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Abstract
We construct two models that encode varying
degrees of context to predict noun phrase or-
der in English dative constructions from their
BERT embeddings. The models can success-
fully predict dative alternations, even without
access to context. They are sensitive to features
such as animacy, definiteness, and pronomi-
nality, suggesting that BERT embeddings en-
code such information. The best-performing
model also shows reasonable success in zero-
shot transfer to predicting genitive alternations,
indicating some understanding of the shared
factors that shape the two alternations. How-
ever, the effects of features on the transfer re-
sults are not always consistent with known in-
fluences on genitive alternations, suggesting
that the model may also be drawing from other
information encoded in BERT’s embeddings.
These findings provide insights into the extent
to which BERT exhibits human-like word or-
der preferences and demonstrate the potential
application of large language models in replac-
ing hand-annotated features for corpus-based
studies of syntactic knowledge.

1 Introduction

In the literature on language and cognition, much
attention has been paid to syntactic alternations:
situations where language users have an apparent
choice between two ways of putting together the
same words without radically altering meaning.
Two such situations that have gained prominence
are the English dative (Bresnan et al., 2007; Bres-
nan and Ford, 2010; Gropen et al., 1989; Theijssen
et al., 2013) and genitive (Rosenbach, 2014; Szm-
recsanyi et al., 2017; Szmrecsanyi and Hinrichs,
2008) alternations, exemplified in (1) and (2).

(1) Dative alternation
a. NP-dative: Bob gives [Alice]recipient [the

money]theme

b. PP-dative: Bob gives [the money]theme
to [Alice]recipient

(2) Genitive alternation
a. s-genitive: [a car]possessor’s

[tires]possessum are very durable
b. of-genitive: [the tires]possessum of [a

car]possessor are very durable

In this paper, we study the processing of the
dative alternation in BERT (Devlin et al., 2019),
in two ways. First, we ask whether pre-trained
BERT embeddings can be used to predict alternant
choice in dative constructions in a corpus of New
Zealand English. We compare models based on
BERT embeddings with different degrees of con-
text to a model based on the array of features identi-
fied as relevant in the linguistic literature, and find
that all models are similarly successful, showing
that BERT embeddings encode information that is
relevant to the dative alternation. Second, we use
the BERT embeddings to assess how the underpin-
nings of the dative alternation may relate to that
of the genitive alternation, by asking how well a
model trained to predict the dative alternation can
be zero-shot transferred to predict the genitive al-
ternation. The degree to which transfer is possible
reflects the degree to which the two alternations are
shaped by shared factors, including both general-
purpose considerations such as accessibility and
construction-specific considerations that are paral-
leled between them (Diessel, 2020).

Studying the dative and genitive alternations
through the lens of BERT has both theoretical and
practical implications. On the theoretical side, it
can help us to model the cognitive basis of prob-
abilistic sentence production and processing pref-
erences, including the extent to which such prefer-
ences are construction-specific and how they can
be learned in a highly general way. On the practical
side, it can allow us to assess the potential of using
large language models to replace time-consuming
hand-annotation of features for corpus-based stud-
ies of syntactic knowledge.
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2 Background

2.1 The dative and genitive alternations

The dative and genitive alternations have figured
into many proposals about the nature of the cog-
nitive representations and processes that under-
pin syntactic knowledge, production, and process-
ing. For example, rule- (Gropen et al., 1989)
and construction-based approaches (Gries and Ste-
fanowitsch, 2004) to the dative alternation have
appealed to subtle differences in meanings repre-
sented by the verb in each alternant, giving cogni-
tive representations of lexical semantics a central
role. At the other extreme, accessibility-based ap-
proaches (Bock, 1982; MacDonald, 2013) have
appealed to the cognitive bottleneck of serial lex-
ical retrieval and highlighted a tendency to pre-
fer alternants that order easily-retrieved arguments
first, thus downplaying the role of the precise na-
ture of representations in comparison to general
information-processing constraints. In recent years,
corpus, experimental, and modeling investigations
(Bresnan, 2007; Bresnan and Ford, 2010; Theijssen
et al., 2013) have generally supported a middle
ground, in which syntactic production and process-
ing are seen as probabilistic, influenced by an array
of features including both lexical semantics and
determinants of accessibility.

