
A Generalized Algorithm for Learning Positive and Negative Grammars
with Unconventional String Models

Sarah Payne
Stony Brook University

sarah.payne@stonybrook.edu

Abstract

This paper introduces an algorithm for learn-
ing positive and negative grammars with en-
riched representational models. In conventional
model-theoretic treatments of strings, each po-
sition belongs to exactly one unary relation.
Strother-Garcia et al. (2016) introduce uncon-
ventional string models, in which multiple po-
sitions can have shared properties, and demon-
strate their utility for grammatical inference.
Chandlee et al. (2019) develop this approach
for learning negative grammars. Here, we show
that by fixing k — the size of the elements in
the grammar — Chandlee et al.’s approach can
be further generalized to learn both positive and
negative grammars over unconventional string
models. We prove that this algorithm finds the
most general grammars which cover the data.

1 Introduction

A great deal of work on learning formal languages
has made use of conventional string models, in
which each position in a string belongs to exactly
one unary relation (Heinz, 2010b; Heinz et al.,
2012, i.a.). In this paper, we focus on learning over
unconventional string models, in which positions
in a string can have multiple, shared properties
(§2.3; Strother-Garcia et al., 2016; Vu et al., 2018).
For phonological applications, we can think of con-
ventional string models as operating exclusively
over segments — atomic, undecomposable, units
— while unconventional string models operate over
phonological features.

We focus on the learning of formal languages
that can be defined by a set of banned (under a
negative grammar, Rogers et al. 2013) or allowed
(under a positive grammar, Heinz et al. 2012) sub-
structures. These include the Strictly k-Local and
Strictly k-Piecewise classes (Rogers et al., 2010;
Rogers and Pullum, 2011, i.a.); many phonologi-
cal and phonotactic generalizations fall into these
classes (e.g., Heinz, 2018). While Strother-Garcia

et al. (2016), Chandlee et al. (2019), and Rawski
(2021) develop algorithms for learning negative
grammars with unconventional string models, how
to learn positive grammars with these models re-
mains an open question. Recent work on language
acquisition suggests that the child may construct
positive phonological (Belth, 2023) and phonotac-
tic (Payne, 2023) grammars, in line with evidence
for positive syntactic and morphological grammars
(e.g., Marcus et al., 1992; Yang, 2016; Belth et al.,
2021; Li and Schuler, 2023). While arguments have
also been made for negative phonologicial gram-
mars (e.g., Prince and Smolensky, 1993; Hayes and
Wilson, 2008), these findings demonstrate that the
learning of positive grammars from unconventional
string models warrants further exploration.

When learning over conventional string mod-
els, positive and negative grammars are straightfor-
wardly interdefinable (Heinz, 2010b); we may learn
a positive grammar simply by learning a negative
one and applying a post-hoc conversion. However,
such a conversion is exponentially more expensive
for unconventional string models (§4.3). What’s
more, the polarity of the grammar to be learned has
implications for the learning trajectory: while the
language of the grammar continuously shrinks as a
negative grammar grows, it continuously expands
as a positive grammar grows (§8). Hence, there
exist independent psycholinguistic and computa-
tional motivations for learning positive grammars
directly from unconventional string models.

In this paper, we adapt the learning algorithm
of Chandlee et al. (2019) to learn both positive
and negative grammars over unconventional string
models. Specifically, Chandlee et al. exploit the
partially-ordered hypothesis space given by uncon-
ventional string models to learn the most general
negative grammars. We demonstrate that if the
size of substructures in the grammar is fixed to be
exactly k, then we can immediately adapt this al-
gorithm to learn both the most general positive and

75
Proceedings of the Society for Computation in Linguistics (SCiL) 2024, pages 75-85.

Irvine, California, June 27-29, 2024

negative grammars. What’s more, for any negative
grammar learnable by the Chandlee et al. algo-
rithm, our algorithm learns an equivalent negative
grammar (§4.2). This paper is organized as follows:
§2 provides preliminaries of model theory, §3 in-
troduces subfactors and maxfactors, and §4 defines
positive and negative grammars and their languages
in terms of these structures. §5 defines the learn-
ing criteria, adapted from Chandlee et al., and §6
introduces a generalized learning algorithm that
provably satisfies these criteria. The algorithm is
applied to the example of Samala sibilant harmony
in §7 and implications are discussed in §8.

2 Preliminaries

This section and the next follow closely from §2-3
of Chandlee et al. (2019), since the current work
builds closely on their algorithm.

2.1 Formal Language Theory

Formal language theory allows us to study lan-
guages as mathematical objects which exist inde-
pendently of the specific grammar (Heinz, 2016)
The set of all possible finite strings generated from
a finite alphabet Σ is denoted Σ∗, and the set of
all strings of length k is given by Σk. In formal
language theory, languages are defined as subsets
of Σ∗. The length of a string w is denoted |w|.

2.2 Finite Model Theory

Finite model theory provides a unified vocabulary
for representing many kinds of objects as relational
structures, allowing for algorithms that are largely
agnostic to the choice of linguistic representation
(Enderton, 2001; Libkin, 2004; Chandlee et al.,
2019; Lambert et al., 2021; Rawski, 2021). We
consider finite relational models of strings in Σ∗.

Definition 1 (Models). A model signature is a set
of relations R = {R1, R2, ..., Rn} where each Ri

is an mi-ary relation. An R-structure is a tuple
of elements S = ⟨D;R1, R2, ..., Rn⟩, where D is
a finite set of elements, the domain, and each Ri

is a subset of Dmi . The size |S| of an R-structure
S corresponds to the cardinality of its domain. A
model for the set of objects Ω is a total, one-to-one
function from Ω to R-structures.

Consider the precedence model for strings in Σ∗,
defined as M<(w) := ⟨Dw;<, [Rw

σ]σ∈Σ⟩ where
Dw = {1, ..., |w|} is the domain of positions in w
and <:= {(i, j) ∈ Dw×Dw | i < j} is the general
precedence relation (Büchi, 1960; McNaughton

1 2 3 4

a b b a

1 2 3 4

a b b a

b)

a)

� � �

<

<

<

<

< <

Figure 1: The precedence (M<, subfigure a) and succes-
sor (M�, subfigure b) models of the string abba.

