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Abstract

Morphological segmentation is both an inter-
esting acquisition problem and an important
task for natural language processing. Most
current computational approaches either use
supervised machine learning—which tends to
lead to the best-performing models—or oper-
ate over bare surface forms of words. How-
ever, the empirical conditions of language ac-
quisition seem to fall somewhere in between:
children do not have access to pre-segmented
input, yet their knowledge of morphological
structure develops alongside semantic knowl-
edge. Inspired by this, we suggest a simple
model for low-resource segmentation of agglu-
tinative morphology. The model is based on
the idea that agglutination tends to mark one
meaning per form. It is unsupervised, but is
able to exploit features to identify how dif-
ferences between closely-related surface forms
are marked. Trained on hundreds to a few thou-
sand words from languages with agglutinative
morphology, the resulting model outperforms
an unsupervised model that does not exploit
such features, and in some settings even out-
performs a supervised model trained on both
features and ground-truth segmentations.

1 Introduction
One of the challenges of language learning is to
identify the meaning-bearing units—that is mor-
phological segmentation. Segmentation has also
been important to natural language processing for
decades (Kurimo et al., 2010; Batsuren et al.,
2022), and continues to be due to the usefulness of
subword units for prominent tasks like neural lan-
guagemodeling andmachine translation (Sennrich
et al., 2016; Kudo, 2018; Brown et al., 2020; Pan
et al., 2020).

The problem presents a particular challenge in
agglutinative languages, where several grammat-
ical features may be expressed by stringing to-
gether affixes. For example, the Hungarian noun

ház ‘house’ is combined with a possessive suf-
fix -aink and essive case suffix ‘ban’ to form the
word házainkban ‘in our houses’ (example from
Ladányi et al. 2020, p. 191). Moreover, agglutina-
tion occurs in many low-resources languages (Mo-
eng et al., 2021; Downey et al., 2022), and occurs
alongside phonological processes like vowel har-
mony, which lead to alternation in the form that a
given affix is realized as (Ladányi et al., 2020). For
example, the Hungarian essive suffix is realized as
-ben/-ban depending on the backness of the vowel
to its left, as in szekrényben ‘in the cupboard’ and
barlangban ‘in the cave’ (examples from Ladányi
et al. 2020, p. 192).

Some approaches to segmentation are super-
vised, meaning that they learn from segmented
training data. For example, the winner of the 2022
SIGMORPHON (Batsuren et al., 2022) segmenta-
tion challenge was a sequence-to-sequence trans-
former model (Peters and Martins, 2022). Other
approaches—often preferred due to not requir-
ing annotated training data—are unsupervised ap-
proaches, which are usually trained on bare surface
forms (e.g., Uchiumi et al. 2015; Xu et al. 2020).

Our approach takes inspiration from language
acquisition, where children show evidence of
an ability to analyze words in morphologically-
complex ways, segmenting them into distinct sub-
units or morphemes (Marquis and Shi, 2012;
Mintz, 2013; Ladányi et al., 2020; Kim and Sun-
dara, 2021). For example, Ladányi et al. (2020)
demonstrated that when the common Hungarian
suffix -ban was attached to a nonce stem (e.g., púr-
ban), 15mo Hungarian-learning children indeed
analyzed such nonces as suffixed words, as evi-
denced by their ability to later recognize the stem
in bare form (see § 2.1 for more discussion).

We suggest that one mechanism useful to
morphological segmentation in agglutinative lan-
guages could be the ability to recognize pairs of
closely-related word forms, and then infer sim-
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ple differences between each pair. For example
tanároknak, the Hungarian plural (PL) dative (DAT)
of ‘teacher’, differs from tanárok ‘teachers’ in only
one feature (case), and the former can be derived
from the latter by suffixing -nak. This provides the
learner evidence that DAT can be marked by the
suffix -nak. Moreover, if the learner knows from
other pairs like tanár/tanárok ‘teacher’/‘teachers’
that plurals are also marked by suffixation, then
they can infer evidence that the DAT suffix is or-
dered after the plural suffix.

In this paper, we implement this proposal as a
simple segmentation model, which uses morpho-
logical features to identify closely-related word
pairs, from which it infers the concatinative op-
erations that the language uses to mark those fea-
tures. This approach offers the possibility of
improvement over unsupervised approaches that
operate over only surface forms, while simplify-
ing the data-annotation demands of supervised
approaches needing ground-truth segmentations.
For example, Unimorph 3.0 (McCarthy et al.,
2020) contains morphological features for 169 lan-
guages, but segmentations—via MorphyNet (Bat-
suren et al., 2021)—for only 15.