Extensive work has been done in understanding
what factors drive these alternations (Bresnan et al.,
2007; Rosenbach, 2014; Szmrecsanyi et al., 2017;
Szmrecsanyi and Hinrichs, 2008) and how humans
learn these alternations (Bresnan, 2007; Bresnan
and Ford, 2010; Campbell and Tomasello, 2001;
De Marneffe et al., 2012). For both datives and gen-
itives, the alternation can be predicted with high
accuracy through a logistic regression model on
hand-labeled features including the animacy, defi-
niteness, givenness, pronominality, and length of
noun phrase arguments (Bresnan et al., 2007; Szm-
recsanyi and Hinrichs, 2008). While these features
are universally important in determining these alter-
nations in English, they are sensitive to the variety
of English and the era that it is spoken in (Szmrec-
sanyi et al., 2017).

The similarity between datives and genitives is
evident in terms of both semantics and predictive
modeling. In terms of semantics – at least for the
instances that are typically included in alternation
analyses – both can attribute one nominal argument
to another in a possession-type relation: prototyp-
ical genitives state such a relation, while datives

often express a change in such a relation (Wolk
et al., 2013). This semantic overlap is further evi-
denced by the fact that the dative and the genitive
cases have merged into one in some Indo-European
languages such as Greek or Bulgarian (Catasso,
2011; Stolk, 2015). In terms of predictive model-
ing, both alternations are sensitive to a common
set of features, in similar ways, which is reflected
in qualitatively similar coefficients for such fea-
tures in logistic regression models (Szmrecsanyi
et al., 2017; Wolk et al., 2013). In both datives
and genitives, there are probabilistic tendencies to
order short, animate, and/or definite noun phrase
arguments before long, inanimate, and/or indefinite
ones.

2.2 BERT and syntactic knowledge

BERT (Bidirectional Encoder Representations
from Transformers; Devlin et al., 2019) utilizes
a bidirectional attention-based architecture to cap-
ture dependencies between words. Its design is
particularly well suited for capturing relations be-
tween words that are linearly distant in a stream
of text, which can present issues for traditional
sequence-to-sequence (RNN and LSTM) models.
Such long-distance relations are invoked in prob-
abilistic accounts of the dative and genitive alter-
nations through the comparison of features across
phrasal arguments (e.g., animacy of the recipient
and theme), since those features are typically pri-
marily cued by just one word in a phrase that may
be arbitrarily long. We expect BERT to possess an
understanding of English word order preferences
because previous work has shown that they can
be learned by structurally-simpler RNN models
(Futrell and Levy, 2019).

Past studies have established that BERT’s embed-
dings encode information about syntactic structure
and semantic roles (Jawahar et al., 2019; Manning
et al., 2020; Rogers et al., 2021), including at the
construction level (Tayyar Madabushi et al., 2020).
They also encode information about higher-order
organization of the grammatical system that cannot
be inferred from any single sentence (Papadim-
itriou et al., 2021). This information is represented
in a multifaceted and gradient manner, much like
is posited for human syntactic knowledge, suggest-
ing that insights from human syntactic knowledge
may help us understand BERT embeddings and that
modeling based on BERT embeddings may help us
test hypotheses about human syntactic knowledge.
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3 Methods

3.1 Data

Our experiments make use of dative constructions
(for training and testing) and genitive constructions
(for transfer). To control for effects of variety and
era, we restrict our focus to constructions taken
from contemporary New Zealand English, as repre-
sented by the Canterbury Corpus component of the
Origins of New Zealand English corpus (ONZE;
Gordon et al., 2007). These constructions occurred
in sociolinguistic interviews with New Zealand En-
glish speakers born between 1926 and 1987, which
were conducted between 1994 and 2007.

Our data consists of 790 datives (680 NP-datives
and 110 PP-datives) and 1842 genitives (664 s-
genitives and 1178 of-genitives). These are largely
the same constructions contained in the data shared
by Szmrecsanyi et al. (2017), with minor differ-
ences in numbers due to slightly different inclusion
criteria. There are two main differences between
our data and Szmrecsanyi et al.’s: (1) for the da-
tives, our data is focused on contemporary construc-
tions across a wide range of dative verbs, whereas
Szmrecsanyi et al.’s data includes historical con-
structions and is restricted to datives involving the
verb give; and (2) for both the datives and gen-
itives, our data contains a brief context for each
construction, consisting of the entire line in the
corpus from which the construction was extracted,
whereas Szmrecsanyi et al.’s data has no context
for New Zealand English constructions.