1 2 3 4

a b b a
� �

Figure 2: A visualization of the R-structure given by
Sab,ba = ⟨D = {1, 2, 3, 4};� = {(1, 2), (3, 4)}, Ra =
{1, 4}, Rb = {2, 3}, Rc = ∅⟩.

and Papert, 1971; Rogers et al., 2013). With this
model and Σ = {a, b, c}, we have:

M<(abba) = ⟨D = {1, 2, 3, 4};
<= {(1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (3, 4)},
Ra = {1, 4}, Rb = {2, 3}, Rc = ∅⟩

(1)

The successor model differs from the precedence
model only in the ordering relation, given by � :=
{(i, i + 1) ∈ Dw × Dw}. The precedence and
successor models of abba are shown in Figure 1.

Since R-structures may be any mathematical
structure conforming to a model signature, not all
possible R-structures are valid models of strings:
the R-structure in Figure 2 is not a model of any
w ∈ Σ∗. To limit the R-structures we consider, we
introduce the notion of connectedness.

Definition 2 (Connected R-Structure). An R-
structure S = ⟨D;R1, R2, ..., Rn⟩ is connected
iff (∀x, y ∈ D)[(x, y) ∈ C∗], where C∗ is defined
as the symmetric transitive closure of:

C ={(x, y) ∈ D ×D |
∃i ∈ {1...n}, ∃(x1...xm) ∈ Ri

∃s, t ∈ {1...m}, x = xs, y = xt}
(2)

Intuitively, domain elements x and y of S belong
to C if they belong to some non-unary relation Ri

in S. It is easy to see that Sab,ba (Figure 2) is not
connected: neither (2, 3) nor (3, 2) is contained in

76

C and thus none of (1,3), (1,4), (2,3), (2,4), etc. are
contained in C∗. In contrast, both M<(abba) and
M�(abba) in Figure 1 are connected R-structures.

2.3 Unconventional String Models

The models shown in Figure 1 are conventional
string models: besides the ordering relation, they
include only mutually-exclusive unary relations
(e.g., Ra) which label each domain element with a
single property of being some σ ∈ Σ. In con-
trast, unconventional string models recognize
that distinct alphabetic symbols may share proper-
ties and expand the model signature by including
these properties as non-exclusive unary relations
(Strother-Garcia et al., 2016; Vu et al., 2018).

Unconventional string models allow for more
generalized representations, and thus have a num-
ber of useful linguistic applications. Consider the
example of sibilant harmony in Samala: subse-
quences such as [s...s] that agree in ±ANTERIOR

are allowed but subsequences such as [s...S] which
disagree are banned, so [hasxintilawas] is licit but
[hasxintilawaS] is not (Hansson, 2010). Under a
conventional string model, we must separately rep-
resent that [s...S], [z...S], [s...Z], etc. are banned,
or equivalently that [s...s], [z...z], [S...Z], etc. are
allowed. Under an unconventional string model,
however, we can simply represent that [+STR,
+ANT][+STR, -ANT] subsequences are banned,
or that [+STR, +ANT][+STR, +ANT] and [+STR,
-ANT][+STR, -ANT] subsequences are allowed.

3 Subfactors and Maxfactors

We define a partial order over R-structures by estab-
lishing the notions of restrictions, subfactors, and
maxfactors, building on Chandlee et al. (2019).

Definition 3 (Restriction). An R-structure A is a
restriction of an R-structure B if DA ⊆ DB and
for each m-ary relation Ri in the model signature,
RA

i = {(x1, ..., xm) ∈ RB
i | x1, ..., xm ∈ DA}.

A restriction is made by identifying a subset
DA of the domain of B and retaining only those
relations in B whose elements are wholly within
DA. For example, Figure 3 shows the restriction
of M<(abba) as defined in Equation 1 to D′ =
{1, 2, 3}. This restriction is given by: M<(abb) =
⟨D′ = {1, 2, 3};<= {(1, 2), (1, 3), (2, 3)}, Ra =
{1}, Rb = {2, 3}, Rc = ∅⟩.
Definition 4 (Subfactor). A connected R-structure
A is a subfactor of an R-structure B (notated

1 2 3

a b b
<

<

<

Figure 3: A restriction of M<(abba) shown in Fig. 1a.

A ⊑ B) if there exists a restriction B′ of B and a bi-
jection h such that for all Ri ∈ R, if Ri(x1, ..., xm)
holds in A, then Ri(h(x1), ..., h(xm)) holds in B′.
If A ⊑ B, B is a superfactor of A.

Definition 5 (Maxfactor). A connected R-structure
A is a maxfactor of an R-structure B (notated
A ≤ B) iff A ⊑ B and for each m-ary re-
lation Ri, whenever Ri(x1, ..., xm) holds in B,
Ri(h

−1(x1), ..., h
−1(xm)) holds in A. Equiva-

lently, A ≤ B if A ⊑ B and there is no R-structure
A′ non-isomorphic to A and B such that |A| = |A′|
and A ⊑ A′ ⊑ B. 1

Intuitively, A is a subfactor of B if there is a
mapping between DA and some subset of DB and
all relations that hold in A also hold over the corre-
sponding elements in B. Note that this requirement
is unidirectional. By contrast, maxfactors addition-
ally require that all relations that hold in B also
hold over the corresponding elements in A. We can
thus think of maxfactors as the maximally specified
subfactors of an R-structure. We use factor when
the distinction between subfactor and maxfactor is
irrelevant. This is true for conventional string mod-
els: since there is no underspecification in these
models, any subfactor must also be a maxfactor.

If A ⊑ B and |A| = k, then A is a k-subfactor
of B, and if A ≤ B and |A| = k, then A is k-
maxfactor of B. Let the set of k-subfactors of an
R-structure B be given by:

SFACk(B) := {A | A ⊑ B, |A| = k} (3)

and the set of k-maxfactors of B be given by:

MFACk(B) := {A | A ≤ B, |A| = k} (4)

For all w ∈ Σ∗ and any model M of Σ∗, the k-
subfactors and k-maxfactors of w are given by
SFACk(M(w)) and MFACk(M(w)), respectively;
we also write SFACk(M, w) and MFACk(M, w) for
readability. Finally, we define:

SFACk(M,Σ∗) =
⋃

w∈Σ∗
SFACk(M,w) (5)

1In model-theoretic terms, Definition 5 simply means that
A is a connected substructure of B (Libkin, 2004).

