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Abstract

Large typological databases have permitted
new ways of studying cross-linguistic mor-
phological variation. Recently, computational
modelers with typological interests have begun
to turn to broad multilingual text databases. In
this paper, we will focus particularly on the
UniMorph database, a collection of morpho-
logical paradigms, mostly gathered automati-
cally from the crowd-sourcedmulti-lingual dic-
tionary Wiktionary. It was designed to make
the large quantity of data contained in Wik-
tionary available for NLP researchers by stan-
dardizing the data and putting it into a form
that is easy to access. For typological stud-
ies, however, the requirements for a linguis-
tically informed view of morphological varia-
tion are quite different. They involve using a
morphological database as a scientific instru-
ment to both formulate and test hypotheses
about the nature and organization of language
systems. The requirements are, accordingly,
much higher. In this paper, we survey some
of the methodological challenges and pitfalls
involved in using corpora for typological re-
search, and we end with a proposal for best
practices and directions for further research.

1 Introduction

The availability of large typological databases
(e.g., Dryer and Haspelmath 2013; Bickel and
Nichols 2002) has made it possible to both
model and hypothesize about the nature of cross-
linguistic morphological variation. Recently, com-
putationalmodelers with typological interests have
begun to turn to broad multilingual text databases
(e.g., Key and Comrie 2015; Dellert and Jäger
2017; McCarthy et al. 2018). While working from
raw linguistic data opens up the possibility for new
kinds of discoveries, it also poses significant chal-
lenges for the analyst, both with respect to the
appropriateness of the selected data for explicitly

specified goals and for identifying how these goals
relate to alternatives that appeal to similar sorts of
data.
Since Greenberg’s (1963) pioneering work, we

can roughly divide research in morphological ty-
pology into three strands. The first, and (arguably)
most productive so far, has involved the careful
construction of language samples designed by the
author(s) of the study for answering specific ques-
tions. For example, Baerman et al. (2002, 2005)
provide a cross-linguistic study of patterns of syn-
cretism based on a database of all syncretic forms
found in 30 genetically diverse languages and a
larger database of person syncretisms in 111 lan-
guages, and Cysouw (2003) used a database of 102
types of person-marking system found in 309 lan-
guages.
This methodology has the advantage that both

sample selection and coding is controlled by the
researcher and can be designed specifically for the
task at hand. However, while a few of the database
entries may be based on the typologists’ personal
linguistic knowledge, for the most part informa-
tion in the database is derived from dictionaries
and grammatical descriptions, which necessarily
reflect the analytic choices made by other linguists.
The second strand of typological research lever-

ages the effort put into creating more general-
purpose typological databases crafted to address
multiple questions, but adaptable to address unan-
ticipated and novel issues. For example, Bentz and
Winter (2013) use the information about the case
inventories of 261 languages in Iggesen (2013),
which in turn is derived from Iggesen’s (2005) de-
tailed cross-linguistic study of case marking. Us-
ing existing resources in this way allows hypothe-
ses about correlations among typolgical variables
to be tested relatively easily, without months or
years of work collecting language data. However,
it is necessarily limited in the kinds of phenomena
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that can be examined, and is self-evidently depen-
dent on the analytic choices made by the typologist
who assembled the database and the linguists who
wrote the grammars that the entries are based on.

Finally, a recent and very promising direction
for morphological typology is the direct use of lex-
icons and corpora to extract cross-linguistics pat-
terns (e.g., Wälchli and Cysouw 2012; Levshina
2016). This ‘primary-data typology’ has been
made possible by the availability of large quanti-
ties of text in a diverse range of languages cou-
pled with powerful statistical and computational
methods. These methods allow us to investigate
typological questions that cannot be addressed via
grammatical descriptions. And, while all linguis-
tic data is dependent (explicitly or implicitly) on
an underlying analysis, working directly with texts
makes us less dependent on the analytic choices
made by other linguists. However, just as the other
methodologies discussed above, this strand of ty-
pological research poses some significant chal-
lenges that researchers need to recognize and de-
velop strategies to address.

In this paper, we will focus particularly on the
UniMorph database (Kirov et al., 2016, 2018) and
use it as a case study to highlight what types of
obstacles ‘primary-data typology’ needs to take
into account. UniMorph is a collection of morpho-
logical paradigms, mostly collected automatically
from the crowd-sourced multi-lingual dictionary
Wiktionary (rBFiBQM�`vXQ`;). It was designed
tomake the large quantity of data contained inWik-
tionary available for NLP researchers by standard-
izing the data and encoding it in a form that is easy
to access.
UniMorph has been broadly adapted as a test-

bed for evaluating morphological processors (e.g.,
Aharoni and Goldberg 2017; Shearing et al. 2018).
Its main advantage is that it is larger and simpler to
use than any existing competitors. While it is plau-
sibly preferable to use broader typological samples
as a measure of progress, one can make the argu-
ment that, all databases are flawed in some way,
and evaluating systems on a variety of languages,
however restricted, is certainly preferable to test-
ing on only English data. There is a danger of
‘overfitting’ to standard datasets as a research com-
munity, but this can be minimized by continuing to
expand and improve available test sets (Kyle Gor-
man and Markowska, 2019).
Another promising use for resources like Uni-