We preprocessed the data by removing transcrip-
tion annotations that marked pauses, hesitations,
and disfluencies. We kept filler words such as ‘um’
and ‘uh’, which are argued to be planned compo-
nents of an utterance (Clark and Fox Tree, 2002).

3.2 Models

We use two models to predict the relative order
of two arguments in a dative construction. Both
models consist of a binary classifier that uses pre-
trained BERT embeddings as input. The embed-
dings used by each model represent different syn-
tactic entities and have access to different amounts
of context. The contextless model uses embeddings
that represent the phrasal arguments, each taken in
isolation without consideration of the construction
or any broader context. The preference model uses
embeddings that represent different alternants of
the entire construction, considered within a broader
context. The corresponding formulations of the

Alice[CLS] [SEP]

recipient 
embedding

theme 
embedding

Token embeddings

Average over tokens

Bob gives Alice the money

the money[CLS] [SEP]

Figure 1: Extraction of embeddings for the contextless
model (a)

prediction task undertaken by each model are as
follows:

(a) CONTEXTLESS: predict phrase order from
out-of-context phrasal embeddings. Given
the BERT embeddings of the recipient and
theme extracted in isolation, i.e. the embed-
dings of BERT("[CLS] [recipient] [SEP]") or
BERT("[CLS] [theme] [SEP]"), determine the
order in which the noun phrases appear in a
dative construction. See Figure 1 for an illus-
tration of the recipient and theme embeddings.

(b) PREFERENCE: predict attested alternant
from contextual construction embeddings.
Given the BERT embeddings of both alter-
nants of a dative construction extracted in
context, i.e. the average of embeddings
over the bolded tokens in BERT("[CLS] [con-
text] [verb] [recipient] [theme] [SEP]") and
BERT("[CLS] [context] [verb] [theme] to [re-
cipient] [SEP]"), determine which alternant
is attested. See Figure 2 for an illustration of
the attested and unattested construction em-
beddings.

The classifier in each model is implemented as a
multilayer perceptron with a single hidden layer of
size 64 and a sigmoid output layer. For the context-
less model, the input is the embedding of the theme
concatenated to the embedding of the recipient, and
the expected output is 0 if the input is from an NP-
dative and 1 if the input is from a PP-dative. For
the preference model, the input is the embedding
corresponding to the PP-dative concatenated to the
embedding corresponding to the NP-dative, and the
expected output is 0 if the NP-dative is attested and
1 if the PP-dative is attested.

Each classifier is trained with a binary cross-
entropy loss function, via stochastic gradient de-
scent with learning rate 0.01 over 25 epochs. The
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Figure 2: Extraction of embeddings for the preference model (b)

training set for each classifier consists of the same
fixed sample of 50 NP-datives and 50 PP-datives,
and the held-out test set consists of the same fixed
sample of 60 NP-datives and 60 PP-datives. These
sizes were chosen to maintain a balance between
NP- and PP-datives in training and testing; they are
forced to be small by the fact that the data contains
only 110 PP-datives. Despite the small size of the
training set, we show that the dative alternation can
still be reliably predicted without overfitting.

3.3 Embeddings

The embeddings used as input to the models are
obtained from the pretrained BERT-base-uncased
model. To obtain a single embedding for a phrase
or construction, we average the embeddings of all
tokens it contains.

For both models, the embeddings are obtained
from text sequences that are not single, com-
plete sentences. Since BERT is trained on com-
plete sentences, the embeddings therefore repre-
sent unaccounted-for situations and may not be
entirely robust. Nevertheless, this situation is un-
avoidable for various reasons. In the contextless
model, embeddings are obtained from phrases, par-
alleling the use of decontextualized phrases in anal-
yses using hand-labeled features; using complete
sentences would introduce context, breaking this
parallelism, and would allow the model to ‘cheat’
by referring to information about the relative posi-
tion of the phrases in position embeddings. In the
preference model, embeddings are obtained from
lines in the transcripts of a spoken conversational
corpus, which may correspond to a fragment of
a sentence or several sentences; using complete
sentences is not feasible as the transcripts do not
indicate sentence boundaries, since utterances in

spontaneous speech are not consistently structured
into sentences (e.g., Miller and Weinert, 1998).