77

1 2 3 1 2

1 2 2 3

a)

b)

c)

d)

+STR
+ANT

+STR
-ANT

-STR
+ANT

+STR
+ANT

+STR
-ANT

+ANT -ANT

+STR -STR

< < <

<

< <

Figure 4: A visualization of M<(Sst) (a) and three 2-
subfactors; only subfactor (b) is also a 2-maxfactor.

and likewise for MFACk(M,Σ∗). From Definitions
(4) and (5), we have:

MFACk(M, w) ⊆ SFACk(M, w) (6)

Note that our definition of SFACk() differs from
the that of Chandlee et al. (2019) in that Chan-
dlee et al. require the size of the subfactors to be
bounded by k rather than equal to k. This differ-
ence is due to the constant size needed to define a
positive grammar, discussed in §4.1. To differenti-
ate between our definition of SFACk() and that of
Chandlee et al. (2019), we denote the latter as:

SFAC≤k(B) := {A | A ⊑ B, |A| ≤ k} (7)

Returning to Samala sibilant harmony (§2.3),
consider the precedence model of [sSt] given by:

M<(sSt) = ⟨D = {1, 2, 3};
<= {(1, 2), (1, 3), (2, 3)},
RSTR = {1, 2}, RANT = {1, 3}⟩

(8)

This model, along with three of its 2-subfactors, is
shown in Figure 4. The R-structures (b), (c), and
(d) are subfactors of M<(sSt), since they are all
connected and the relations that hold within them
also hold in M<(sSt). However, only (b) is a 2-
maxfactor: it is the only subfactor for which all
relations that hold in M<(sSt) also hold within it.

We now introduce two lemmas that will be used
to define grammars and their languages in §4.

Lemma 1 (Maxfactor-Subfactor Containment).
Let k be some positive integer and let M be some
model of Σ∗. For any w ∈ Σ∗ and for any
F ∈ SFACk(M, w), we have that:

[∃G ∈ MFACk(M,w)](F ⊑ G) (9)

Proof. Let G be the restriction of M(w) to h(DF),
where h : F → M(w) is given by Definition 4.

Clearly, G ⊑ M(w), and by Definition 3, RG
i =

{(x1, ..., xm) ∈ R
M(w)
i | x1, ..., xm ∈ h(DF)}

for all Ri ∈ R. Thus, G ⊑ M(w) and when-
ever Ri(x1, ..., xm) holds in M(w), Ri(x1, ..., xm)
holds in G. By Definition 5, G ≤ M(w).

By Definition 4, for all Ri ∈ R, if Ri(x1, ..., xm)
holds in F , then Ri(h(x1), ..., h(xm)) holds in
some restriction M ′ of M(w), and thus in M(w)
by Definition 3. But since G is defined over h(DF)
and contains all relations in M(w) defined over
DG, it must also be the case that if Ri(x1, ..., xm)
holds in F , then Ri(h(x1), ..., h(xm)) holds in G.
By Definition 4, this means that F ⊑ G.

Lemma 2 (Union of Subfactors of Maxfactors).
Let k be some positive integer and let M be some
model of Σ∗. For any w ∈ Σ∗, we have that:

⋃

S∈MFACk(M,w)

SFACk(S) = SFACk(M, w) (10)

Proof. (⊆) Consider some f ∈ SFACk(S), where
S ∈ MFACk(M,w) ⊆ SFACk(M,w) and thus
f ⊑ S ∈ SFACk(M,w). By Equation 3, this
means that f ⊑ S ⊑ M(w), and thus that
f ⊑ M(w). Since f ⊑ M(w) and |f | = k, by
Equation 4, f ∈ SFACk(M,w).
(⊇) Consider some g ∈ SFACk(M, w). By

Lemma 1, [∃g′ ∈ MFACk(M,w)](g ⊑ g′), and
since g ⊑ g′ and |g| = k, Equation 3 tells us
that g ∈ SFACk(g

′). Since g ∈ SFACk(g
′) and

g′ ∈ MFACk(M,w), it must be the case that
g ∈ ⋃

S∈MFACk(M,w) SFACk(S).

4 Grammars and Their Languages

4.1 Positive vs. Negative Interpretations
We define a grammar G as a finite set of subfac-
tors; the language that G defines differs based on
whether we interpret it as a positive or negative
grammar. We first discuss these interpretations
informally, then formalize them in Definitions 6-7.

Under a negative interpretation (notated G−),
the elements of G− are forbidden, and strings in
L(G−) contain no forbidden subfactors. This ap-
proach has parallels to logical expressions which
are "conjunctions of negative literals" (Rogers et al.,
2013; Chandlee et al., 2019): the forbidden subfac-
tors are simply interpreted as the negative literals.
Returning to Samala sibilant harmony (Figure 4), if
(c) is in the grammar (i.e., [+ANT][-ANT] ∈ G−),
this is sufficient to determine that sSt ̸∈ L(G−),
since [+ANT][-ANT] ⊑ M<(sSt) (Figure 4a).

78

Under a positive interpretation (notated G+),
the elements of G+ are permissible, and strings
in L(G+) are those which are covered by these
elements; we can think of the subfactors in G+

as tiling the strings in L(G+) (Rogers and Heinz,
2014). Returning to Figure 4, if both (c) and (d)
are in G+ (i.e., [+STR][-STR] ∈ G+, [+ANT][-
ANT] ∈ G+), then sSt ∈ L(G+), since (c) covers
[sS] and (d) covers [St]. However, if (d) but not (c)
is in G+, then sSt ̸∈ L(G+), because there is no
subfactor in G+ that covers the first two indices of
M<(sSt). The notion of tiling is greatly simplified
when the subfactors used to tile are of equal size,
as in Rogers and Heinz (2014). As such, our defini-
tions of negative and positive grammars and their
languages below operate over fixed values of k.

