constructs the product ab by first applying
a, then applying b to its result: b ◦ a. The product
is potentially a new action. However, as there are
finitely many states, there are ultimately at most
finitely many actions over these states. The transi-
tion semigroup is the set of actions generated under
this composition, including the basis.

In the transducer for PNV in Figure 2, the list-
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Figure 3: Multiplication table (left) and eggbox diagram
(right) for post-nasal voicing.

x y

x x y
y x y

x y

ing of states is given by their index. Observe that
⟨1∗N, 2∗N⟩ = ⟨2, 2⟩, and ⟨1∗D, 2∗D⟩ = ⟨1, 1⟩.
In fact, there are two actions which arise from in-
dividual letters in this transducer: x = ⟨1, 1⟩ from
‘D’, ‘T’ and ‘V’, and y = ⟨2, 2⟩ from ‘N’. Thus,
x, y are the basis of the transition semigroup.

Recall that successive actions in the transducer
translate to multiplication in the semigroup. Ob-
serve that xy = y because (i) x = ⟨1, 1⟩, which
means that it maps state 1 to state 1 and state 2 to
state 1, (ii) y = ⟨2, 2⟩ means that it maps state 1 to
state 2 and state 2 to state 2, and (iii) when action
x is followed by action y, the product action maps
state 1 to state 2 and state 2 to state 2, which is the
same action as y. Similar reasoning reveals that
xx = x, xy = y, yx = x, and yy = y. Additional
multiplication yields no new actions, so this pair of
elements makes up the entire syntactic semigroup,
shown in Figure 3 (left), where the cell at row x and
column y is the product xy. The eggbox diagram
shown at right in Figure 3 is another representation
of the structure, which will be discussed in more
detail in §3.4.

The transition semigroup of a transducer A in
minimal onward form for a sequential function f is
the syntactic semigroup of A (Filiot et al., 2016).
Since the states of the minimal automaton corre-
spond to minimally distinct behaviors, the syntactic
semigroup indicates how input sequencing influ-
ences the behavior of f .

Since the transducer in Figure 2 for PNV is in
minimal onward form, its transition semigroup is
that function’s syntactic semigroup.

3.2 Varieties
A variety is a class of semigroups closed under fini-
tary direct products (tuples which multiply point-
wise), quotients (structured merges of elements),
and inverse nonerasing homomorphisms. Inter-
ested readers are referred to Almeida (1995) for
more information on these operations in addition to
the varieties discussed in this article and others. Pin
(1984) discusses the relationship between varieties
of semigroups and varieties of formal languages,
which can be extended to string-to-string functions

(Lambert, 2022). As a consequence of Eilenberg’s
variety theorem (Eilenberg, 1976), many important
classes of formal languages and string-to-string
functions are characterized by properties of their
syntactic semigroup (Pin, 1984; Lambert, 2022).
As an example, the class of ISL functions corre-
sponds exactly to the variety of definite semigroups,
defined below (Lambert and Heinz, 2023).

3.3 Green’s relations
Many important varieties, including the definite va-
riety, can be expressed in terms of binary relations
defined by Green (1951). Given a semigroup S,
Colcombet (2011) gives the following preorders.4

• a ≤L b iff a ∈ Sb ∪ {b}.

• a ≤R b iff a ∈ bS ∪ {b}.

• a ≤J b iff a ∈ SbS ∪ Sb ∪ bS ∪ {b}.

Then a is “L-related” to b (denoted a L b) if and
only if a ≤L b and b ≤L a. If S contains no
pair of distinct elements that are “L-related” it is
said to be L-trivial. The relations R and J , and
the propertiesR-trivial and J -trivial, are defined
similarly.

A semigroup belongs to the variety D of definite
semigroups if and only if it is L-trivial and the only
idempotent elements lie in the minimal J -class.
Similarly, a semigroup belongs to the variety K
of reverse definite semigroups if and only if it is
R-trivial and the only idempotent elements lie in
the minimal J -class (Almeida, 1995).

Recalling that neutral letters give rise to the iden-
tity action 1, Lambert (2023) defines a semigroup
S to be tier-based definite (reverse definite) if and
only if the elements of S other than 1 satisfy the
conditions for definiteness and reverse definiteness.
The tier-based definite and reverse definite classes
are denoted JDKT and JKKT , indicating the inter-
pretation of the variety on some tier T .

