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Abstract

We introduce Pragmatics-Utilizing Distribu-
tional Learner (PUDL) to simulate verb transi-
tivity learning in 15-month-old English learn-
ers. The model incorporates pragmatic reason-
ing about question-answer relations in neutral
wh-questions. Our proposal outlines a devel-
opmental trajectory that features a temporary
overregularization stage where learners general-
ize all verbs into one category, due to difficulty
in distinguishing Prepositional Phrases from
Noun Phrase objects. The results demonstrate
the effectiveness of a pure distributional model
enhanced by pragmatic knowledge in address-
ing learning challenges posed by noisy input.

1 Introduction

Learning how verbs behave in terms of taking di-
rect objects proves to be a challenging task for
learners. The complexity of verb transitivity learn-
ing arises from messy data that learners encounter,
as illustrated in (1-2).

(1) transitive

a. Alex threw the truck.

b. What did Alex throw?

c. *Alex threw.

(2) intransitive

a. I waited.

b. I waited for Alex.

In an ideal setting for learning verb transitivity,
learners would be exposed solely to examples fea-
turing transitive verbs with a direct object (1a) and
intransitive verbs without any adverbials (2a). With
this transparent input, they could seamlessly make
inferences about the transitivity patterns of verbs.
However, reality often deviates from this ideal,
exposing learners to less-than-optimal examples.
In the surface string of (1b), the transitive verb

‘throw’ does not take any direct object due to the
English rule of question formation: a direct object
moves to the beginning in object wh-questions. A
learner who hasn’t yet acquired this non-local wh-
dependency might be misled to infer from (1b) that
‘throw’ does not always take a direct object. In
contrast, ‘wait’ is an intransitive verb that does not
take a direct object, as demonstrated by the con-
trast between (1c) and (2a). Confusingly for learn-
ers though, prepositional phrases (PP) such as ‘for
Alex’ in (2b) often occur with the intransitive verb
‘wait.’ Novice learners, who have yet to acquire the
distinction between the PP ‘for Alex’ in (2b) and
the NP ‘the truck’ in (1a), might incorrectly infer
from utterances like (2b) that ‘wait’ is a transitive
verb. The abundance of utterances like (1b) and
(2b) in learners’ input prompts a critical question:
How do learners, faced with such misleading input,
eventually arrive at accurate generalizations that
transitive verbs like ‘throw’ consistently require a
direct object, while intransitive verbs like ‘wait’ do
not take a direct object?
Assuming grammatical knowledge of learners
around 15 months old, we hypothesize that (i)
pragmatic reasoning is what enables them to re-
alize questions like (1b) do not serve as evidence
for the intransitive nature of transitive verbs, but
(ii) due to the failure to distinguish NP arguments
(e.g., ‘the truck’ in (1a)) from PP adjuncts (e.g.,
‘for Alex’ in (2b)) at the proposed developmental
stage, they undergo a temporary overregulariza-
tion stage where they perceive all verbs as transi-
tives, on their way to the final destination, i.e., adult
grammar. Our assumption about the developmen-
tal timeline is directly motivated by experimental
results. Behavioral studies show that 15-month-
olds behave as if they comprehend wh-dependency
in (1b) (Gagliardi et al., 2016; Perkins and Lidz,
2021). 1 On the other hand, it has been experimen-