Definition 6 (Negative Grammar). Let k be some
positive integer and M be a model of Σ∗. A neg-
ative grammar G− is a subset of SFACk(M,Σ∗),
and the language L(G−) of G− is given by:

L(G−) ={w ∈ Σ∗ | (∀S ∈ MFACk(M,w))

[SFACk(S) ∩G− = ∅]}
(11)

or equivalently by:

L(G−) ={w ∈ Σ∗ | (∄S ∈ MFACk(M,w))

[SFACk(S) ∩G− ̸= ∅]}
(12)

The class of such languages is defined as:

L −(M, k) ={L | (∃G− ⊆ SFACk(M,Σ∗))

[L(G−) = L]}
(13)

Definition 7 (Positive Grammar). Let k be some
positive integer and M be a model of Σ∗. A pos-
itive grammar G+ is a subset of SFACk(M,Σ∗),
and the language L(G+) of G+ is given by:

L(G+) ={w ∈ Σ∗ | (∀S ∈ MFACk(M,w))

[SFACk(S) ∩G+ ̸= ∅]}
(14)

or equivalently by:

L(G+) ={w ∈ Σ∗ | (∄S ∈ MFACk(M,w))

[SFACk(S) ∩G+ = ∅]}
(15)

The class of such languages is defined as:

L +(M, k) ={L | (∃G+ ⊆ SFACk(M,Σ∗))

[L(G+) = L]}
(16)

Defining the languages of positive and neg-
ative grammars in terms of quantification over
MFACk(M,w) allows us to tile a word w with k-
subfactors. We can think of Equations 11 through

Positive Grammar
(Equation 14)

Negative Grammar
(Equation 11)

Negative Grammar
(Equation 12)

Positive Grammar
(Equation 15)

∈ G ̸∈ G

∀

∃

Figure 5: Positive and negative grammars and their
languages, organized by quantification and attestation.

15 as realizing two primary distinctions: quan-
tification (∀ vs. ∃) and membership in G. For
universal quantification (∀), if all k-maxfactors of
w are superfactors of some k-subfactor in G+, then
w ∈ L(G+) (Equation 14), and if all k-maxfactors
of w are not superfactors of some k-subfactor in
G−, then w ∈ L(G−) (Equation 11). For existen-
tial quantification (∃), if there exists a k-maxfactor
of w that is a superfactor of some k-subfactor in
G−, then w ̸∈ L(G−) (Equation 12). If there exists
a k-maxfactor of w that is not a superfactor of some
k-subfactor in G+, then w ̸∈ L(G+) (Equation 15).
Figure 5 illustrates how these distinctions define
the languages of positive and negative grammars.

To further illustrate the differences between neg-
ative and positive grammars, consider a grammar
G such that L(G) = Σ∗, and let k = 1. If
G is positive, then it must contain subfactors of
all possible 1-maxfactors of any w ∈ Σ∗. The
empty 1-subfactor [] satisfies this, so we have
G+ = {[]} and L(G+) = Σ∗. Conversely, if we
have G− = {[]}, we will have L(G−) = ∅, since
there is no w ∈ Σ∗ whose 1-maxfactors are not su-
perfactors of []. To define a negative grammar ac-
cepting Σ∗, we must instead ensure that no possible
1-maxfactor of any w ∈ Σ∗ is a superfactor of an el-
ement in G−; this is easily achieved with G− = ∅.
At the same time, if we have G+ = ∅, then no word
w ∈ Σ∗ will have its 1-maxfactors contained by
elements in G+, and thus L(G+) = ∅.

4.2 Equivalence to Chandlee et al. (2019)
In contrast to the current work, Chandlee et al.
(2019) focus only on the learning of negative gram-
mars, defined as follows:

Definition 8 (Chandlee et al. Negative Grammar).
Let k be some positive integer and M be a model
of Σ∗. A negative grammar G− is a subset of
SFAC≤k(M,Σ∗), and the language L(G−) is given
by:

L(G−) ={w ∈ Σ∗ |
SFAC≤k(M, w) ∩G− = ∅} (17)

79

Since Chandlee et al. consider negative gram-
mars, they need only to set an upper bound on k.
To learn both positive and negative grammars, how-
ever, we fix k. We thus wish to demonstrate an
equivalence between the grammars and languages
in Definition 8 and in Definition 6, namely:

Theorem 1. Let L17 refer to L(G−) as in Equa-
tion (17) and L11 refer to L(G−) as in Equation
(11). For any G−

1 ⊆ SFAC≤k(M,Σ∗), ∃G−
2 ⊆

SFACk(M,Σ∗) such that L17(G
−
1) = L11(G

−
2).

A full proof is provided in Appendix A.

4.3 The Cost of Interdefinability

When defined over conventional string models, neg-
ative and positive grammars are straightforwardly
interdefinable: G+ = Σk \G− and G− = Σk \G+

(Heinz, 2010b). However, there are two complica-
tions for unconventional string models that make
the interdefinability significantly more costly.

Firstly, the number of potential k-subfactors is
significantly larger for unconventional string mod-
els: consider a model with n binary features, defin-
ing s ≤ 2n segments. Under a conventional string
model, the number of k-factors is no more than
(s)k ≤ (2n)k, since one segment is chosen at each
position (Heinz, 2010b). Under an unconventional
string model, however, a feature can be either pos-
itive, negative, or underspecified at each position,
yielding (3n)k possible k-subfactors, exponentially
more than for the conventional string model.

Secondly, the conversion itself is less straight-
forward for unconventional string models. To illus-
trate this, we again consider Samala sibilant har-
mony (§2.3). For conventional string models, we
must simply check whether some k-factor f ∈ Σk

is in G− to determine if it is added to G+: if [s...S]
∈ G−, for example, then [s...S] ̸∈ G+. For un-
conventional string models, however, this is not
sufficient. Returning to Figure 4, if subfactor (c)
is in G−, then we should not include (b) in the
corresponding G+, even though b ̸∈ G−, since
c ⊑ b. Likewise, if b ∈ G−, then c ̸∈ G+. Thus, to
determine whether some k-subfactor f should be
added to G+ for an unconventional string model,
we must check not only if f ∈ G−, but also if
(∃g ∈ G−)[f ⊑ g ∨ g ⊑ f]. Hence, both the
number of possible k-subfactors and the method
of conversion indicate that interdefinability is pro-
hibitively costly for unconventional string models,
further motivating the learning of positive gram-
mars directly from these models.

5 The Learning Problem

Heinz (2010b) and Heinz et al. (2012) demonstrate
that positive grammars like those in Definition 7
are learnable in the limit from positive evidence in
the sense of Gold (1967), as well as PAC-learnable
(Valiant, 2013) in some cases. In this work, G+

is defined as the collection of all k-factors in the
data sample, and a word w is in L(G+) if and only
if all of its k-factors are in G+. Because Heinz
(2010b) and Heinz et al. (2012) are not working in
the model-theoretic framework, it is sufficient to
check that the k-factors are in the grammar, rather
than superfactors of elements in the grammar.