A semigroup’s multiplication table reveals which
elements of the semigroup stand in which of
Green’s relations. Two elements are R-related if,
in the multiplication table of their semigroup, their
rows contain the same set of elements, including
the labels (the elements themselves). Figure 3 (left)
for PNV shows x and y are R-related, as each
labels a row consisting of the set {x, y}.

Two elements in a semigroup are L-related if
the columns of the multiplication table contain the

4Note Sb = {xb : x ∈ S} and similarly for bS and SbS.
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same set of elements, including the labels. In Fig-
ure 3 (left), the column of x is {x} while that of y
is {y}, so no two distinct elements are L-related.

Finally, the J -order is defined such that x ≤J y
if and only if the union of the columns specified in
the row of x is a subset of the union of the columns
specified in the row of y. In Figure 3 (left), the
row for x is {x, y}, and the union of those columns
is {x} ∪ {y} = {x, y}. The same holds for y, so
x ≤J y and y ≤J x. Thus x J y.

Synthesizing, no two elements in the syntactic
semigroup for PNV are L-related (it is L-trivial).
Also, x and y are idempotents and they are J re-
lated and thus belong to the same J -class. This J -
class is minimal since it is the only one. Therefore,
this semigroup satisfies the definition of a definite
semigroup and belongs to D. It does not belong to
K because two of its elements areR-related.

This algebraic analysis confirms the earlier ISL
analysis. Moreover, it is a band. One conse-
quence is that the degree of definiteness (the suffix
length under consideration) is 1 (Lambert, 2022)
and therefore the k-value for which it is ISL is 2.

3.4 Eggbox Diagrams
Another useful representation of a semigroup is
given by what Clifford and Preston (1961) call
the eggbox diagram, whose design is based on
Green’s relations. The eggbox diagram is con-
structed as a collection of grids. Within a grid,
two elements share a row if and only if they are
R-related. They share a column if and only if they
are L-related. All elements within a grid are equal
with respect to the J -order. Grids are organized
into a graph such that an edge exists from one to
another if and only if the target is lower with re-
spect to the J -order than the source. There can be
no cycles, so in depictions the source shall always
be the higher grid. Finally, idempotent elements
have their cells shaded. The eggbox diagram of
the syntactic semigroup for PNV is shown in Fig-
ure 3 (right). The eggbox diagram makes clear that
this semigroup belongs to the definite variety D
because it shows there is one J -class, so it is mini-
mal, and its elements are idempotent. Furthermore,
every column in this grid is of depth one and so
no pair of distinct elements are L-related. Eggbox
diagrams are used for later analyses.

3.5 Directionality
The transducer in Figure 2 operates from left to
right. A transducer operating right-to-left which

1λ 2T

T:λ
D:D

N:N

V:V

D:TD
N:DN
V:TV

T:T

Figure 4: Right-to-left version of post-nasal voicing.

computes the same function does not necessarily
have the same structure. Figure 4 depicts a right-to-
left machine for the same post-nasal voicing pro-
cess. It is interesting to observe that this transducer
has the same structure as would arise from a left-to-
right transducer, in minimal onward form, comput-
ing prenasal voicing. When a voiceless obstruent
is encountered, output is delayed until the follow-
ing symbol, when it is known whether the output
should be voiced or voiceless. The right-to-left
computation remains ISL, as the set {$,D,N,V}
of suffixes lead to state 1, while the set {T} of suf-
fixes lead to state 2. But it is does not have an
OSL structure, as ‘T’ moves from state 1 to state
2 without outputting anything; the k-suffix of the
output is unchanged while the state changes. This
demonstrates the well-known fact that output strict
locality is directional (Chandlee et al., 2015).

The basis of its syntactic semigroup, however, is
the same as before: x = ⟨1, 1⟩ from ‘D’, ‘N’ and
‘V’, and y = ⟨2, 2⟩ from ‘T’. Thus, the syntactic
semigroup is also the same. This is coincidental
and is not generally guaranteed, as witnessed by
analyzing iterative spreading in §5.

4 OSL is not Algebraic

Given that algebraic results provide new tools for
classifying and learning and that ISL functions cor-
respond exactly to functions with definite semi-
groups, it is natural to ask what variety, if any,
corresponds to OSL functions.

Theorem 1. For any finite semigroup S, there is
an OSL function whose syntactic semigroup is pre-
cisely S.