When trained on 500-10,000 words, the model
achieves 72-100% accuracy segmenting test words
in Finnish, Hungarian, Mongolian, and Turkish,
out-performing the unsupervised model Morfes-
sor 2.0 (Virpioja et al., 2013) and, in a majority
of cases, a supervised neural comparison model.
These results suggest that the model could be
useful for segmenting low-resource agglutinative
languages, since producing a small number of
morphological-feature-annotated word forms is of-
ten easier than producing ground-truth segmenta-
tions, and such feature annotations yield large im-
provements over segmentations based on bare sur-
face forms.

2 Model

2.1 Cognitive Motivation
Our model is motivated by experimental findings
from child language acquisition. We are primarily
concerned with the empirical promise of the model
to segment agglutinativemorphology, but in § 5we
discuss the extent to which we think the model is
itself revealing about the mechanisms of the acqui-
sition of morphological structure.

Marquis and Shi (2012) found that 11mo-
old French-learning infants could perceive nonce

words suffixed with the frequent French verbal suf-
fix -e as related to their bare stems. This ability
was not attested when an unfamiliar suffix -u was
attached to nonce stems, suggesting that the infants
were decomposing the nonces into stem and affix
units rather than recognizing phonological overlap.
At 15mo, Mintz (2013) found similar results for
the English suffix -ing, and likewise Ladányi et al.
(2020) for the Hungarian essive suffix -ban/-ben.
The ability to relate forms was unperturbed by the
vowel-harmony-induced alternation between suffix
forms. Thus, given Hungarian’s agglutinative mor-
phology, the ability to relate inflected forms to their
stems seems to develop even in the presence of ag-
glutination and alternation.

Many of these results also suggest that the abil-
ity to relate closely-related forms may begin de-
veloping prior to children acquiring the function
of morphemes. For example, Marquis and Shi
(2012) found that presenting infants with many
nonce words inflected with an unfamiliar suffix,
they would begin to relate the inflected nonces to
their stems. Moreover, Kim and Sundara (2021)
found that the ability emerges for at least some En-
glish suffixes (-s) as early as 6mo, even when the
nonces are presented without referential context,
which they take as evidence that the ability begins
developing without dependence on meaning.

Together, these studies suggest that infants can
relate (concatenatively) inflected forms to their
stems, and that this ability at least begins to emerge
prior to children learning the function of mor-
phemes. Payne (2022, 2023) has proposed that this
early segmentation ability could allow children to
identify collisions, which are instances of stems ap-
pearing in multiple inflected forms. Payne argues
that these collisions provide evidence to the learner
about what morphological features are marked in
the language being acquired, via Clark (2014)’s ob-
servation that differences in form are indicative of
differences in meaning. Payne’s proposal, imple-
mented as an explicit learning model, accurately
matches developmental findings.

Given the well-attested ability of infants to re-
late word forms that differ in a single affix and
the plausibility of Payne (2023)’s hypothesis about
how learners can use this to discover what mor-
phological features aremarked, learners could then
use the differences between related word forms and
their developing knowledge of marked morpholog-
ical features to identify what subparts of words cor-
respond to these marked features—that is to pro-
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duce meaning-informed segmentations. This idea
forms the basis of our proposed model, which we
present next.

2.2 Input
The model’s input training data is a collection of
<𝑤, 𝑟, 𝑓 > words (triples), where 𝑤 is the word’s
surface form, 𝑟 is the word’s root meaning, and 𝑓 is
a set of morphological features marked in the word.
Notably, 𝑟 is only the root meaning and not the root
form. An example input is (1), which we will use
as a running example.

(1) a. (tanár, TEACHER, {})
b. (tanárok, TEACHER, {PL })
c. (tanároknak, TEACHER, {PL, DAT })
d. (személy, PERSON, {})
e. (személynek, PERSON, {DAT })

2.3 Learning Algorithm
The model, which we call MIASEG ["mi.@.sEg]
for Meaning-Informed Agglutinative Segmenta-
tion, learns from the input described above by iden-
tifying closely-related words and inferring the con-
catenative difference between their forms as a can-
didate marking of the feature difference between
the words. MIASEG considers two words to be
closely-related if they have the same root meaning
and one has all the features of the other plus one.