Chandlee et al. (2019) learn negative grammars
from positive evidence with unconventional string
models. Rather than convergence to a correct gram-
mar in the limit, Chandlee et al. define the learning
problem in terms of returning an adequate gram-
mar given a finite positive sample, in the sense of
De Raedt (2008). We adapt Chandlee et al.’s def-
inition of the learning problem to apply to both
negative and positive grammars as follows:

Definition 9 (The Learning Problem). Fix Σ,
model M, positive integer k, and polarity p. For any
language L ∈ L p(M,k) and for any finite sample
D ⊆ L, return a grammar Gp such that:

1. Gp is consistent, that is, D ⊆ L(Gp).

2. L(Gp) is a smallest language in L p(M,k)
which covers D, so that for all L ∈ L p(M,k)
where D ⊆ L, we have L(Gp) ⊆ L.

3. Gp includes R-structures S that are restric-
tions of R-structures S′ in other grammars G′

that also satisfy (1) and (2). That is, for all
G′ satisfying (1) and (2) and for all S′ ∈ G′,
there exists some S ∈ Gp such that S ⊑ S′.

The first criterion is self-explanatory: we want to
at least cover the training data. Following Chandlee
et al., the second criterion is motivated by Angluin
(1980)’s analysis of identification in the limit. The
third criterion requires us to learn the most general
subfactors: for positive grammars, this means the
subfactors that most generally encompass the al-
lowed maxfactors, while for negative grammars, it
means the most general constraints. In the case of
Samala sibilant harmony (§2.3), for example, if we
see [S...S] and [Z...Z], but not [s...S], [z...Z], [s...Z],
or [z...S], then we would add to our positive gram-
mar [-ANT, +STR][-ANT, +STR], rather than the

80

Algorithm 1 A generalized bottom-up learning
algorithm for positive and negative grammars
Require: positive sample D, size k, and polarity p
1: Q← {s0}
2: G← ∅
3: V ← ∅
4: while |Q| > 0 do
5: s← Q.dequeue()
6: V ← V ∪ {s}
7: if ((p = −) ∧ (∃s′ ∈ EXTk(s),∃x ∈ D)[s′ ≤ x])∨
8: (p = +) ∧ (∃s′ ∈ EXTk(s))[∀x ∈ D : s′ ̸≤ x] then
9: S ← NextSupFact(s)

10: S′ ← {s ∈ S | (∄g ∈ G)[g ⊑ s] ∧ s ̸∈ V }
11: Q.enqueue(S′)
12: else
13: G← G ∪ {s}
14: end if
15: end while
16: return G

two more specified factors. From the same data,
we would add to our negative grammar [+ANT,
+STR][-ANT, +STR], rather than the four more
specified factors. The third criterion is specific
to unconventional string models: as discussed in
§3, maxfactors and subfactors are equivalent for
conventional string models, so there is no parallel
notion of generality when learning over them.

6 A Generalized Learning Algorithm

The learning algorithm we present is based closely
on that of Chandlee et al. (2019). Since our goal
is to add the most general subfactors to our gram-
mar, the algorithm is bottom-up in the sense of
De Raedt (2008): we begin with the most general
subfactors and traverse upwards in the partial order
during learning. Indeed, once a subfactor has been
identified as an element of the grammar, none of
its superfactors need to be considered: all of them
will be banned in the case of a negative grammar
or allowed in the case of a positive grammar.

A bottom-up learner that learns both positive and
negative grammars is given in Algorithm 1. As in-
put, this algorithm takes a positive data sample D,
an integer k corresponding to the size of the sub-
factors, and a polarity p indicating whether to learn
a positive or negative grammar. As in Chandlee
et al. (2019), Algorithm 1 makes use of a queue Q,
which initially contains just the empty structure of
length k, s0 (Line 1). The algorithm also initializes
two empty sets: G (Line 2), the grammar to be
returned, and V (Line 3), the set of subfactors that
have already been visited. Algorithm 1 considers
the subfactors in Q one at a time in first-in-first-out
order, and as each subfactor s is considered, it is

added to the set of visited subfactors V (Line 6).
Depending on the polarity p of the grammar to be
learned, we condition as follows for a given s (Line
7): For a negative grammar, we check whether any
of the possible extensions of s is a k-maxfactor of
some element in D. For a positive grammar, we
check whether any of the possible extensions of
s is not a k-maxfactor of any element in D. The
extensions of s are defined as follows:

EXTk(s) ={A ∈ SFACk(M,Σ∗) |
s ⊑ A ∧ (∄A′)[|A′| = k ∧A ⊑ A′]}

(18)

In other words, the extensions of s are all k-
maxfactors that are superfactors of s. For example,
if we have s = [+ANT] and the only two fea-
tures available are ±ANT and ±STR, then we have
EXTk(s) = {[+ANT, -STR], [+ANT, +STR]}.

Given Definitions 6 and 7, if the conditions on
Line 7 are not satisfied, we add s to G (Line 13). If
either of the conditions are satisfied, however, we
must consider more specified subfactors than s. For
a negative grammar, this is because the potential
constraint s is violated by some w ∈ D and thus
cannot be added to G. For a positive grammar,
this is because at least one k-maxfactor licensed by
s is unattested in D, and thus s cannot be added
to G. We extract the more specific superfactors
of s by calling NextSupFact(s) (Line 9) where
NextSupFact() is defined as follows:

NextSupFact(s) ={A ∈ SFACk(M,Σ∗) |
s ⊑ A ∧ (∄A′)[s ⊑ A′ ⊑ A]}

(19)

Intuitively, NextSupFact() returns the least super-
factors for s. The set S of superfactors is then
filtered (Line 10) to contain only those that have
not been previously visited and contain no element
of G as a subfactor. This is because if there is some
g ∈ G such that g ⊑ s, then for any word w for
which s ⊑ w, we have g ⊑ s ⊑ w and thus g ⊑ w,
and by Definitions 6 and 7, s will not add any new
information to the grammar. The structures that
pass this filter are then added to Q.

Note that Algorithm 1 is nearly identical to the
algorithm of Chandlee et al. except that Line 7
conditions for both positive and negative grammars,
and we consider subfactors of exactly size k rather
than bounded in size by k. As discussed in §4.1,
it is the latter modification that allows us to learn
both positive and negative grammars in the same
way. We now demonstrate that Algorithm 1 meets
the criteria outlined in Definition 9.