1In this regard, our claim about pragmatic reasoning can
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tally shown that children as young as 19 months
old incorrectly interpret PPs (she’s wiping with the
tig) as denoting a patient, a thematic role typically
expressed by a direct object (she’s wiping the tig)
(Lidz et al., 2017). In other words, the learners we
assume have overcome the learning problem that
arises in the transitive domain (1), but not in the
intransitive domain (2).
To model our target learner, English-learning 15-
month-olds capable of pragmatic reasoning, but
not PP vs. NP resolution, we propose Pragmatics-
Utilizing Distributional Learner (PUDL). Using
Bayesian Information Criterion (BIC), we show
that the PUDL goes through an overregulaza-
tion phase where it prefers all verbs to be tran-
sitives. Compared to pure distributional learner
(DL), which is not pragmatically informed, the
PUDL’s performance is farther from true knowl-
edge about verb transitivity patterns, when asked
to cluster verbs into three groups (transitive, alter-
nating, intransitive). Still, pragmatic reasoning is
hypothesized to be crucial to grappling with the
misleading data of (1b) kind in the transitive do-
main; once learners become question-savvy, they
are not tricked anymore by (1b). The resulting
overregularization inference that every verb takes
a direct object is inevitable given the messy na-
ture of data they receive in the intransitive domain;
15-month-olds frequently hear utterances like (2b),
while perceiving PPs incorrectly as NP objects.
The proposal is consistent with the idea that regu-
larization, in general, plays a pivotal role in both
first and second language acquisition (e.g., Hud-
son Kam and Newport 2005; Austin et al. 2022).
Furthermore, we show that a pure distributional
learner, as opposed to a learner with additional in-
ductive bias, such as filtering (Perkins et al., 2022),
is just as promising to tackle the puzzle in verb tran-
sitivity learning, although a full comparison with
the PUDL augmented by the PP vs. NP resolution
is left for future research.

2 Pragmatics-utilizing distributional
learner (PUDL /pud@l/)

We propose Pragmatics-Utilizing Distributional
Learner (PUDL), a pure distributional model that
sidesteps deterministic hypotheses as part of its
inductive bias but is bolstered by pragmatic knowl-
edge. The base model we start with is distribu-

be understood as an attempt to answer how such knowledge
of wh-dependency arises in young learners.

tional learner (DL). In the proposed model, verb
categories do not have a fixed direct object (DO)
probability; instead, they have probability distribu-
tions over the interval [0,1]. Intuitively, our learner
operates with confidence in the received data, com-
pared to alternative learners that filter out some
proportion of data for successful learning. Without
knowing that the input is noisy, the PUDL per-
ceives every piece of data, including (1b) and (2b),
as a valuable signal, as is reasonable to be assumed
for learners as young as 15 months old who have
no clue about deterministic verb transitivity. We
assume that all they are sensitive to is the distribu-
tional patterns of verb transitivity.
The central challenge for our base model concerns a
transition to acquiring correct deterministic knowl-
edge without relying on a predefined deterministic
hypothesis space. We propose that pragmatic un-
derstanding of discourse context plays a crucial role
in addressing this issue for transitive verbs. Specif-
ically, recognizing that (1b) functions as a neutral
question that seeks information facilitates learners’
transitivity acquisition. For instance, let’s assume,
for illustrative purposes, that the verb ‘throw’ oc-
curs in the form of (1a) 80% of the time in the
input, while 20 % of the time, it takes the form
of (1b). Based on the observations from the in-
put, a learner would form immature knowledge
that ‘throw’ occurs with a direct object only 80%
of the time. Once pragmatically informed, how-
ever, the learner associates the remaining 20% or
so, due to (1b), with the information-seeking dis-
course function inherent in wh-questions. It would
then cease its search for a missing direct object
in interrogative sentences, recognizing that such
information-seeking sentences are supposed to lack
a direct object, i.e., the answer of the question. This
nuanced yet straightforward pragmatic reasoning
prompts the learner to update the initial underesti-
mated knowledge about ‘throw.’ As a result, the
learner moves closer to the correct understanding
that ‘throw’ should always occur with a direct ob-
ject, ideally reaching near 100%. The gap, previ-
ously attributed to ‘throw’s intrinsic property, is
now ascribed to a specific discourse context of in-
formation seeking, which allows verbs to lack a
direct object.
Two concerns may arise regarding (i) whether the
complexity of the proposed pragmatic reasoning
is appropriate for a learner as young as 15 months
old, and (ii) imperfect correlation between missing
direct objects and questions. First, despite the dis-
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course function of questions being more complex
than its declarative counterpart, two factors are hy-
pothesized to enhance learners’ capacity for the
proposed pragmatic reasoning: (i-a) the prevalence
of questions in child-directed speech, verifiable
from corpus, and (i-b) distinctive rising intonation
associated with questions. On the second point
(ii) regarding the imperfect correlation, it is true
that not every noise in the data takes the form of
question. For example, transitive verbs used in
relative clauses (3a) and in passives (3b) also lack
direct objects. The noisy input of these kinds would
prevent even the question-savvy learner from reach-
ing 100%, i.e., acquiring deterministic knowledge
found in adult grammar.