Thus, a paradigm 𝑃𝑚 corresponding to a root
meaning 𝑚 is represented as the set of input triples
whose root meaning equals 𝑚, (2).

(2) 𝑃𝑚 ≜ {<𝑤, 𝑟, 𝑓 > : 𝑟 = 𝑚}

For example, the paradigm 𝑃TEACHER contains (1a)-
(1c). This is shown in (5; step 1). MIASEG then
computes, for each paradigm, the closely-related
words in the paradigm—namely those where one
word has all the features of the other plus one (3).

(3) 𝑐(𝑃𝑚) ≜ (<𝑤𝑖 , 𝑟𝑖 , 𝑓𝑖>, <𝑤 𝑗 , 𝑟 𝑗 , 𝑓 𝑗>) ∈ 𝑃𝑚

: | 𝑓𝑖 ∪ 𝑓 𝑗 \ 𝑓𝑖 ∩ 𝑓 𝑗 | = 1

Thus 𝑐(𝑃TEACHER) returns the pairs (1a)-(1b) and
(1b)-(1c). For each of these pairs (5; step 2), MI-
ASEG computes the string difference between the
word forms 𝑤𝑖 and 𝑤 𝑗 (5; step 3) and posits the
difference as one way of marking the feature that
differs between the two words (5; step 4). MIASEG
represents this inference as a triple of the form (4),
where 𝜙 = | 𝑓𝑖 ∪ 𝑓 𝑗 \ 𝑓𝑖 ∩ 𝑓 𝑗 | is the marked feature,
Δ is the concatenative difference between 𝑤𝑖 and

𝑤 𝑗 , and 𝑡 specifies whether the difference is a suf-
fix (i.e., comes at the right edge) or a prefix (i.e.,
comes at the left edge).

(4) <𝜙,Δ, 𝑡>

For example, the difference between (1b)-(1c) is
the presence of an ending -nak in (1c), which has
the additional feature DAT. Thus, MIASEG infers
that the suffix -nak is one way of marking DAT:
<DAT, nak, SUFF >. MIASEG also stores the num-
ber of times the difference has been inferred as a
marking of the feature (i.e., the frequency of each
triple), for prioritizing among multiple analyses
during segmentation (§ 2.4). Moreover, because
both (1b) and (1c) have the feature PL, MIASEG tab-
ulates that the PL marker probably comes before
the DAT marker.

At a different iteration of the loops, MIASEG will
find the difference between (1d) and (1e) to be -
nek and MIASEG will learn that this is another way
to mark DAT. Thus, the markings inferred by MI-
ASEG are effectively allomorphs of the morphemes
corresponding to each marked feature. The result-
ing segmentations could be used as the input to a
method like Belth (2023a)’s, which constructs un-
derlying forms for morphemes based on surface al-
ternation.

Once the for loops are complete, MIASEG infers
a global ordering of features (5; step 6) by creating
a directed graph, where each feature forms a node
and an edge is formed from 𝑓𝑖 to 𝑓 𝑗 whenever it
was inferred that 𝑓𝑖 must come before 𝑓 𝑗 (e.g., PL
→ DAT). The graph is then topologically sorted,
which yields a total linear ordering of the features
such that any orderings encoded in the graph edges
are preserved in the linear ordering (Cormen et al.,
2009, p. 612).¹

(5) Input: Set of <𝑤, 𝑟, 𝑓 > triples
1. For each paradigm 𝑃𝑚 in data do
2. – For pair in 𝑐(𝑃𝑚) do
3. — Find Δ between 𝑤𝑖 and 𝑤 𝑗

4. —PositΔ asmarking of 𝑓𝑖∪ 𝑓 𝑗\ 𝑓𝑖∩ 𝑓 𝑗
5. —Tabulate implied feature orderings
6. Infer global ordering of features

We discuss the strengths and limitations of this
algorithm in § 5. The code is available at
https://github.com/cbelth/miaseg.

¹Extensions may be necessary for languages with variable
morpheme order, as this would introduce cycles into the graph.
In the current implementation, if the ordering 𝑓𝑖 → 𝑓 𝑗 and
𝑓 𝑗 → 𝑓𝑖 are both inferred, only the ordering that was inferred
the most times at line 5 is inserted into the graph.
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2.4 Segmentation
Once the ways in which morphological features
can be marked, and the ordering among them,
are inferred and recorded, the model can segment
words—either the words from which it made these
inferences or new (test) words.