The BERT model has a lexical layer (layer 0)
and 12 Transformer layers (layers 1–12), meaning
that it can produce 13 embeddings for each token,
each integrating context to different extents. Our
analysis compares the results of using these differ-
ent embeddings in each model. Thus, we train 26
distinct classifiers in total, corresponding to each
of the two prediction tasks (a) and (b), and each
BERT layer l = 0, 1, · · · , 12.

4 Experiment I: Predicting the dative
alternation

In our first experiment, we examine how well the
two BERT models are able to predict the dative
alternation in the test set. In this examination, we
consider the BERT models relative to a logistic
regression model based on hand-labeled features,
which is the predominant model used to analyze
and interpret the alternation in past literature (e.g.
Bresnan et al., 2007; Szmrecsanyi et al., 2017).
This baseline both establishes how to interpret the
performance of the BERT models and highlights
the features that are particularly predictive in our
training data.

4.1 Baseline logistic model

The baseline logistic regression model is trained
on the same balanced training set of 100 dative
constructions as the BERT models. Like the con-
textless BERT model, it receives representations of
the recipient and theme as input and must predict
the order in which they occur, where the expected
output is 0 if the recipient comes first (NP-dative)
and 1 if the theme comes first (PP-dative). How-
ever, unlike the contextless model, the input repre-
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sentations it uses are not machine-learned embed-
dings but rather vectors of hand-labeled features,
derived from variables that have been established
as relevant in past work. These variables include
definiteness (indefinite or definite), pronominality
(nonpronoun or pronoun), animacy (inanimate or
animate), and number (plural or singular) of both
the recipient and the theme, person (nonlocal or lo-
cal) of the recipient, concreteness (nonconcrete or
concrete) of the theme, and the length difference in
orthographic words between the recipient and the
theme (log recipient.length − log theme.length).1

For each categorical variable listed above, the
italicized level serves as the reference level; that is,
the italicized level has a feature value of 0, while
the non-italicized level has a feature value of 1. In
each case, the non-reference level is the one that
has been argued to be ‘easier’ for lexical retrieval in
production planning. Consequently, according to
accessibility-based approaches such as Easy First
(Bock, 1982; MacDonald, 2013), in which ‘easy’
elements are ordered before ‘hard’ ones, we ex-
pect recipient-oriented coefficients to be negative
when significant and theme-oriented coefficients
to be negative when significant. Similarly, given
that shorter phrases are ‘easier’ than longer ones,
we expect the length difference coefficient to be
positive when significant.

The coefficients learned by the logistic regres-
sion model are shown in Table 1. They are quali-
tatively consistent with results from Bresnan et al.
(2007) in terms of both directionality2 and signifi-
cance. There is only one difference, in that recip-
ient definiteness is significant in Bresnan et al.’s
results but not in ours; this is likely due to the differ-
ences in training data size. This difference notwith-
standing, the coefficients are consistent with expec-
tations from Easy First, indicating that Easy First
preferences are learnable from our training set.

4.2 Results: model comparison

The baseline logistic regression model achieves
an accuracy of 0.86 on the test set. The context-
less BERT model achieves a similar accuracy and
the preference BERT model far exceeds it, in both
cases regardless of the BERT layer that is used to

1Note that our list of variables differ from that of Bresnan
et al. (2007), since we have only included variables pertain-
ing to the recipient and theme and have omitted variables
pertaining to the dative verb.

2Note that our coefficients are designed to have the oppo-
site signs to those reported by Bresnan et al. (2007), because
we have chosen opposite reference levels.

Table 1: Logistic regression coefficients learned from
the training set; bolded coefficients are significant at
p < .05

Coeff z

constant 1.71

rec.def -0.20 -0.65
rec.pron -2.31 -4.75
rec.person 0.31 0.67
rec.anim -0.67 -2.23
rec.number 0.62 1.55

thm.def 1.00 1.99
thm.pron 0.95 2.32
thm.anim 0.00 0.03
thm.number -0.15 -0.37
thm.conc -0.25 -0.50

length diff (log) 1.42 1.69

Figure 3: Dative alternation prediction accuracy on the
test set by layer

provide input embeddings (Figure 3). In all cases,
the accuracies are far above those expected from
random chance (0.5), indicating that any overfitting
due to the small size of the training set is limited.

At the best BERT layers, the contextless model’s
prediction accuracy is 0.88, which exceeds that
of the baseline logistic regression model. As the
confusion matrices in Table 2 show, the pattern of
responses from the contextless model is very sim-
ilar to the pattern from the baseline model. Thus,
the use of contextless BERT embeddings yields
classifications that are equivalent to, or better than,
the use of hand-labeled features, at a fraction of the
annotation cost.