(3) a. I found the truck Alex threw.

b. The truck was thrown.

We assume that a learner at this stage, where
they just start to distinguish questions from non-
questions, indeed fails to attain 100% correct
knowledge about verbs’ transitivity property. Un-
derstanding complex constructions such as relative
clauses and passives likely happens later in a child’s
life, whether it involves a pragmatic process or not.
The upshot is that the presence of other kinds of
misleading data such as (3) does not argue against
the plausibility of the PUDL’s learning schema and
the proposed developmental trajectory.
A more serious challenge to the PUDL is that not all
questions take the exact form of object wh-question
in (1b). Polar questions (4a), rising declaratives
(4b), and subject wh-questions (4c) do not lack
direct objects even though they are questions.

(4) a. Did you throw the truck?

b. You threw the truck?

c. Who threw the truck?

However, polar questions (4a) and rising declara-
tives (4b) involve different discourse contexts from
those of wh-questions in that they are biased. Bur-
ing and Gunlogson (2000) argue that positive polar
questions like (4a) are not neutral; they can be
felicitously asked in the presence of compelling
contextual evidence. Similarly, rising declaratives,
extensively studied in semantics, are biased ques-
tions, where the addressee might be asked for in-
formation, but the speaker is not neutral in their ex-
pectation (see, for example, Farkas and Roelofsen
(2017) for formal modeling of the latter discourse
behavior). Therefore, it is reasonable to assume

that a learner can distinguish the discourse func-
tion of neutral wh-questions (seeking information
without any expectations; (1b)) from non-neutral
polar questions or rising declaratives (4a-b), which
express the speaker’s bias or may not necessarily
expect an information-bearing answer.
Furthermore, the questions in (4) do not pose a
challenge for verb transitivity learning in the first
place. While a learner at the proposed stage may
not correctly parse or understand each question in
(4), the data are not misleading in terms of learning
verb transitivity because ‘throw’ has a direct ob-
ject in all three questions of (4). We proceed with
the assumption that subject wh-questions of the
(4c) kind are not noisy and, therefore, do not influ-
ence the learner’s transitivity acquisition during the
assumed developmental phase. In this phase, the
transitivity-learning learner grapples with transpar-
ently noisy data, such as the example given in (1b).
Whenever a violation of transitivity is observed
as in (1b) (modulo relative clauses and passives),
the PUDL associates the utterance with its unique
discourse context, that is, seeking information by
asking a question, and treats it as occuring with
a direct object, even if the utterance (1b) lacks a
direct object on the surface.

3 Data

The data we utilized are several corpora of child-
directed speech from CHILDES (MacWhinney,
2000), specifically Brown (Brown, 1973), Soder-
strom (Soderstrom et al., 2008), Suppes (Suppes,
1974), and Valian (Valian, 1991). Regarding the
selection of corpora and the specific set of verbs,
we followed Perkins et al. (2022) for a transparent
comparison (Section 6). To model verb transitivity
learning, they chose the 50 most frequent action
verbs, classified into transitive, alternating, and in-
transitive categories.
Given our goal to model a learner around 15
months old, who has not yet resolved the NP vs.
PP distinction, our learner blindly treats many ele-
ments following a verb as a direct object. Crucially,
sentences like (2b) are coded as having a direct ob-
ject (DO), from the learner’s perspective. However,
we excluded particles that make up a phrasal verb
or simple adverbs from being considered as a direct
object. For instance, for the verb ‘pick’, the utter-
ance ‘I picked up’ or ‘Did you pick up?’ is coded
as occurring without a direct object, even though
the verb in question is followed by something other
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than punctuation.
In addition, each sentence is coded as being a ques-
tion or not. We coded a sentence as a question
if and only if the sentence occurs with a ques-
tion mark in its transcript, which includes a lot of
rising declaratives. Then, we defined pragmatics-
augmented direct object (PDO) as 1 if and only if
the sentence either has a DO or is a question, and
0 otherwise. The PDO coding is used as the input
for the PUDL, which utilizes pragmatics, while
the DO coding is used as the input for the distri-
butional learner DL, not equipped with pragmatic
knowledge.
The list of the 50 verbs with their total counts, sam-
ple DO rates, and sample PDO rates are shown
in Table 1. Verbs are categorized according to
their underlying true transitivity types following
Perkins et al. (2022): (T)ransitive, (A)lternating,
and (I)ntransitive. They are sorted by sample DO
rates within each transitivity type. Transitive verbs
tend to have higher sample DO rates and intran-
sitive verbs tend to have lower sample DO rates.
However, they can deviate much from the ground
truth of 1 for transitive verbs and 0 for intransitive
verbs. There is also a significant overlap of the
sample DO rates among the three categories.
Finally, for each verb, its sample PDO rate is al-
ways higher than its sample DO rate as expected.
For all the transitive verbs, the sample PDO rate
is greater than 0.9, and one verb (‘feed’) attains a
100% sample PDO rate.