Segmentation takes as input a surface form, 𝑤
(e.g., csapatoknak), and set of features 𝑓 (e.g., {PL,
DAT }). MIASEG iterates (6; step 1) over each fea-
ture in 𝑓 in an order consistent with the ordering
inferred during training (5; step 6)—left-to-right
for prefixes and right-to-left for suffixes (e.g., DAT
then PL since PL → DAT was inferred during train-
ing).

For each feature, the model looks up the ways
in which it was marked in the training data (6;
step 2), and tries each marking until one matches
the end (for suffixes) or beginning (for prefixes) of
𝑤. The markings are considered in descending or-
der of length, using the number of times the mark-
ing was attested in the training data as a tie breaker
for equal-length matches. When a match is found,
the matching ending is separated from the word as
a morpheme. For example, DAT was marked as -
nak and -nek in the training data, and csapatoknak
ends in -nak, so nak is separated from the word to
form csapatok-nak. The segmentation algorithm
then proceeds to the next feature. For example,
the model then looks at the ways in which PL can
be marked for a match at the ending of csapatok,
which will find -ok, resulting in csapat-ok-nak.

If at any point no attested marking of a feature
matches (6; step 5), to prevent this from block-
ing further segmentation, MIASEG separates 𝑘 seg-
ments from 𝑤, where 𝑘 is the most common length
of attested markings (for example 𝑘 = 1 for a fea-
ture with attested markings {a, e, ja}).

(6) Input: <𝑤, 𝑓 > pair
1. For feat in 𝑓 (ordered) do
2. – For attested marking of 𝑓 do
3. — If markingmatches edge of𝑤 then
4. —– Separate marking from 𝑤
5. – If no attested marking matched do
6. — Separate 𝑘 segments from 𝑤
7. Return segmented 𝑤

3 Evaluation

Our evaluation attempts to test the effectiveness of
themodel at segmenting agglutinative languages in
relatively low-resources settings, where only hun-

Table 1: Dataset Sizes

Fin 541,198
Hun 613,549
Mon 11,215
Tur 18,333

dreds to a few thousands words are available for
training.

3.1 Data

We collected data for Finnish (Fin), Hungarian
(Hun), Mongolian (Mon), and Turkish (Tur), all
languages with a substantial amount of aggluti-
native morphology. The languages come from
three language families: Finnish and Hungarian
are Uralic languages, Mongolian is a Mongolic
language, and Turkish is a Turkic language. For
all datasets except Turkish, we followed Batsuren
et al. (2022) in using data from MorphyNet (Bat-
suren et al., 2021), which has canonical segmenta-
tions extracted from Wiktionary. For Turkish, we
followed Belth (2023a,b, 2024) in using the cor-
pus created for MorphoChallenge (Kurimo et al.,
2010). We used Çöltekin (2010, 2014)’s publicly-
available finite statemorphological analyzer to gen-
erate morphological analyses.² The analyzer is de-
signed for Turkish, and is similar to the approach
used by MorphoChallenge to generate ground-
truth analyses. For simplicity, we decided to look
only at nouns for this paper. For each dataset, we
extracted all nouns where we could unambiguously
convert the canonical segmentation to a surface
segmentation (Cotterell et al., 2016). The result-
ing dataset sizes are shown in Tab. 1.

We also collected corpus frequency information
for each word in each dataset. For Finnish and
Mongolian, we used the very large monolingual
datasets aggregated by Conneau et al. (2020);Wen-
zek et al. (2020) from the 2018 CommonCrawl,
counting the frequency of each word in the corpus.
For Hungarian, we used the Hungarian Web Cor-
pus (Halácsy et al., 2004) frequency file. Anyword
in our datasets that did not occur in these web cor-
puses we assumed to be low frequency (given the
extremely large size of the web corpuses); we as-
signed them frequency of 1. The Turkish dataset
already contained frequency information.

²https://github.com/coltekin/TRmorph
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3.2 Setup
We discuss comparison models in § 3.2.1 and the
training and evaluation procedures in § 3.2.2.

3.2.1 Comparison Models
We compare MIASEG, which is unsupervised but
requires data be annotated with morphological
features, to MORFESSOR, which is an unsuper-
vised model that segments bare surface forms, and
to TRANSFORMER, a supervised transformer-based
encoder-decoder sequence to sequence (seq2seq)
model that learns from segmented training data
that is annotated with the same morphological fea-
tures that MIASEG uses.

For MORFESSOR, we used the Morfessor 2.0
model (Virpioja et al., 2013), which is available as
a Python package.