Proof. Let S be a finite semigroup generated by
a basis B ⊆ S. Let Γ be an alphabet containing
at least two letters. Further, let n be ⌈log|Γ||S|⌉.
Finally let f : S → Γn be an injective function
assigning to each element of S a unique arbi-
trary string in Γn. At this point we can construct
a sequential transducer A = ⟨S,B,Γ, δ, 1, λ, f⟩,
where δ : S × B → S × Γ∗ where δ(x, y) =
⟨xy, f(xy)⟩. The output is produced n symbols
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1λ 2λ

V:V

T:T

Ṽ:Ṽ
N:N V:Ṽ

Ṽ:Ṽ

N:N
T:T x y

1

Figure 5: Iterative nasal spreading, with eggbox.

at a time and the state is fixed by the last n output
symbols. So this transducer is clearly OSL.

It is also minimal, as every state yields a different
output upon termination. Thus the syntactic semi-
group ofA is equivalent to its transition semigroup,
which by construction is identical to S itself.

It follows that for any non-OSL sequential func-
tion, there exists an OSL function with the same
syntactic semigroup. Thus this class of functions
does not correspond to a variety of semigroups and
is not well-behaved under Eilenberg’s theory.

5 Analysis of Output-Oriented Processes

We are thus led to ask which algebraic varieties
the phonological processes that motivated the OSL
class belong to, if any. This section examines
canonical attested processes that have been ana-
lyzed in an output-oriented way: iterative spread-
ing processes like nasal spreading, and harmony
processes, both symmetric and asymmetric, such
as sibilant harmony. The algebraic analyses show
these processes to be (tier-based) definite or (tier-
based) reverse definite. The results of the analysis
are summarized in Table 1 (page 7).

5.1 Iterative Spreading

Post-nasal voicing is an example of noniterative
assimilation. Chandlee et al. (2015) examine the
process of local iterative nasal spreading in Johore
Malay, where contiguous sequences of vowels and
glides are nasalized following a nasal. This func-
tion is depicted in Figure 5, where ‘N’ represents
a nasal, ‘T’ any other consonant, ‘Ṽ’ a nasalized
vowel or glide, and ‘V’ any other vowel or glide.
Here, there are three distinct actions that arise from
the letters: 1 = ⟨1, 2⟩ from ‘V’, x = ⟨1, 1⟩ from
‘T’, and y = ⟨2, 2⟩ from ‘N’ and ‘Ṽ’. The letter
‘V’ is neutral because it does not change state, and
so it corresponds to the identity action 1 (Lam-
bert, 2023). The eggbox diagram revealing Green’s
relations is shown in Figure 5.

This process is not definite, as there is an idempo-
tent (1) outside of the minimal J -class. However,
it is still L-trivial: no two distinct elements are

1λ 2λ 3λ

X:X

s:S

S:S

X:X

S:S s:s

X:X

s:S

S:S
a

b

1

Figure 6: Symmetric harmony, with eggbox.

L-related. It is still a band as well. However, if
not for the neutral element it would be the same
definite semigroup as the one witnessed for PNV.
Algebraically, the semigroup satisfies the definition
of tier-based definite. It belongs to JDKT .

The tier-based behavior can also be understood
from the transducer. The state is determined by the
most recent input symbol after projection to the tier
T = {T,N, Ṽ}, as the suffixes {$,T} lead to state
1 while {N, Ṽ} lead to state 2. As mentioned, the
only letter off the tier is ‘V.’

The right-to-left version of this process is not
sequential, as a stream of ‘V’ must be buffered in-
definitely to determine whether they must become
‘Ṽ’ or stay ‘V’, and so it shall not be analyzed.

This section has shown how processes of itera-
tive spreading can be understood as a local process
operating on a tier.

5.2 Symmetric Harmony

Heinz (2010) describes the symmetric harmony
pattern of Navajo, where the existence of a
[− anterior] sibilant such as ‘S’ triggers all prior
[+ anterior] sibilants such as ‘s’ to assimilate and
become [− anterior], and vice versa. The left-to-
right version of this process is not sequential, as all
sibilants must be buffered until the string ends to
know which type surfaces. We therefore analyze
only the right-to-left version, depicted in Figure 6,
where ‘s’ represents a [+ anterior] sibilant, ‘S’ a
[− anterior] sibilant, and ‘X’ any other segment.

There are three actions induced by the letters:
1 = ⟨1, 2, 3⟩ from ‘X’, a = ⟨1, 3, 3⟩ from ‘s’, and
b = ⟨1, 1, 3⟩ from ‘S’. Composition yields no new
elements, and 1 is neutral.