4 An empirical Bayes model for
distributional learning

We propose an empirical Bayes (EB) model that
conducts distributional learning of verb transitivity
from observed DO patterns.

Model The model assumes that there are K tran-
sitivity categories {C1, C2, . . . , CK} with equal
prior weights. The transitivity Ti of each verb
i ∈ {1, 2, . . . , V } is distributed as:

Ti ∼ Uniform({C1, C2, . . . , CK}).

Depending on transitivity category (Ck), the verb’s
true observable DO rate θi is drawn from an un-
known Beta distribution (Beta(αk, βk)), taking val-
ues between 0 and 1:

θi|Ti = Ck ∼ Beta(αk, βk).

Verb Count DO Rate PDO Rate
(T) feed 226 0.9690 1.0000
(T) hit 214 0.9579 0.9860
(T) bring 712 0.9424 0.9803
(T) throw 376 0.9282 0.9415
(T) fix 397 0.8992 0.9270
(T) buy 356 0.8989 0.9775
(T) hold 565 0.8690 0.9522
(T) catch 216 0.7731 0.9074
(T) wear 540 0.7241 0.9444
(A) pick 390 0.9410 0.9692
(A) drop 178 0.9157 0.9551
(A) knock 149 0.9128 0.9664
(A) touch 210 0.8857 0.9143
(A) push 348 0.8707 0.9282
(A) wash 236 0.8686 0.9576
(A) ride 243 0.8683 0.9630
(A) turn 470 0.8617 0.9277
(A) cut 318 0.8491 0.9403
(A) lose 200 0.8450 0.9000
(A) pull 383 0.8433 0.8799
(A) read 624 0.8301 0.8942
(A) leave 382 0.8246 0.8717
(A) build 307 0.8176 0.9479
(A) open 379 0.8153 0.8707
(A) bite 195 0.7949 0.9026
(A) close 212 0.7877 0.8491
(A) blow 214 0.7570 0.8738
(A) play 1424 0.7514 0.8820
(A) drink 345 0.7507 0.9420
(A) draw 401 0.7481 0.9202
(A) eat 1535 0.7036 0.8997
(A) sit 990 0.6939 0.8323
(A) move 260 0.6923 0.7846
(A) sing 347 0.6916 0.8646
(A) hang 168 0.6905 0.8690
(A) break 558 0.6900 0.7975
(A) write 593 0.6830 0.8499
(A) walk 255 0.6196 0.8078
(A) stand 300 0.5733 0.7800
(A) stick 278 0.5647 0.7626
(A) fit 211 0.5498 0.7536
(A) jump 189 0.5185 0.7354
(A) run 246 0.4837 0.7236
(A) swim 200 0.4500 0.7550
(I) wait 310 0.8452 0.8774
(I) stay 334 0.7575 0.8204
(I) sleep 419 0.4678 0.7709
(I) fall 606 0.3449 0.6188
(I) work 302 0.3377 0.5927
(I) cry 272 0.2647 0.6875

Table 1: Fifty verbs in our analysis with their total count,
sample DO rate, and sample PDO rate.89



Lastly, we assume that the DO observations
{Xi,j}Ni

j=1 are independently and identically dis-
tributed as a Bernoulli distribution with the success
parameter equal to θi:

Xi,j |θi ∼ Bernoulli(θi).