TRANSFORMER is the name of a supervised neu-
ral seq2seq model that we apply to the task. Neural
seq2seq models have had success at many morpho-
logical problems, including the 2022 SIGMOR-
PHON (Batsuren et al., 2022) challenge on mor-
phological segmentation, where Peters and Mar-
tins (2022)’s DeepSPIN-3 model achieved the best-
overall performance on the word-level task. How-
ever, to our knowledge, the code for DeepSPIN-3
is not publicly available, and the model does not
incorporate morphological features. On the other
hand, neural seq2seq models consistently perform
well at the recurring SIGMORPHON morpholog-
ical inflection task (see Kodner et al. 2022 for a
recent iteration of the task), and these models com-
monly incorporate morphological features directly
into the model, due to their importance to the in-
flection task (e.g., Makarov and Clematide 2018;
Wu et al. 2021).

Thus, we follow Wu et al. (2021) in using
a transformer-based encoder-decoder architecture,
which includes both morphological features and
word characters in the model’s vocabulary. We de-
scribe the model’s architecture in more detail be-
low (§ 3.2.2).

3.2.2 Training and Evaluation
While unsupervised models like MORFESSOR and
MIASEG can be evaluated on how well they seg-
ment the training data since they receive no in-
formation about the ground-truth segmentations
during training, we wish to compare performance
to the supervised setting (represented by TRANS-
FORMER), which necessitates evaluating on a held-
out test set. Consequently, we chose to evaluate all

three models on held-out test sets.
In relatively low-resource settings, as well as

in child language acquisition, higher-frequency
words are more likely to be represented than lower-
frequency words. To approximate such a situation,
we chose to sample training words weighted by fre-
quency. We evaluated at three different training
sizes: 500, 1000, and 10000. For each training
size, we ran each model on 10 samples with dif-
ferent random seeds. Every word not included in
the training sample was included in the held-out
test set.

On each of the 10 random seeds, we tuned
TRANSFORMER’s hyperparameters using a grid
search sweep. To do so, we made a random
80%/20% split of the training data, and trained the
model with each hyperparameter combination on
the 80% part of the split; we evaluated accuracy
on the remaining 20%. We chose the hyperparam-
eter combination that yielded the best accuracy on
the 20%, remerged the 80%/20% split into the full
training set, and then trained a newmodel with that
hyperparameter combination on the entire training
split. The hyperparameters we considered were
those in (7), yielding 48 combinations.

(7) Embedding Dimension ∈ {256, 512}
Dropout = ∈ {0.1, 0.3}
Batch Size = ∈ {32, 128, 256}
Number of Enc. & Dec. Layers = ∈ {1, 2}
Number of Attention Heads = ∈ {4, 8}

We evaluate all models in terms of precision, re-
call, F1, and accuracy. Precision measures, out of
all predicted morphemes (across the entire test set),
what fraction are actually morphemes. Recall mea-
sures, out of all morphemes, what fraction are pre-
dicted. F1 measures the harmonic mean of preci-
sion and recall. Accuracy measures the fraction of
test items that are correctly segmented.

3.3 Results
The results (F1 and accuracy)³ are shown in Tab. 2.
MIASEG outperforms the unsupervisedMORFESSOR
by a large margin on all datasets, and even outper-
forms the supervised TRANSFORMER model on 3/4
datasets. Importantly, the accuracy—not just the
F1—is fairly high in absolute terms, even at a train-
ing size of only 1000 words. This means that a
large majority of the test words are correctly seg-
mented.

³We report the precision and recall values going into the
F1 scores in Tab. 4 in the appendix.
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MIASEG’s performance is noticeably worse for
Finnish than the other datasets, though it still per-
forms competitively with the supervised TRANS-
FORMER and still outperforms the unsupervised
MORFESSOR baseline. The primary reason for this
is that the NOM plural is usually marked with [-
t], but in the other noun cases (except ACC), it is
marked with [-i]. For example auto-t is the plural
NOM of ‘car’, while auto-i-ssa is the plural IN+ESS.
Because case markers come after plural markers,
[-i] never occurs at a word boundary, so MIASEG
never recognizes it as a possible plural marker.
This accounts for over 80% of MIASEG’s errors on
Finnish.