81

Theorem 2. For any p ∈ {+,−}, positive integer
k, any L ∈ L p(M,k) and any finite set D ⊆ L
provided to Algorithm 1, it returns a grammar Gp

satisfying Definition 9.

Proof. (Condition 1) Assume towards contradic-
tion that there exists some w ∈ D,w ̸∈ L(Gp).

If p = +, then by Definition 7, there is some x ∈
MFACk(M,w) such that (∀y ∈ SFACk(x))[y ̸∈
Gp]. By Algorithm 1, this means that for all y ∈
SFACk(x) there is some z ∈ EXTk(y) such that
(∀w′ ∈ D)[z ̸≤ w′]. However, x ∈ SFACk(x) by
Definition 4, and since x ∈ MFACk(M,w), we
have EXTk(x) = {x}. Thus, if x ̸∈ G+, then
(∀w′ ∈ D)[x ̸≤ w′], so w ̸∈ D, a contradiction.

If p = −, then by Definition 6, there is some x ∈
MFACk(M,w) such that (∃y ∈ SFACk(x))[y ∈
Gp]. Since y ∈ SFACk(x) and x ∈ MFACk(M,w),
we have x ∈ EXTk(y). By Algorithm 1, y ∈ G−

means that (∀y′ ∈ EXTk(y), ∀w′ ∈ D)[y′ ̸≤ w′],
but since x ∈ EXTk(y), this means that (∀w′ ∈
D)[x ̸≤ w′], and w ̸∈ D, a contradiction.

(Condition 2) Consider any L′ ∈ L p(M,k)
with D ⊆ L′ and any w ∈ L(Gp). Since
w ∈ L(Gp), we have SFACk(M,w) ⊆
SFACk(M,D) and since D ⊆ L′, we
have SFACk(M,D) ⊆ SFACk(M,L′). Thus,
SFACk(M,w) ⊆ SFACk(M,L′), and w ∈ L′. As
such, (∀w ∈ L(Gp))[w ∈ L′], and L(Gp) ⊆ L′.

(Condition 3) Assume towards contradiction
that there is some Gp learned by Algorithm 1
such that for some s ∈ Gp, ∃s′ ⊑ s that should
be included in Gp: either p = + and (∀x ∈
EXTk(s

′))[∃w ∈ D,x ≤ w], or p = − and
(∀x ∈ EXTk(s

′))[∄w ∈ D,x ≤ w]. Since
s′ ⊑ s, s′ will be added to Q before s′ is gener-
ated by NextSupFact() under Algorithm 1, and
since Q is a first-in-first-out queue, s′ will be
removed from Q for consideration before s is
generated. Since we have either p = + and
(∀x ∈ EXTk(s

′))[∃w ∈ D,x ≤ w], or p = −
and (∀x ∈ EXTk(s

′))[∄w ∈ D,x ≤ w], s′ will be
added to G by Line 7. Then, when s is generated
by NextSupFact(), it will not pass the filter in Line
10, since s′ ⊑ s and s′ ∈ Gp. As such, s is never
added to Gp, and s ̸∈ Gp, a contradiction.

7 Example: Samala Sibilant Harmony

We illustrate our learning algorithm by applying
it to a toy example based on Samala sibilant har-
mony (§2.3; Hansson, 2010). For simplicity, we

use only two features: ±ANT and ±VOI; the for-
mer is necessary to define the phonotactic restric-
tion and the latter is not. We define the size of the
subsequences to be k = 2, and assume that all licit
subsequences are attested in D (c.f. Heinz, 2010a).
The partially-ordered structure of the hypothesis
space is shown in Figure 6, with lines indicating
subfactor-superfactor relations (see Chandlee et al.
2019 for further discussion).

Following Line 1, we initialize Q to contain only
the empty 2-subfactor [][], shown at the bottom
of Figure 6. Learning begins by dequeuing and
considering [][] (Lines 5-6). If we are learning a
negative grammar, we check whether there is any
element in EXTk([][]) which is a 2-maxfactor of
some x ∈ D. By definition, EXTk([][]) will con-
tain all fully-specified 2-factors that are superfac-
tors of [][]. This means, for example, that [+VOI,
+ANT][+VOI, +ANT] ∈ EXTk([][]), and this cor-
responds to the licit subsequence [z...z] which is
attested in D. If we are learning a positive grammar,
we check whether any element in EXTk([][]) is not
a 2-maxfactor of any x ∈ D. We have, for example,
[+VOI, +ANT][+VOI, -ANT] ∈ EXTk([][]), and
this corresponds to the illicit subsequence [z...Z]
which is not attested in D. As such, the condition
on Line 7 is satisfied for either polarity.

Following Line 9, we then extract the least super-
factors of [][]; these are shown in the level above
[][] in Figure 6. Since none of these subfactors have
been seen and G is empty, they are all added to Q
(Lines 10-11). However, as each is dequeued and
considered, it still satisfies the criteria in Line 7:
any subfactor with only ±ANT specified in a single
position will have both licit and illicit maxfactors
in its extension (e.g., [+ANT][]⊑ [+ANT][+ANT]
means that Line 7 will be satisfied for negative
grammars, but [+ANT][]⊑ [+ANT][-ANT] means
that it will also be satisfied for positive grammars).
Similarly, any subfactor with only ±VOI specified
will have both licit and illicit maxfactors in its ex-
tension. As such, specification of the subfactors
under consideration will be increased once more,
corresponding to the third level in Figure 6.

It is here that we are able to add subfactors to G.
When [+ANT][+ANT] is dequeued for the positive
grammar, every factor in EXTk([+ANT][+ANT])
(namely [s...s], [z...z], [s...z], and [z...s]) is attested,
so Line 7 is not satisfied, and [+ANT][+ANT] is
added to G (Line 13). Similarly, when [+ANT][-
ANT] is dequeued for the negative grammar, no fac-
tor in EXTk([+ANT][-ANT]) (i.e., none of [s...S],

82

...

[
+ANT
-VOI

] []
[+ANT][+ANT] [+ANT][-ANT] [-ANT][+ANT] [-ANT][-ANT] [+VOI][+VOI] ...

[+ANT][] [-ANT][] [][+ANT] [][-ANT] [+VOI][] [-VOI][] [][+VOI] [][-VOI]

[][]

...