The left panel of Figure 1 summarizes our model in
plate notation. Note that the verb’s transitivity Ti

and the verb’s true observable DO rate θi are latent
variables that need to be estimated, while the DO
observation Xi,j are observed variables (shaded in
the Figure).

Xi,j

θi

Ti

{αk}Kk=1

{βk}Kk=1

Ni

V

(a) Distributional Learner
(this paper)

Xi,j

θi

Ti

ei,j ϵ

δ

Ni

V

(b) Filtering Learner
(Perkins et al., 2022)

Figure 1: Models in plate notation.

EB inference We have assumed that the model
hyperparameters {(αk, βk)}Kk=1 are unknown. We
estimate these hyperparameters using EB. Specif-
ically, we set the hyperparameters to values that
maximize the marginal log-likelihood.
The EB prior estimation and posterior computation
can be done efficiently by reducing our model to the
class of Beta-Binomial mixture models. We com-
bine two simple observations: the marginal distri-
bution of θi is a Beta mixture if we integrate Ti out;
and the sum of the Ni Bernoulli trials is distributed
as a Binomial distribution, Xi,· :=

∑Ni
j=1Xi,j ∼

Binomial(Ni, θi). Therefore, the sum of DO ob-
servations Xi,· is marginally distributed as a Beta-
Binomial mixture:

Xi,· ∼
1

K

K∑

k=1

Beta-Binomial(Ni, αk, βk).

We use the expectation–maximization (EM) algo-
rithm to find the hyperparameter values that maxi-
mize this likelihood.

Initialization Since the likelihood maximization
problem is not a convex problem, the solution ob-
tained via the EM algorithm might depend on the
initialization. We initialize the category member-
ships using a hard clustering of sample DO rates,
Xi,·/Ni.2 For example, with K = 3 categories,
we sort verbs by their sample DO rates, and assign
a hard C1/C2/C3 membership to the verbs with
sample DO rates in the lowest/middle/upper tertile,
respectively. The categories C1, C2, and C3 are
interpreted as the verb categories with ‘low’, ‘mid-
dle’, and ‘high’ true observable DO rates, which
would roughly correspond to the ‘intransitive’, ‘al-
ternating’, and ‘transitive’ categories of verb tran-
sitivity for the current problem.

Inference with PDO data To make inferences
using the PDO data instead of the DO data, we use
the same model and algorithm. The only difference
is the interpretation of the model parameters: θi as
the verb’s true observable PDO rate and (αk, βk)
as the parameters for the PDO distribution of the
category Ck.

5 Results

We use the EB model to simulate a distributional
learner (DL) that learns verb transitivity from
DO data, and a pragmatics-utilizing distributional
learner (PUDL) that learns verb transitivity from
pragmatics-augmented DO (PDO) data, which in-
corporates pragmatic knowledge about questions.

5.1 Distributional Learner (DL)

To simulate a DL, we fit the EB model with three
categories (K = 3), consistent with the underlying
truth that there are three verb transitivity categories
(intransitive, alternating, and transitive).
The estimated hyperparameters (αk, βk) for the
EB Beta priors are (4.76, 3.64), (28.58, 8.60), and
(33.39, 4.28) for the categories C1, C2, and C3;
their means are 0.57, 0.77, and 0.89. The densities
of the three distributions are shown in the upper-
most panel of Figure 2. Note that we do not use the

2In a hard clustering, each verb i belongs to only one
category, whereas, in a soft clustering, it can belong to multiple
categories. It is worth noting that the hard clustering-based
initialization is an initialization strategy, not a part of the
model specification, though the initialization can have a lasting
impact on the final inference.
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true verb transitivity labels (‘intransitive’, ‘alternat-
ing’, or ’transitive’) in the estimation procedure.