The eggbox diagram is also shown in Figure 6.
The semigroup is does not belong to D because
two elements are L-related. On the other hand, no
elements areR-related, suggesting it may belong
to K. However, there is an idempotent outside the
minimal J -class and so it does not belong to K.
But it does satisfy Lambert’s (2023) definition of
tier-based reverse definite. It belongs to JKKT .

Interestingly, symmetric harmony is the dual

134



1λ 2λ

X:X

s:s

S:S

X:X

s:S

S:S

y

1

Figure 7: Asymmetric harmony, with eggbox.

of the structure for iterative spreading. For itera-
tive spreading, the behavior is fixed by the k most
recent symbols seen on the tier. For symmetric
harmony, it is fixed instead by the first k symbols
seen on the tier.

5.3 Asymmetric Harmony

Heinz (2010) also describes harmony in Sarcee,
where only the [− anterior] sibilants are active.
Again, this is not sequential when processing left-
to-right, so we analyze only the right-to-left version.
The minimal transducer is shown in Figure 7.

Two actions are induced by the letters: the neu-
tral element 1 = ⟨1, 2⟩ from ‘X’ and ‘s’, and
y = ⟨2, 2⟩ from ‘S’. Composition yields no new el-
ements. The eggbox is shown in Figure 7. As with
iterative spreading, this is tier-based definite, and
the degree of definiteness is one because it forms
a band. The behavior is fixed by the most recently
seen symbol on the tier. However, not only is it
in JDKT like iterative spreading, it is also in JKKT
like symmetric harmony because it isR-trivial.

5.4 Discussion

The aforementioned analyses establish that canoni-
cal examples of output-oriented phonological pro-
cesses belong to one or more of D (definite), K
(reverse definite), JDKT (the tier-based extension
of definite), and JKKT (the tier-based extension
of reverse definite), when examining their left-to-
right or right-to-left sequential transducers in min-
imal onward form. These results are summarized
in Table 1. The class N of semigroups are those
which belong both D and K, and it is also a variety
(Almeida, 1995).

These results are striking because the algebraic
analysis groups local, iterative spreading together
with non-local iterative spreading since they each
invoke neutral elements (i.e. involve projections
onto tiers). Our analyses here show that these
canonical output-oriented processes are in some
sense local, after projection to some tier, on the
input side as well.

It is also of interest to consider the smallest al-
gebraic variety which includes these classes. The

Pattern → ←
Post-Nasal Voicing D D
Prog. Iterative Spreading JDKT –
Reg. Symmetric Harmony – JKKT
Reg. Asymmetric Harmony – JNKT

Pre-Nasal Voicing D D
Reg. Iterative Spreading – JDKT
Prog. Symmetric Harmony JKKT –
Prog. Asymmetric Harmony JNKT –

Table 1: Algebraic classification for left-to-right (→)
and right-to-left (←) processing.

smallest variety containing both D and K is LI,
called “locally trivial” (Almeida, 1995) and some-
times “generalized definite” (Ginzburg, 1966; Br-
zozowski and Fich, 1984). Similarly, the tier-based
extension of LI, denoted JLIKT contains JDKT and
JKKT . Interestingly, none of these tier-based ex-
tensions are varieties because it can be shown they
are not closed under products (Lambert, 2022). We
are thus motivated to identify the smallest variety
which contains JLIKT .

Closing JLIKT under products and quotients
has one advantage: by definition, it necessarily
includes processes that occur over multiple tiers.
Recall that the tier T in the above classes is sin-
gular; consequently, the total phonology of those
languages lies outside any one such class. For this
reason, we call this closure MLI, which can be
read as “locally trivial over multiple tiers.” Almeida
(1995) independently studied this class and others
like it, considering M as a natural operator linking
varieties of semigroups with varieties of monoids.5

To sum up, the smallest algebraic variety which
includes all the canonical phonological processes
we have considered in this paper, as well as com-
binations thereof, is MLI. Figure 8 shows the
classes discussed in this paper, along with their
containment relationships.

6 Inference

We examine the processes and their input-oriented
analyses discussed above within the tradition of
grammatical inference (de la Higuera, 2010; Heinz
et al., 2015; Heinz and Sempere, 2016; Wieczorek,
2017). Specifically, we are interested in whether
there is an algorithm which identifies those pro-
cesses in the limit from positive data (Gold, 1967)

5A monoid is a semigroup with an identity.
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Figure 8: Containment among varieties and extensions.

in linear time and data (de la Higuera, 1997).
Of course, they are learnable given their output-
oriented structure (Chandlee et al., 2015), but rely-
ing only on the structure of the input can simplify
the system.