The reason MIASEG is able to achieve such high
accuracy on Mongolian is that the Unimorph data
from which it was derived only contains nouns
with a single affix, which marks 1 of 7 cases (GEN,
ACC, DAT, ABL, INS, COM, VOC). Thus, once the
model has been exposed to sufficient nouns to have
seen all allomorphs of those case suffixes, it is able
to achieve perfect segmentation of the limited set of
nouns. In contrast, all other evaluation languages
have chains of multiple affixes in their respective
datasets. We note though, that the simplicity of
the task for Mongolian is also true for MORFESSOR
and TRANSFORMER, which never achieve the same
performance on Mongolian.

A few randomly-selected example segmenta-
tions are shown in Tab. 3 (we excluded Mongo-
lian since the data only contained single affixes).
The first example from Turkish, where MIASEG
segmented gazetelerinizi ‘newspapers-PL-PSS2P-
ACC’ as gazete-ler-iniz-i demonstrates that MI-
ASEG is able to segment multiple affixes, having
inferred that plurality is marked first and case last.

3.3.1 Error Analysis
We performed error analysis of MIASEG for each
language at the training size of 10K. In Finnish,
> 99% of the errors are due to failing to find a
match for a suffix, probably due to some suffixes
not occurring at a word boundary. As discussed
above, this aspect of the non-NOM PL allomorphs
led to 80% of MIASEG’s errors on Finnish.

For Hungarian, 58% of errors are of the same
type as Finnish. 26% of the errors involve shift-
ing a morpheme boundary to the left (e.g., tolvaj-
a vs. *tolva-ja) and 16% are due to shifting a
morpheme boundary to the right (e.g., ezán-jaik
vs. *ezánj-aik). For Turkish, >0.99% of errors in-
volve shifting a morpheme boundary to the left.

The relative prevalence of errors involving shift-
ing a morpheme boundary to the left is likely be-
cause MIASEG considers the forms that a feature
has been marked with (6; step 2) in descending
order of length. Thus, if two forms match (e.g.,
both aj and a are allomorphs of the PSS3S;SG suf-
fix andmatch the end of tolvaja ‘thief-PSS3S;SG’),
the longer will be chosen. If the shorter was the cor-
rect form, the morpheme boundary is effectively
shifted left.

These error patterns suggest that promising ar-
eas for improvement would be handling affixes not
appearing at word boundaries and improving the
heuristic preference for the longest matching mark-
ing during segmentation (6; step 2). Note that
this analysis considered errors at the word level,
meaning that we identified one of potentially mul-
tiple reasons for each incorrectly-segmented word.
Thus, of the errors in Finnish (>0.99%) and Hun-
garian (58%) attributed to failing to find a match
for a suffix, it is possible that some also had mor-
pheme boundaries shifted left or right.

4 Prior Work

Unsupervised segmentation methods include Min-
imum Description Length (MDL) models (e.g.,
Goldsmith 2001). A prevelant model, at least as
a baseline, is Morfessor (Creutz and Lagus, 2002)
and derviations of it (Creutz and Lagus, 2005,
2007; Virpioja et al., 2013). Bayesian models are
often successful, though many were developed in
the context of word segmentation (e.g., Goldwater
et al. 2009). Neural models have also been em-
ployed, usually using a self-supervised task like
segmental languagemodeling for training (Sun and
Deng, 2018; Downey et al., 2022;Wang and Zheng,
2022).

Like MIASEG, some prior unsupervised
approaches explicitly model morphological
paradigms (Goldsmith, 2001; Xu et al., 2018,
2020). Moreover, we are not the first approach to
consider meaning, along with form, for segmen-
tation. Prior approaches learn word embeddings
to represent semantic information through distri-
butional information (Schone and Jurafsky, 2001;
Soricut and Och, 2015; Narasimhan et al., 2015).
In contrast, we use morphological features from
Unimorph (McCarthy et al., 2020), not word
embeddings, which can be data-intensive to train.

Some models attempt to achieve broad typologi-
cal coverage. For instance, Morfessor (Creutz and
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Table 2: F1 (harmonic mean of precision and recall) and accuracy of models. MIASEG, which is our model, outper-
forms MORFESSOR, which is unsupervised and cannot make use of morphological features, on all datasets and data
sizes. Moreover, on 3/4 datasets, MIASEG outperforms TRANSFORMER, which trains in a supervised fashion on both
ground-truth segmentations and morphological features.