0

5
DL: K=3

C1
C2
C3

0

10 PUDL: K=3
C1
C2
C3

0

5
PUDL: K=2

C1
C2

0

5 PUDL: K=1

C1

0.0 0.2 0.4 0.6 0.8 1.0
0

10 DL on Perkins et al. DO data: K=3
C1
C2
C3

Figure 2: Empirical Bayes beta priors.

Based on the empirical Bayes beta priors, each
verb’s posterior distribution over the verb cate-
gories C1, . . . , CK is computed. Each verb’s pos-
terior membership in the categories is shown as a
stacked bar plot in the uppermost panel of Figure
3; the posterior memberships are non-negative and
sum to one. The verb labels in the x-axis are color-
coded to represent the underlying true transitivity
category: transitive verbs are coded red, alternating
verbs are coded black, and intransitive verbs orange.
The verbs are ordered first by the underlying true
transitivity category, and then by the descending
sample DO rate within each category.
Our EB model performs well in uncovering the
underlying true transitivity category, though not
perfectly. Out of the nine transitive verbs, seven
verbs have the highest membership in the ‘high’
category C3, which is the category with the highest
prior DO rates; the other two transitive verbs have
the highest membership in the ‘middle’ category
C2. On the other side, four out of the six intran-
sitive verbs have the highest membership in the
‘low’ category C1. The alternating verbs have vary-
ing levels of memberships in the three categories,
depending on their sample DO rates.

5.2 Pragmatics-Utilizing Distributional
Learner (PUDL)

To simulate a PUDL, we fit the EB model with
three categories (K = 3) to the PDO data. The
estimated EB beta priors and the posterior mem-
berships are shown in the second uppermost panels
of Figure 2 and 3. In Figure 3, verbs within each
category are reordered according to their sample
PDO rates. Compared to the DL, the PUDL has
verbs’ posterior memberships less separated. For
example, all the fifty verbs have non-negligible
memberships in the C3 category, and the transi-
tive verbs’ C3 membership decreased. This change
follows from the property of the PDO data: each
verb’s PDO rate is always greater than or equal to
its DO rate, and the verbs’ PDO rates are harder
to separate into distinct clusters, since they are all
shifted toward 1 (closer to 1 than the DO rates are).
This property is illustrated in the estimated EB beta
priors in the second panel of Figure 2, which is
more overlapping than the first panel.
We find that the PUDL favors models with a smaller
number of categories, based on the Bayesian Infor-
mation Criterion (BIC). BIC is a criterion for model
selection, which is defined as

BIC = −2 log(L̂) + P log(N)

where L̂ is the maximized log-likelihood of the
model, P is the number of parameters estimated
by the model, and N is the sample size. A model
with a smaller BIC is preferred. To strike a balance
between model fit and model complexity, BIC adds
a penalty to the number of parameters, as models
with a larger number of parameters are more flexi-
ble to guarantee a higher maximized log-likelihood.

K BIC −2 log(L̂) P log(N)

✓1 478.5759 470.7519 7.8240
2 486.3513 470.7032 15.6481
3 493.5469 470.0747 23.4721

Table 2: Bayesian Information Criterion for PUDL.

In our case, the sample size N is 50 and the num-
ber of parameters P is 2K from the size of the set
{(αk, βk)}Kk=1. The PUDL with K = 3 has BIC
493.55, BIC 486.35 with K = 2, and 478.58 with
K = 1 (see Table 2). Therefore, the PUDL with
K = 1 is the most preferred, and the PUDL with
K = 3 is the least preferred, among the three mod-
els. The estimated EB prior for the PUDL with
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Figure 3: Posterior distributions over verb categories T .

K = 1 is shown in the second lowermost panel of
Figure 2; its true observable PDO rates are concen-
trated around large values. Naturally, the posterior
membership for each verb is 1 in the only available
category C1, as shown in the second lowermost
panel of Figure 3. For completeness, the estimated
EB prior and posterior memberships for K = 2
are provided in the middle panel of Figure 2 and 3,
respectively.