Jardine et al. (2014) present SOSFIA, an algo-
rithm which identifies in linear time and data any
class of sequential functions representable with a
single deterministic transducer. For any function
in MLI, there is some k such that its behavior is
fixed by the combinations of the first k symbols
encountered and the most recent k symbols encoun-
tered, across all possible tiers. Consequently, we
construct a family of learners, one for each value k.
Each learning algorithm constructs a deterministic
transducer for k-MLI, and then uses SOSFIA to
determine the output of its edges.

Given k and a fixed input alphabet Σ, the con-
struction begins by fixing the state space. The states
are in one-to-one correspondence with contexts,
where a context is the k first symbols (“prefixes”)
and k most-recent symbols (“suffixes”) for each tier
(i.e. all subsets of Σ). In cases where fewer than
k salient symbols have been encountered, these
shorter strings constitute the context. A prefix of
length k is saturated. Starting with the initial state
corresponding to the empty string on all tiers, ex-
pand the state space iteratively as follows until no
new edges are created. For each newly created
state q, consider the effect of appending a single
letter a ∈ Σ: Saturated prefixes remain unchanged,
as are unsaturated prefixes on tiers that exclude a,
but unsaturated prefixes on tiers that include a are
extended by appending a. Similarly, suffixes on
tiers that exclude a remain unchanged, but suffixes
on tiers that include a are extended by appending a
and, if now longer than k, contracted by removing
their initial symbol. The result is a state r. If r is a
new state, then it is added to the state space. In any
case, an edge is created from q to r whose input
is a and whose output is 2, representing a blank.

Eventually, no new states will be created, and after
the next iteration, no new edges will be created.

The state space is not small. There are 2|Σ| possi-
ble tiers and more than |Σ|2k possible prefix–suffix
pairs. Nonetheless, once the state space has been
filled out, what remains is to assign outputs to the
edges in a way that agrees with the observed data.
This is precisely the problem SOSFIA solves (Jar-
dine et al., 2014). Given a finite set of input–output
pairs and an output-empty deterministic transducer
as constructed above, this algorithm fills the out-
puts in such a way as to maintain onwardness.

If the sample contains sufficient information,
which eventually it will in the identification in the
limit paradigm, then all outputs will be filled. SOS-
FIA’s time and data complexities are linear, but the
constant is large due to the enormous state space.

7 Conclusion

We examined Output (Tier-based) Strictly Local
maps in concept and in practice. It was shown
that no algebraic property can determine whether
a process belongs to these classes (§4). We also
provided algebraic analyses for a sample of linguis-
tically relevant O(T)SL processes (§5). Of the pro-
cesses considered, all lay in JDKT or JKKT , with
behaviors fixed either by the k most recent symbols
or the first k symbols encountered, for some fixed
k, after projection to some fixed tier T . Interest-
ingly, all of the output-oriented maps we discussed
were also bands, with all elements idempotent.

These algebraic analyses reveal the unfolding be-
haviors of these output-oriented functions in terms
of their inputs. In particular, iterative spreading was
shown to be a local process on tier, and only differ-
ent from symmetric and asymmetric harmony with
regards to whether the first or most recent symbols
on the tier trigger harmony. These analyses recall
the application of Rule 2 (Figure 1) and Walker’s
(2014, p. 503) argument that “even in unbounded
systems where harmony proceeds among adjacent
vowels, the trigger-target relations may be nonlocal,
with a single trigger related to many targets, both
adjacent and nonadjacent.” One area for future
linguistic research is a more extensive algebraic
cataloging of local and long-distance phonological
processes, with particular attention to any that lie
outside of MLI (Jardine, 2016).

The third contribution was an instantiation of the
SOSFIA inference algorithm (Jardine et al., 2014)
in order to learn processes of the variety MLI in

136



the limit from positive samples (§6). While this is
more powerful than necessary to capture the pro-
cesses described in this work, it serves to demon-
strate the learnability of the processes in question,
even without relying on their Output (Tier-based)
Strict Locality. Future research can examine im-
posing further restrictions to improve the space
efficiency of the learning algorithm. Another im-
portant area of future research is to conduct a de-
tailed comparison between this approach and oth-
ers, such as the one in (Burness and McMullin,
2019) for 2-OTSL, and one for regular functions
more generally (de la Higuera, 2010).
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