The predictions made by the contextless model
are also highly consistent with those made by the

56



Table 2: Confusion matrices for the logistic model and
contextless model on the dative test set

True Labels
NP PP Total

Logistic NP 53 10 63
Predictions PP 7 50 57

Contextless NP 56 10 66
Predictions PP 4 50 54

Total 60 60 120

logistic model. The models agree on all but 7
constructions in the test set, consisting of 5 NP-
datives that are correctly predicted by the context-
less model but not by the logistic model and 2 PP-
datives that are correctly predicted by the logistic
model but not by the contextless model. Thus, the
similarity in overall accuracy reflects a similarity
in predicting individual alternations, which may
imply that the contextless model is self-discovering
sensitivities to a similar set of features as the logis-
tic model (i.e., those listed in Table 1).

The preference model does even better than the
contextless model, with near-perfect3 accuracy on
the test set over several BERT layers. We suspect
that this increase in performance of the preference
model over the contextless model is due to its in-
corporation of information about the dative verb
and the broader context. Because the accuracy is
so high, we do not decompose it further.

5 Experiment II: Zero-shot transfer to
genitives

Section 4 showed that the BERT models could suc-
cessfully predict the dative alternation. In particu-
lar, the preference model showed near-perfect clas-
sification performance on the test set. Here, we ask
whether this best-performing model seems to have
learned preferences that are specific to the dative
alternation or more general preferences that also
apply to the genitive alternation.

5.1 The transfer setup

To enact transfer, we created input embeddings for
the genitive data in the same way as for the dative
data Section 3.3, under the alignment of s-genitives
with NP-datives and of-genitives with PP-datives.

3We do not interpret accuracies of 1 as ‘perfect’ due to the
limited sample size of the test set. In a larger and more diverse
test set, we expect the preference model’s accuracy to be high
but not quite this extreme.

Table 3: Confusion matrices for the adjusted outputs of
the preference model on the genitive dataset

True Labels
S Of Total

Preference S 489 312 801
Predictions Of 175 866 1041

Total 664 1178 1842

That is, for each attested genitive in our dataset,
we manually created its unattested alternant and
obtained embeddings for both the attested and unat-
tested alternants in context. We then formed the
input to the preference model by concatenating the
embedding corresponding to the of-genitive to the
embedding corresponding to the s-genitive.

We measure the success of the transfer by how
well the classifier separates the s- and of-genitive
constructions. To do so, we manually move the
decision threshold by applying an additional linear
translation before the final sigmoid layer. We pick
the threshold value that yields equal accuracy for
s- and of-genitives and treat the overall accuracy
obtained under this threshold as our measure of
success.

5.2 Results: transfer accuracy

The preference model trained on layer 2 of BERT
achieves the best adjusted transfer accuracy of
0.74, which is significantly better than the baseline
accuracy of 0.64 achieved by only predicting of-
genitives (p < 0.001 by exact binomial test). The
confusion matrix of the transfer is shown in Table 3,
and a graph of its prediction outputs over the entire
genitive dataset is shown in Figure 4. While the
model is able to separate s- and of-genitives fairly
well, suggesting that it has learned general order-
ing constraints from datives that are applicable to
genitives, its output probabilities are compressed,
suggesting that these general constraints may yield
only weak preferences that could be further adapted
for specific constructions.

5.3 Association between labels and features

To dig into the general constraints underpinning
the transfer performance, we now consider how
the preference model is influenced by the features
that have been recognized as (potentially) relevant
for predicting both dative and genitive alternations.
These target features are animacy and definiteness
of the possessor (recipient), animacy of the posses-
sum (theme), and difference in argument lengths
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Figure 4: Genitive alternation predictions by the preference model. Left: pre-sigmoid outputs; Right: sigmoid
adjusted outputs

(possessor − possessum)4.
For each target feature, we restrict attention to

a subset of constructions differing only in that fea-
ture, to minimize confounds. The other features
are fixed at levels that maximize the size of this
subset and ensure that each level of the target fea-
ture is (maximally) attested. Then, for each level
of the target feature, we calculate its pointwise
mutual information (PMI) with both the BERT la-
bels predicted by the preference model and true
labels of the chosen alternant in each construction
in the subset. If the associations are consistent
with the principle of Easy First, we expect animate
and definite possessors, inanimate possessums, and
small/negative length differences to yield positive
PMI with s-genitives and negative PMI with of-
genitives, and vice versa for the opposite levels of
each feature. If the preference model has learned
associations that are present in genitives, despite
being trained on datives, then we expect the PMIs
with the BERT labels to pattern similarly to the
PMIs with the true labels.