Intuitively, the preference for K = 1 indicated
by BIC suggests that the pragmatically-informed
learner infers that the observations are coming from
a single common source, rather than two or three
clusters. Capable of pragmatic reasoning about the
question-answer relation, the learner made an im-
pressive progress by recognizing verbs like ‘throw’
in (1) are more transitive than it previously thought
they would be. However, the learner at the assumed
developmental stage is still potentially misguided
by the data like (2b) for intransitive verbs, making

an incorrect inference that verbs like ‘wait’ can oc-
cur with a direct object. Consequently, the learner
undergoes the overregularizing stage, where it per-
ceives all verbs as belonging to one category, i.e., a
category with high true observable DO rates.3 This
explains why K = 1 is preferred when the model
is asked to cluster 50 verbs into K-many categories.
Once the learner resolves the PP vs. NP distinction
at a later stage of development, possibly after 19
months old given the experimental results in Lidz
et al. (2017), we expect the result for the PUDL
K = 3 to be more clearly separated than the DL
K = 3, showing more progress toward determinis-
tic knowledge. We leave the experimentation with
the PUDL augmented by the PP vs. NP resolution
for future research.

3It is possible to interpret this single category as either
transitive or alternating. The upshot is that the learner would
infer that verbs are followed by a direct object with a high
probability.
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6 Comparison with a filtering model

In this section, we compare our distributional
learner with a filtering-based distributional learner,
proposed by Perkins et al. (2022).

Filtering model The filtering-based learner iden-
tifies and filters out the inherent noise in the overt
DO data, such as (1b). Assuming deterministic
hypotheses of 0% DO rate, 100% DO rate, and
0-100% DO rate for intransitive, transitive, and
alternating categories, respectively, the model in-
corporates filtering as inductive bias, allowing it
to arrive at accurate generalizations only by look-
ing at the rates of overt objects following verbs.
What sets this approach apart from other propos-
als on filtering is that the learner operates without
predetermined understanding of which data is mis-
leading in terms of verb transitivity. All it assumes
is a certain amount of noise in the data, acknowl-
edging the presence of erroneous parses. The key
insight of Perkins et al. (2022) is that the learner
confronts the complex transitivity learning prob-
lem by filtering out these erroneous parses without
necessarily knowing that the data such as (1b) and
(2b) are non-basic clauses.
The filtering learner assumes that there are three
transitivity categories {Ct, Ca, Ci} (transitive, al-
ternating, and intransitive) with equal prior weights.
The transitivity Ti of each verb i ∈ {1, 2, . . . , V }
is distributed as:

Ti ∼ Uniform({Ct, Ca, Ci}).

Depending on the transitivity category, the verb’s
true DO rate θi is drawn from known deterministic
values or a known distribution:

θi|Ti ∼





δ(1), if Ti = Ct

Uniform([0, 1]), if Ti = Ca

δ(0), if Ti = Ci

This modeling choice encodes the deterministic
hypothesis space in which there is a known cate-
gory that always has a DO (‘transitive’) and another
known category that never has a DO (‘intransitive’).
By contrast, the categories in our model have DO
rates from a flexible Beta distribution, not tied to
specific values.
Notice also the difference in the definition of the
parameter θi as a verb’s true DO rate in their mod-
eling versus a verb’s true observable DO rate in
ours. The reason behind our learner’s modeling

true observable DO rate, not true DO rate, is be-
cause our learner does not have prior knowledge
about the deterministic hypotheses. Our learner
is purely distributional; all the input they receive,
including the utterances that we described as “mis-
leading" above, are potentially signals that drive
transitivity learning. In this regard, it is true ob-
servable DO rate, not true DO rate.
On the other hand, the filtering learner explicitly
models the “misleading” part of data as noise. First,
there is a parameter ϵ for the probability of an er-
roneous parse, which is distributed as a uniform
distribution:

ϵ ∼ Uniform([0, 1]).

Second, there is another parameter δ for the prob-
ability of generating a DO in error, which is dis-
tributed as a uniform distribution:

δ ∼ Uniform([0,1]).

Third, there is a sentence-level “input filter” ei,j ;
ei,j = 1 means the observation Xi,j is generated
from erroneous parsing. The input filter is modeled
as a Bernoulli distribution:

ei,j |ϵ ∼ Bernoulli(ϵ).