Figure 6: A partial illustration of the hypothesis space for learning Samala sibilant harmony with k = 2.

[s...Z], [z...S] or [s...Z]) is attested, so [+ANT][-
ANT] is added to G (Line 13). We may later de-
queue [+ANT][+ANT, +VOI] in the positive case,
but will not consider it (Line 10): [+ANT][+ANT]
being allowed entails [+ANT][+ANT, +VOI] be-
ing allowed, so there is no reason to consider
[+ANT][+ANT, +VOI] separately. Similarly,
[+ANT][-ANT, +VOI] will not be considered in the
negative case since [+ANT][-ANT] being banned
entails [+ANT][-ANT, +VOI] being banned.

8 Discussion

The polarity of the grammar has several implica-
tions that warrant future exploration. In implemen-
tation, it is often necessary to terminate the search
defined in Algorithm 1 before reaching the most
specific k-maxfactors, but the implications of this
termination differ based on the polarity of the gram-
mar. Consider some positive data sample D, and
let Gp be the grammar that will be learned by Algo-
rithm 1 from D if the search space is traversed in
its entirety. Let Gp(t) be the intermediate grammar
at some time t. It is easy to see that Gp(t) ⊆ Gp,
since at any time t, elements in Q — as well as
their superfactors — have not yet been considered.

However, the implications of Gp(t) ⊆ Gp dif-
fer depending on the value of p. Specifically,
L(G+(t)) ⊆ L(G+) but L(G−) ⊆ L(G−(t)),
since the additional elements in Gp \ Gp(t) will
either be interpreted as additional constraints (for
negative p) or additional permitted elements (for
positive p). Recall from §4.1 that L+(∅) = ∅ and
L−(∅) = Σ∗, and from Algorithm 1 that Gp is ini-
tialized to ∅. This, in conjunction with the subset
relations above, entails that Algorithm 1 consis-
tently expands L(G+) during learning of a positive
grammar by adding more allowed subfactors to G+,

while it consistently shrinks L(G−) during learning
of a negative grammar by adding more banned sub-
factors to G−. Future work should investigate how
these differing predictions map onto developmental
findings. While some findings have suggested an
initial stage of conservatism in child productions
(Fikkert, 1994; Levelt et al., 2000; Rose, 2000, i.a.),
there is also evidence for early generalization in
perception (Cristia and Peperkamp, 2012; Hallé
and Cristia, 2012; Bernard and Onishi, 2023, i.a.),
particularly based on phonological features and syl-
lable position. Do children begin by positing that
anything is allowed and later backtrack, or do they
begin by positing that nothing is allowed, and only
add items to their grammar once they have been
observed in the input?

9 Conclusion

In this paper, we showed that if we fix the size k
of subfactors in the grammar, then the algorithm
of Chandlee et al. (2019) can be straightforwardly
extended to learn both positive and negative gram-
mars over unconventional string models in a unified
way. The enriched representations provided by un-
conventional string models allow us to provably
find the most general subfactors that are allowed or
banned in a given language by conducting a bottom-
up search of the partial ordering of k-subfactors.

Acknowledgements

I am grateful to Jeff Heinz, Thomas Graf, Jon
Rawski, Logan Swanson, and the SCiL review-
ers for their feedback. This work was supported by
the Institute for Advanced Computational Science
Graduate Research Fellowship and the National
Science Foundation Graduate Research Fellowship
Program under NSF Grant No. 2234683.

83

References
Dana Angluin. 1980. Inductive inference of formal lan-

guages from positive data. Information and Control,
45(2):117–135.

Caleb Belth. 2023. Towards an Algorithmic Account
of Phonological Rules and Representations. Ph.D.
thesis, University of Michigan.

Caleb Belth, Sarah Payne, Deniz Beser, Jordan Kodner,
and Charles Yang. 2021. The greedy and recursive
search for morphological productivity. Proceedings
of the 43rd annual meeting of the Cognitive Science
Society, 43:2869–2875.

Amélie Bernard and Kristine H Onishi. 2023. Novel
phonotactic learning by children and infants: Gener-
alizing syllable-position but not co-occurrence regu-
larities. Journal of Experimental Child Psychology,
225:105493.

J Richard Büchi. 1960. Weak second-order arithmetic
and finite automata. Mathematical Logic Quarterly,
6(1-6).

Jane Chandlee, Remi Eyraud, Jeffrey Heinz, Adam Jar-
dine, and Jonathan Rawski. 2019. Learning with par-
tially ordered representations. In Proceedings of the
16th Meeting on the Mathematics of Language, pages
91–101, Toronto, Canada. Association for Computa-
tional Linguistics.

Alejandrina Cristia and Sharon Peperkamp. 2012. Gen-
eralizing without encoding specifics: Infants infer
phonotactic patterns on sound classes. In Proceed-
ings of the 36th Annual Boston University Confer-
ence on Language Development (BUCLD 36), pages
126–138.

Luc De Raedt. 2008. Logical and relational learning.
Springer Science & Business Media.

Herbert B Enderton. 2001. A mathematical introduction
to logic. Elsevier.

Paula Fikkert. 1994. On the acquisition of prosodic
structure. ICG Printing.

E Mark Gold. 1967. Language identification in the limit.
Information and Control, 10(5):447–474.

Pierre Hallé and Alejandrina Cristia. 2012. Global and
detailed speech representations in early language ac-
quisition. In Speech planning and dynamics, pages
11–38. Peter Lang.

Gunnar Ólafur Hansson. 2010. Consonant harmony:
Long-distance interactions in phonology, volume 145.
University of California Press.

Bruce Hayes and Colin Wilson. 2008. A maximum en-
tropy model of phonotactics and phonotactic learning.
Linguistic inquiry, 39(3):379–440.

Jeffrey Heinz. 2010a. Learning long-distance phonotac-
tics. Linguistic Inquiry, 41(4):623–661.

Jeffrey Heinz. 2010b. String extension learning. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics, pages 897–
906, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Jeffrey Heinz. 2016. Computational theories of learning
and developmental psycholinguistics. In Jeffrey Lidz,
William Synder, and Joe Pater, editors, The Oxford
Handbook of Developmental Linguistics, pages 633–
663. Oxford University Press, Oxford, UK.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. Phonological typol-
ogy, phonetics and phonology, pages 126–195.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing. 2012.
Learning in the limit with lattice-structured hypothe-
sis spaces. Theoretical Computer Science, 457:111–
127.