The results are shown in Tables 4 to 7. The as-
sociations between features and genitive alternant
choice do not consistently align with expectations
from Easy First, either for the alternant labels pre-
dicted by the preference model or for the true labels.
It is hard to know whether this unexpected behavior
indicates a real quirk of New Zealand English or is
just an artifact of the sparse data and/or the specific

4In order to permit alternation, genitive constructions must
have a definite possessum (Rosenbach, 2014). This definite-
ness can be marked by determiner in of-genitives, but not in
s-genitives (e.g., [the tires] of the car vs. the car’s [tires]). To
account for this difference when calculating length, we fol-
lowed past work (e.g., Szmrecsanyi and Hinrichs, 2008) in not
counting the at the beginning of the possessum in of-genitives.

levels at which non-target features were fixed.
Regardless, the PMIs with the model’s labels

almost always agree in sign and relative magnitude
with the PMIs with the true labels, which suggests
that the model has learned general associations that
are transferable between the dative and genitive
alternations. The associations seem to be weaker
for the model than for the true labels, consistent
with the idea that general constraints on order pref-
erences are weaker than construction-specific con-
straints. However, the associations with possessor
definiteness (Table 6) appear to be stronger for the
model than for the true labels, which is especially
surprising given that recipient definiteness was not
strongly correlated with alternant choice in the da-
tives training data (Table 1).
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Table 4: Transfer accuracy and PMIs on genitive con-
structions differing only in possessor animacy. These
constructions all have definite possessors, inanimate
possessums, and a length difference of 1.

Possessor animacy
s-genitive Inanim Anim Total
# Correct 8 78 86
# Total 15 100 115
Accuracy 0.53 0.78 0.75

of-genitive Inanim Anim Total
# Correct 379 23 402
# Total 457 28 485
Accuracy 0.83 0.82 0.83

BERT-labels PMI Inanim Anim
s-genitive -0.63 1.20
of-genitive 0.19 -1.03

True-labels PMI Inanim Anim
s-genitive -2.59 2.03
of-genitive 0.26 -1.89

Table 5: Transfer accuracy and PMIs on genitive con-
structions differing only in possessum animacy. These
constructions all have animate and definite possessors
and a length difference of 1.

Possessum animacy
s-genitive Inanim Anim Total
# Correct 78 35 113
# Total 100 46 146
Accuracy 0.78 0.76 0.77

of-genitive Inanim Anim Total
# Correct 23 1 24
# Total 28 2 30
Accuracy 0.82 0.50 0.80

BERT-labels PMI Inanim Anim
s-genitive -0.06 0.15
of-genitive 0.12 -0.37

True-labels PMI Inanim Anim
s-genitive -0.09 0.21
of-genitive 0.36 -2.03

Table 6: Transfer accuracy and PMIs on genitive
constructions differing only in possessor definiteness.
These constructions all have animate possessors, inani-
mate possessums, and a length difference of 1.

Possessor definiteness
s-genitive Indef Def Def-pn Total
# Correct 30 78 5 113
# Total 35 100 10 145
Accuracy 0.86 0.78 0.50 0.78

of-genitive Indef Def Def-pn Total
# Correct 4 23 2 29
# Total 8 28 3 39
Accuracy 0.50 0.82 0.67 0.74

BERT-labels PMI Indef Def Def-pn
s-genitive 0.24 -0.04 -0.53
of-genitive -0.66 0.08 0.70

True-labels PMI Indef Def Def-pn
s-genitive 0.05 -0.01 -0.03
of-genitive -0.19 0.05 0.12

Table 7: Transfer accuracy and PMIs on genitive con-
structions differing only in length difference (possessor
− possessum). These constructions all have inanimate
and definite possessors and inanimate possessums.