Lastly, the overt DO observation Xi,j is modeled
as a mixture of the two Bernoulli distributions with
success probability θi and δ. Xi,j = 1 means the
sentence j of verb i has a DO.

Xi,j |δ, θi, ei,j ∼
{

Bernoulli(θi), if ei,j = 0

Bernoulli(δ), if ei,j = 1.

The filtering-based model is illustrated in the right
panel of Figure 1.

Data For comparison, we present our DL’s per-
formance on the DO data reported in Perkins et al.
(2022). Note that although we follow their list of
fifty verbs and use the same corpora in our analysis,
the exact total count and sample DO rates are dif-
ferent. Specifically, the DO rates tend to be higher
in our dataset because we assume that our learner
hasn’t yet resolved the NP vs. PP distinction. By
contrast, Perkins et al. (2022) define the overt DO
as “right NP sisters of V”, which suggests that their
learner can distinguish PPs from NP objects.
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Result Our DL’s estimated hyperparameters
(αk, βk) for EB Beta priors are (0.91, 8.91),
(5.66, 3.70), and (30.39, 6.14) for the categories
C1, C2, and C3. The means are 0.09, 0.60, and
0.83; the densities are shown in the lowermost
panel of Figure 2, and each verb’s posterior mem-
berships in the lowermost panel of Figure 3.
We find that our posterior membership results
closely align with Figure 2 of Perkins et al. (2022).
The successful verb transitivity learning reported
in Perkins et al. (2022) has been attributed to the
filtering mechanism, a type of inductive bias that
enforces a deterministic hypothesis space. Our
learner, in contrast, does not entertain a restricted
hypothesis space to start with, which suggests that
pure distributional learning is enough to replicate
successful transitivity learning. We also highlight
that our learning algorithm is simpler and more effi-
cient than the filtering algorithm, with the runtime
being less than a second.

7 Conclusion

We introduced Pragmatics-Utilizing Distributional
Learner (PUDL) to model verb transitivity learn-
ing, assuming the grammatical knowledge typical
of 15-month-old English learners. PUDL integrates
learners’ pragmatic reasoning, particularly the re-
alization that utterances such as ‘What did Alex
throw?’ are information-seeking questions, lead-
ing in turn to the inference that this type of object
wh-questions would lack a direct object, i.e., the
answer to the question being asked. These neutral
object wh-questions do not confuse pragmatically
informed learners of verb transitivity, even though
‘throw’, in principle, is a transitive verb that re-
quires a direct object. The nuanced pragmatic rea-
soning prompts learners to adjust their initial gener-
alization closer to adult grammar in the domain of
transitive verbs. However, the proposed pragmatic
knowledge alone is insufficient to handle the noisy
data in the domain of intransitive verbs. Specifi-
cally, we predicted a developmental trajectory char-
acterized by a temporary overregularization stage,
where learners generalize all verbs into a single cat-
egory in terms of transitivity due to difficulty in dis-
tinguishing PP adjuncts from NP arguments. Once
the PP and NP distinction is resolved4, possibly

4For instance, see Bergen et al. (2022) for recent computa-
tional modeling work on how learners differentiate between
arguments and adjuncts based on distributional information.
The current paper does not depend on exactly which model
is adopted for the NP argument-PP adjunct resolution, as be-

after 19 months of age, as suggested by Lidz et al.’s
(2017) behavioral studies, we anticipate the resolu-
tion of overgeneralization and significant progress
in the intransitive domain as well, which we leave
for future research. It remains to be demonstrated
by behavioral experiments whether children at this
critical period indeed exhibit overregularization,
categorizing both the transitive verb ‘throw’ and
the intransitive verb ‘wait’ into the same category in
terms of transitivity. Nevertheless, we have shown
that the proposed purely distributional models, Dis-
tributional Learner (DL) and Pragmatics-Utilizing
Distributional Learner (PUDL), which operate con-
fidently with received data, are as promising as an
alternative distributional model that considers deter-
ministic hypothesis space and filters out a portion
of input as noise.
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