500 1000 10000
F1 Acc F1 Acc F1 Acc

Fi
n MIASEG 0.57 ± 0.03 0.48 ± 0.03 0.69 ± 0.04 0.61 ± 0.04 0.79 ± 0.00 0.72 ± 0.00

MORFESSOR 0.27 ± 0.03 0.18 ± 0.02 0.27 ± 0.02 0.17 ± 0.01 0.19 ± 0.01 0.05 ± 0.00
TRANSFORMER 0.63 ± 0.04 0.48 ± 0.05 0.73 ± 0.03 0.61 ± 0.04 0.90 ± 0.03 0.83 ± 0.05

H
un

MIASEG 0.41 ± 0.05 0.32 ± 0.05 0.63 ± 0.07 0.56 ± 0.07 0.94 ± 0.01 0.93 ± 0.02
MORFESSOR 0.19 ± 0.05 0.12 ± 0.03 0.32 ± 0.04 0.18 ± 0.03 0.32 ± 0.01 0.13 ± 0.01
TRANSFORMER 0.48 ± 0.03 0.27 ± 0.04 0.61 ± 0.02 0.43 ± 0.03 0.82 ± 0.06 0.72 ± 0.09

M
on

MIASEG 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
MORFESSOR 0.55 ± 0.03 0.48 ± 0.04 0.49 ± 0.03 0.39 ± 0.03 0.91 ± 0.01 0.89 ± 0.02
TRANSFORMER 0.79 ± 0.04 0.73 ± 0.05 0.93 ± 0.02 0.90 ± 0.03 0.98 ± 0.01 0.97 ± 0.01

Tu
r MIASEG 0.83 ± 0.00 0.81 ± 0.00 0.94 ± 0.01 0.92 ± 0.01 0.96 ± 0.00 0.94 ± 0.00

MORFESSOR 0.47 ± 0.04 0.32 ± 0.04 0.46 ± 0.03 0.30 ± 0.03 0.54 ± 0.01 0.36 ± 0.01
TRANSFORMER 0.75 ± 0.03 0.60 ± 0.04 0.86 ± 0.03 0.77 ± 0.05 0.94 ± 0.01 0.90 ± 0.03

Table 3: A few randomly-selected segmentations from MIASEG.

Word & Features Predicted Expected

Tur gazetelerinizi (PL;PSS2P;ACC) gazete-ler-iniz-i gazete-ler-iniz-i 3

Fin ilmaperspektiivein (INS;PL) ilmaperspektiive-in ilmaperspektiive-in 3

Hun hátraküldésünk (PSS1P;SG) hátraküldés-ünk hátraküldés-ünk 3

Fin eristysselleillä (PL;AT+ESS) eristyssellei-llä eristysselle-i-llä 7

Tur mikroorganizmalardan (PL;ABL) mikroorganizma-lar-dan mikroorganizma-lar-dan 3

Lagus, 2002, 2005, 2007; Virpioja et al., 2013) can
easily be applied to data from any language. Xu
et al. (2020) directly leverage typology by incorpo-
rating a diverse range of morphological processes
beyond affixation. The resulting model leads to
strong results across typologically and phylogenet-
ically diverse languages.

Other approaches have focused on particular ty-
pologically or phylogenetically related groups of
languages. Pan et al. (2020) proposed an approach
to segmenting agglutinative languages for the task
of machine translation. Moeng et al. (2021) devel-
oped supervised and unsupervised approaches for
morphological segmentation of Nguni Languages.
Downey et al. (2022) demonstrated that training a
neural model in a self-supervised task on ten In-
digenous languages of the Americas that are typo-
logically related but phylogenetically unrelated can
transfer to a target language, K’iche’.

Our work is in line with the latter group, as we

focus on agglutinative morphology. We believe
there are merits to both approaches. While typo-
logical coverage is an important goal, we believe
focusing on mechanisms that may be useful for
particular kinds of morphological structure is also
of value, since languages can differ dramatically
in their morphological structure. For instance, we
should not necessarily expect the acquisition of ag-
glutinative and templatic morphological processes
to involve precisely the same mechanisms.

5 Conclusion and Discussion

In this work, we have proposed a model for unsu-
pervised but morphological-feature-informed seg-
mentation of agglutinative morphology. Our pro-
posed model, MIASEG, takes advantage of the
fact that in agglutinative morphology, a single
morpheme tends to correspond to a single fea-
ture. Thus, by identifying closely-related pairs of
words—i.e. words where one has exactly one fea-
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ture more than the other—and inferring the con-
catenative difference between them, the model is
able to discover the ways in which morphological
features are marked. These markings are effec-
tively the allomorphs of a given morpheme.