Length difference
s-genitive ≤ 0 = 1 ≥ 2 Total
# Correct 3 8 3 14
# Total 11 15 5 31
Accuracy 0.27 0.53 0.60 0.45

of-genitive ≤ 0 = 1 ≥ 2 Total
# Correct 88 379 90 557
# Total 130 457 127 714
Accuracy 0.68 0.83 0.71 0.78

BERT-labels PMI ≤ 0 = 1 ≥ 2

s-genitive 0.48 -0.33 0.40
of-genitive -0.18 0.09 -0.14

True-labels PMI ≤ 0 = 1 ≥ 2

s-genitive 0.91 -0.39 -0.14
of-genitive -0.06 0.01 0.01
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6 Discussion & Conclusion

In this paper, we have presented two models de-
signed to predict dative alternations from BERT
embeddings. In Section 4, we found that the da-
tive alternation can be predicted with high accuracy
from BERT embeddings, and in a manner mostly
consistent with traditional logistic regression mod-
els based on hand-annotated features. In Section 5,
we explored the zero-shot transferability of our
context-aware dative alternation model to genitive
alternations. The transfer was relatively successful,
and we explored both its success and limitations
by analyzing the pointwise mutual information be-
tween assigned labels and features. Our findings
suggest that BERT-based alternation models per-
form comparably to traditional approaches utilizing
hand-annotated features, and that they are capable
of recognizing general principles that yield similar-
ities between the dative and genitive alternations.

Our experiments showcase potential approaches
for understanding how word-order preferences are
encoded in BERT’s embedding space and the ex-
tent to which they are construction-specific. The
success of our preference model in the zero-shot
transfer from datives to genitives suggests that it is
not solely relying on (dative) construction-specific
constraints to derive word-order preferences, but
rather appealing to more general constraints. One
possible such general constraint is Easy First (Bock,
1982; MacDonald, 2013), which showed reason-
able explanation of patterns of alternant choice in
our datives training set. However, the fact that
the transferred model captures the apparent pat-
terns in genitive alternant choices even when they
do not seem to be consistent with Easy First sug-
gests that the general constraints it learned from
the datives cannot be boiled down just to Easy First.
Given that the preference model utilizes pre-trained
embeddings of entire alternants, which plausibly
reflect in some way the extent to which lexical sub-
sequences within that alternant are evidenced in
BERT’s training data, it is possible that the model’s
choices may be influenced by local surprisal statis-
tics based on the different lexical subsequences that
are formed when the noun phrase arguments are
placed in different orders. That is, the general con-
straints being invoked may involve some degree
of ‘episodic memory-matching’ based on BERT’s
pre-training data, as well as consideration of more
abstract features.

One interesting future study could consider a

direct comparison between the alternation prefer-
ences of the preference model with that of humans.
In the present work, we focused on analyzing the
extent to which our BERT-based models can deter-
mine the order in which humans produce two noun
phrases in dative and genitive constructions. To
what extent does learning to match these categori-
cal production preferences enable the prediction of
gradient human perceptual preferences? Humans
have preferences about reading the arguments in
one order relative to the other, which varies be-
tween individuals and across contexts (Bresnan
and Ford, 2010). By evaluating the similarities and
differences between these preferences and the prob-
abilities output by the preference model, we may be
able to further understand both BERT embeddings
and human syntactic knowledge.

7 Limitations

Although a small training set of 100 dative construc-
tions appears to be sufficient for predicting dative
alternations and for zero-shot transfer to genitive
alternations, we ideally want a larger training set to
improve the robustness of our models. Also, due to
the strong correlation between animacy and alter-
nation type in both the dative and genitive datasets,
obtaining a sufficient number of constructions that
differ minimally in features for the PMI analysis
is challenging. Some of the feature labeling in our
dataset may also be too coarse to capture the gra-
dient nature of the features. For instance, rather
than treating animacy to be binary, Szmrecsanyi
et al. (2017) considers human and animals, collec-
tive, temporal, locative, and inanimate as distinct
categories. All of these data-related issues can add
variability to our analysis.

On the model side, our interpretation of re-
sults has generally made the assumption that our
models are actually making predictions from self-
discovered versions of the features that the liter-
ature has shown to be relevant to the dative and
genitive alternations, rather than from something
else entirely. Although our models’ predictions
are consistent with known associations between
features and alternations, it does not necessarily
imply that they are learning to be sensitive to those
features, since the training labels are themselves
correlated with the features. In addition, we have
interpreted our results very generally, but the re-
striction to contemporary New Zealand English
may limit the generalizability of our findings.
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