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Introduction & Prior Work We introduce
BLiMP (The Benchmark of Linguistic Minimal
Pairs, or ), a large new benchmark dataset
for the targeted evaluation of statistical language
models’ knowledge of linguistic phenomena. The
benchmark consists of 67 datasets, each contain-
ing 1000 minimal pairs isolating a specific gram-
matical contrast and collectively offering broad
coverage of major phenomena in English gram-
mar. Like the GLUE benchmark for reusable sen-
tence understanding models (Wang et al., 2018),

assigns a single numerical score to a lan-
guage model (LM) measuring its overall mastery
of grammar, enabling straightforward comparison
of LMs. The dataset is ideal for fine grained anal-
ysis of an LM’s knowledge of different grammat-
ical domains. For baselines, we evaluate four rep-
resentative LMs from NLP literature. We find that

is hard even for state-of-the-art models, though
Transformers perform better than LSTM and n-
gram LMs. Humans overwhelmingly agree with
the generated minimal pair contrasts in .

A growing body of work evaluates LSTM LMs’
knowledge of grammar by testing whether they
prefer acceptable sentences over minimally differ-
ent unacceptable ones (Linzen et al., 2016, a.o.).
So far, results have been mixed, motivating the
creation of this benchmark which scales up this
kind of investigation to isolate dozens of grammat-
ical contrasts within an otherwise-uniform con-
trolled artificial dataset. Our results show that
knowledge of grammar has increased as LM tech-
nology progressed from n-grams to LSTMs to
Transformers. LSTMs and Transformers alike
are very accurate in detecting morphological and
agreement violations, but state-of-the-art Trans-
former LMs have an especially large advantage
over LSTMs in contrasts where simple generaliza-
tions are difficult to find, such as NPI licensing and
island effects.

Data consists of 67 datasets of 1000 min-
imal pairs each, grouped into twelve broader cat-
egories (Table 1). A minimal pair consists of two
minimally different sentences where one is gram-
matically acceptable and the other is not. All mini-
mal pairs in contain the same number of tokens
and differ only in word order or the identity of one
lexical item, following Marvin and Linzen (2018).

We include minimal pairs illustrating linguis-
tic phenomena well known in morphology, syn-
tax, and semantics. While this set is not exhaus-
tive, it does cover a wide range of topics found in
formal implementations of English grammar (e.g.,
HPSG; generative linguistics textbooks). To fully
isolate the phenomena of interest, we use realistic
artificially-generated sentences, following Marvin
and Linzen, a.o. To generate text, we construct
a vocabulary of over 3300 lexical items labeled
with features reflecting morphology (e.g. singu-
lar/plural), syntax (e.g. transitive/intransitive), and
semantics (e.g. animate/inanimate), and build a
simple artificial grammar for each paradigm.

We validate the acceptability contrasts in the
generated pairs with Mechanical Turk annota-
tors, testing 5 randomly-selected pairs from each
paradigm using the same forced-choice task mod-
els are presented with. Majority vote of 20 annota-
tors agrees with on at least 4/5 examples from
each paradigm and on 96.4% of pairs overall.

Baselines We evaluate 4 baselines: (1) An n-
gram LM trained on the English Gigaword cor-
pus (Graff et al., 2003), based on a modified
Kneser Ney implementation by (Heafield, 2011),
which considers up to 5-grams, restricting the
model from learning dependencies spanning more
than 5 words. (2) An LSTM recurrent neural
network LM from Gulordava et al. (2018). (3)
Transformer-XL (Dai et al., 2019), a transformer
LM with additional features that enable it to model
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Phenomenon N Acceptable Example Unacceptable Example

Anaphor agreement 2 The cats licked themselves. The cats licked itself.
Argument structure 9 The cat broke the lamp. The cat vanished the lamp.
Binding 7 Bob thinks Ann saw herself. Ann thinks Bob saw herself.
Control/Raising 5 The cat is likely to purr. The cat is tough to purr.
Determiner-Noun agr. 8 Meg pets those cats. Meg pets that cats.
Ellipsis 2 I have a black cat and you have two. I have a cat and you have two black.
Filler-Gap 7 The cat noticed the mouse that slept. The cat noticed what the mouse slept.
Irregular forms 2 The cat ate the mouse. The cat eaten the mouse.
Island effects 8 Whose cat are you petting? Whose are you petting cat?
NPI licensing 7 A man who can see Jan hasn’t ever left. A man who can’t see Jan has ever left.
Quantifiers 4 No cat ate more than three treats. No cat ate at least three treats.
Subject-Verb agr. 6 The cat that chased the mice sleeps. The cat that chased the mice sleep.

Table 1: Minimal pairs exemplifying each of the twelve linguistic phenomenon categories covered by
. N is the number of 1000-example minimal pair paradigms within each category.

model Overall
Ana. Agr

Arg. Str
Binding

Ctrl.
Rais.

D-N
Agr

Ellip
sis

Fille
r. Gap

Irre
gular

Isla
nd

NPI
Quantifiers

S-V
Agr

5-gram 60.5 47.9 71.9 64.4 68.5 70.0 36.9 58.1 79.5 53.7 45.5 53.5 60.3
LSTM 70.8 95.2 73.5 73.2 67.9 84.2 67.3 71.3 92.3 43.9 66.7 62.2 85.1
Transf.-XL 68.7 94.1 69.5 74.7 71.5 83.0 77.2 64.9 78.2 45.8 55.2 69.3 76.0
GPT-2 80.1 99.6 78.3 80.1 80.5 93.3 86.6 79.0 84.1 63.1 78.9 71.3 89.0
Human 88.6 97.5 90.0 87.3 83.9 92.2 85.0 86.9 97.0 84.9 88.1 86.6 90.9

Table 2: Percentage accuracy of four baseline models and raw human performance on using a forced-
choice task. A random guessing baseline would give expected accuracy of 50%.

long contiguous inputs of thousands of words dur-
ing training. (4) GPT-2 (Radford et al., 2019),
a larger neural network LM based on a standard
architecture, which is not recurrent and directly
models long-distance dependencies.

Our primary evaluation is a forced choice task,
in which we test whether a model assigns a higher
probability to the acceptable sentence than unac-
ceptable one in each pair. While probability may
not correspond to grammaticality when compar-
ing very different sentences, we expect this to be a
viable proxy when comparing minimally different
sentences as in our data. Additional metrics using
word-level probabilities to more narrowly isolate
model behavior yield broadly similar conclusions.

Results & Discussion We report model accu-
racy for the 12 broad categories (Table 2). Over-
all, the state-of-the-art GPT-2 achieves the high-
est score and the n-gram the lowest, though all
models perform significantly below humans. We
find that some phenomena are easier than others:
determiner-noun agreement is easy for all models,
while islands are quite difficult. We replicate Mar-
vin and Linzen’s finding that LSTMs succeed at
subject-verb agreement and to some extent bind-
ing/anaphora, but largely fail at NPI licensing.

The n-gram model’s poor overall performance
confirms is not solvable from co-occurrence

information alone. Rather, success at is driven
by the more abstract (and less interpretable) fea-
tures learned by neural networks. There are a few
exceptions to this pattern: n-grams are mostly suf-
ficient to capture irregular verb forms. Further-
more, SoTA models still show little improvement
over n-grams on some phenomena, such as quanti-
fier restrictions and, most strikingly, island effects.

Conclusion We have offered a human-
solvable challenge set that covers a broad
overview of major grammatical phenomena in
English. is hard even for SotA models, though
recent large-scale Transformers outperform
simple baselines.
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