When trained in low resource settings of 500,
1000, or 10000 words, MIASEG achieved reason-
ably high accuracy and F1 scores across Finnish,
Hungarian, Mongolian, and Turkish. Moreover,
MIASEG outperformed the unsupervised model
MORFESSOR, which operates over bare surface
forms—demonstrating the value of morphological
features. In a majority of settings, MIASEG also out-
performed a supervised neural model that was able
to exploit the same features. This suggests that MI-
ASEG, while a simple approach, can outperform a
supervised model in low-resource settings.

We find the results to be encouraging for our
proposed approach to agglutinative morphology,
though we acknowledge that much of the approach
would require work to extend to many types of non-
agglutinative morphology.

In particular, MIASEG exploits the fact that in ag-
glutinative morphology, each morpheme tends to
mark a single feature. In contrast, fusional mor-
phological processes mark multiple features with a
single morpheme, leading to its own set of learning
challenges. Moreover, morphological processes
also include non-concatenative stem changes, redu-
plication, and templatic processes.

Even among concatinative operations, Xu et al.
(2020, p. 6673) point out that some languages have
affixes that never appear at a word edge because
the affix is always followed or preceded by another
affix. Because our method depends on identifying
concatenative differences between word forms that
differ in a single marked feature, our model would
need to be extended in order to discover such af-
fixes. We saw this issue in Finnish, where MIASEG
achieved its lowest performance due to some plural
allomorphs never occurring at the edge of a word.

Our approach to segmentation takes inspiration
from findings in child language acquisition (§ 2.1).
We have proposed that if a learner knows which
morphological features are marked in a language,
the learner can use this information to identify mor-
pheme boundaries in an approach like the one we
have proposed. We intend the model for practi-
cal use in low-resource, agglutinative morphologi-
cal segmentation settings and not as an acquisition
model. That said, the fact that the approach is in-
spired by considerations of acquisition and is rea-

sonably effective makes it somewhat tantalizing to
conjecture that a similar mechanism might be at
play when children acquire agglutinative morpho-
logical processes. In future work, we plan to inves-
tigate this proposal more directly.
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A Example Appendix
In Tab. 4, we provide the precision and recall val-
ues for the models; these values went in to the com-
putation of F1 scores in Tab. 2.
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Table 4: Precision and Recalls for models. These correspond to the F1 scores in Tab. 2.

500 1000 10000
P R P R P R

Fin
MIASEG 0.67 ± 0.03 0.50 ± 0.03 0.77 ± 0.03 0.62 ± 0.04 0.84 ± 0.00 0.74 ± 0.00
MORFESSOR 0.31 ± 0.03 0.24 ± 0.02 0.27 ± 0.02 0.28 ± 0.02 0.14 ± 0.01 0.28 ± 0.00
TRANSFORMER 0.63 ± 0.04 0.63 ± 0.05 0.73 ± 0.03 0.73 ± 0.03 0.89 ± 0.04 0.90 ± 0.03

Hun
MIASEG 0.48 ± 0.05 0.35 ± 0.05 0.69 ± 0.06 0.59 ± 0.07 0.95 ± 0.01 0.94 ± 0.02
MORFESSOR 0.24 ± 0.05 0.16 ± 0.04 0.30 ± 0.04 0.34 ± 0.04 0.26 ± 0.01 0.43 ± 0.01
TRANSFORMER 0.49 ± 0.04 0.46 ± 0.02 0.62 ± 0.02 0.60 ± 0.03 0.83 ± 0.07 0.82 ± 0.06

Mon
MIASEG 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
MORFESSOR 0.50 ± 0.04 0.61 ± 0.02 0.41 ± 0.03 0.60 ± 0.01 0.89 ± 0.02 0.94 ± 0.01
TRANSFORMER 0.80 ± 0.03 0.78 ± 0.05 0.93 ± 0.02 0.93 ± 0.02 0.98 ± 0.01 0.98 ± 0.01

Tur
MIASEG 0.85 ± 0.00 0.81 ± 0.00 0.94 ± 0.01 0.93 ± 0.01 0.96 ± 0.00 0.96 ± 0.00
MORFESSOR 0.48 ± 0.04 0.47 ± 0.04 0.44 ± 0.04 0.48 ± 0.02 0.58 ± 0.01 0.50 ± 0.01
TRANSFORMER 0.75 ± 0.03 0.75 ± 0.02 0.86 ± 0.03 0.86 ± 0.03 0.94 ± 0.01 0.94 ± 0.01
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