Dakotah Lambert, Jonathan Rawski, and Jeffrey Heinz.
2021. Typology emerges from simplicity in represen-
tations and learning. Journal of Language Modelling,
9.

Clara C Levelt, Niels O Schiller, and Willem J Levelt.
2000. The acquisition of syllable types. Language
acquisition, 8(3):237–264.

Daoxin Li and Kathryn D Schuler. 2023. Acquiring
recursive structures through distributional learning.
Language Acquisition, pages 1–14.

Leonid Libkin. 2004. Elements of finite model theory,
volume 41. Springer.

Gary F Marcus, Steven Pinker, Michael Ullman,
Michelle Hollander, T John Rosen, Fei Xu, and Har-
ald Clahsen. 1992. Overregularization in language
acquisition. Monographs of the society for research
in child development, pages i–178.

Robert McNaughton and Seymour A Papert. 1971.
Counter-Free Automata (MIT research monograph
no. 65). The MIT Press.

Sarah Payne. 2023. Marginal sequences are licit but
unproductive. Poster presented at the 2023 Annual
Meeting of Phonology.

Alan Prince and Paul Smolensky. 1993. Optimality The-
ory: Constraint interaction in generative grammar.
John Wiley & Sons.

Jonathan Rawski. 2021. Structure and Learning in Nat-
ural Language. Ph.D. thesis, State University of New
York at Stony Brook.

James Rogers and Jeffrey Heinz. 2014. Model theoretic
phonology. In Workshop slides in the 26th European
Summer School in Logic, Language and Information.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen,
Molly Visscher, David Wellcome, and Sean Wibel.
2010. On languages piecewise testable in the strict
sense. In The Mathematics of Language: 10th and

84

11th Biennial Conference, Revised Selected Papers,
pages 255–265. Springer.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013. Cog-
nitive and sub-regular complexity. In Formal Gram-
mar: 17th and 18th International Conferences, Re-
vised Selected Papers, pages 90–108. Springer.

James Rogers and Geoffrey K Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Informa-
tion, 20:329–342.

Yvan Rose. 2000. Headedness and prosodic licensing
in the L1 acquisition of phonology. Ph.D. thesis,
McGill University.

Kristina Strother-Garcia, Jeffrey Heinz, and Hyun Jin
Hwangbo. 2016. Using model theory for grammati-
cal inference: a case study from phonology. In Pro-
ceedings of The 13th International Conference on
Grammatical Inference, pages 66–78.

Leslie Valiant. 2013. Probably approximately correct:
nature’s algorithms for learning and prospering in a
complex world. Basic Books.

Mai H Vu, Ashkan Zehfroosh, Kristina Strother-Garcia,
Michael Sebok, Jeffrey Heinz, and Herbert G Tanner.
2018. Statistical relational learning with unconven-
tional string models. Frontiers in Robotics and AI,
5:76.

Charles Yang. 2016. The price of linguistic productivity:
How children learn to break the rules of language.
MIT press.

A Proof of Theorem 1

Proof. To construct G−
2 from G−

1 , for each g ∈
G−

1 , if |g| = k, then add g directly to G−
2 . If

|g| < k, then add to G−
2 all superfactors of g of

length k given by {f | g ⊑ f, |f | = k}. Assume
towards contradiction that L17(G

−
1) ̸= L11(G

−
2).

This means that either (∃w)[w ∈ L17(G
−
1), w ̸∈

L11(G
−
2)] or (∃w)[w ∈ L11(G

−
2), w ̸∈ L17(G

−
1)].

(Case 1) (∃w)[w ∈ L17(G
−
1), w ̸∈ L11(G

−
2)]:

By Equation (11), w ̸∈ L11(G
−
2) means that:

(∃S ∈ MFACk(M, w))[SFACk(S) ∩G−
2 ̸= ∅]

or equivalently that:

∃f ∈

⋃

S∈MFACk(M,w)

SFACk(S)

 [f ∈ G−

2]

By Lemma 2 this means that:

[∃f ∈ SFACk(M, w)](f ∈ G−
2)

Given our construction of G−
2 , it is either the case

that f ∈ G−
1 or that [∃g ∈ G−

1](g ⊑ f). In the
first case, f ∈ SFACk(M, w) ⊆ SFAC≤k(M, w) ⇒
f ∈ SFAC≤k(M, w), but if f ∈ SFAC≤k(M, w)
and f ∈ G−

1 , then SFAC≤k(M, w) ∩ G−
1 ̸= ∅ and

w ̸∈ L17(G
−
1), a contradiction. In the second case,

g ⊑ f ∈ SFACk(M, w) ⇒ g ∈ SFAC≤k(M, w),
but if g ∈ SFAC≤k(M, w) and g ∈ G−

1 , then
SFAC≤k(M, w) ∩ G−

1 ̸= ∅ and w ̸∈ L17(G
−
1), a

contradiction.
(Case 2) (∃w)[w ∈ L11(G

−
2), w ̸∈ L17(G

−
1)]:

By Equation 17, w ̸∈ L17(G
−
1) means that

[∃g ∈ SFAC≤k(M, w)](g ∈ G−
1)

Given our construction of G−
2 , it is either the case

that |g| = k and g ∈ G−
2 or that [∀f | g ⊑ f, |f | =

k](f ∈ G−
2). In the first case, since |g| = k, g ∈

SFACk(M, w) and thus:

g ∈
⋃

S∈MFACk(M,w)

SFACk(S)

by Lemma 2. But this, in conjunction with g ∈ G−
2 ,

means that:

 ⋃

S∈MFACk(M,w)

SFACk(S)

 ∩G−

2 ̸= ∅

and w ̸∈ L11(G
−
2), a contradiction. In the

second case, g ∈ SFAC≤k(M, w) ⇒ [∃g′ ∈
SFACk(M, w)](g ⊑ g′), but since {f | g ⊑
f, |f | = k} ⊆ G−

2 , it must be the case that
g′ ∈ G−

2 . Since g′ ∈ SFACk(M, w) and g′ ∈ G−
2 ,

by Lemma 2:

 ⋃

S∈MFACk(M,w)

SFACk(S)

 ∩G−

2 ̸= ∅

and w ̸∈ L11(G
−
2), a contradiction.

85