Morph is for evaluating claims about morphologi-
cal systems in general separate from the tools we
use to process them. For example, a number of
recent papers (e.g., Cotterell et al. 2019; Pimentel
et al. 2019; Wu et al. 2019) have used UniMorph
to offer answers to some basic questions about the
structure of morphological systems. But, in con-
trast to the the engineering applications of Uni-
Morph, the requirements for engaging in such a lin-
guistically informed view of morphological varia-
tion are quite different. They involve using a mor-
phological database as a scientific instrument to
both formulate and test hypotheses about the na-
ture and organization of language systems. The re-
quirements (and the stakes) are, accordingly, much
higher. In linguistics, as in any other field, analy-
sis of an inappropriate data sample can lead to mis-
placed confidence in unsupported conclusions and
unlicensed general inferences about e.g., morpho-
logical organization.
It seems likely that the UniMorph project can

form the basis of a database suitable for use in ty-
pological research, if suitably modified. Forms in
the UniMorph database are annotated with features
from the UniMorph Schema (Sylak-Glassman,
2016), and considerable effort was put into design-
ing these feature representations to allow cross-
linguistic comparison of categories. But, in con-
trast to this care, the selection of languages in the
sample was made opportunistically determined by
what was available in Wiktionary, rather than be-
ing selected to explore different strategies of mor-
phological organization and related questions con-
cerning the learnability of attested systems. These
are core linguistic concerns in relation to the typo-
logical sampling of empirical phenomena.
In the following sections, we will survey some

of the methodological challenges and pitfalls in-
volved in using corpora for typological generaliz-
ing, and we will end with a proposal for best prac-
tices and directions for further research.

2 Representativeness

Any database that purports to develop generaliza-
tions about language in general has to be represen-
tative of the range of possible human languages.
UniMorph1 includes data from 106 languages, in-
cluding noun paradigms for 74 and verb paradigms

1The version of UniMorph we use for this paper consists
of all repos with three letter names containing a datafile with
a three letter name in the ?iiTb,ff;Bi?m#X+QKfmMBKQ`T?
organization, downloaded on 27 July 2019.
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for 87. These languages represent 16 families (e.g.,
Indo-European, Uralic) and 30 genera (e.g., Celtic,
Finnic). This is a very small fraction of the world’s
languages. By comparison, theWorld Atlas of Lin-
guistic Structures (Dryer and Haspelmath, 2013)
includes data for 2,679 languages representing 256
families and 544 genera in total. Or, since WALS
does not include values for every feature for every
language, the median feature inWALS is specified
for 257 languages in 96 families and 177.5 genera.
A small sample, correctly constructed, can sup-

port cross-linquistic inferences. However, the lan-
guages in UniMorph are not representative of the
diversity of human language. Almost half (47 out
of 106) of the languages in UniMorph are from just
three genera (Romance, Germanic, and Slavic).
While the problem of individuating and enumerat-
ing languages is a difficult one with no clear solu-
tion, some of the ‘languages’ in UniMorph are ar-
guably not different languages andwould normally
be considered dialects of a common language (e.g.,
German, Low German, Middle High German, and
Middle Low German). Sometimes the same lan-
guage is given different names and treated as if it
were multiple languages for political or historical
reasons.
In addition, 98 of the languages in UniMorph

are spoken in Eurasia (i.e., the landmass compris-
ing Europe and Asia) with only three languages in
North America, two languages in each of South
America and Africa, and only one language in Aus-
tralia (see Figure 1). As Dryer (1989) demon-
strated, Eurasian languages are not generally repre-
sentative of languages throughout the world. This
reinforces the observation that any representative
sample needs to include languages with wide geo-
graphic and phylogenetic dispersion.
In addition to genetic and geographic homogene-

ity the data lack varietal representativeness with
respect to word structure. The languages in the
sample are overwhelmingly of a familiar morpho-
logical type, organized around stems and affixes.
The African languages in the sample are both
Bantu languages (Swahili and Zulu), which are
broadly similar to Eurasian languages with respect
to displaying a concatenatively affixal strategy
for morphotactic organization. The four Semitic
languages in the sample show one kind of tem-
platic morphology, but no languages in the sample
use tones, reduplication, vowel length patterns, or
many other types of morphological expression.

By its nature, Wiktionary only includes lan-
guages with a written form and those mostly
using their practical orthography, in contrast to
phonologized lexicons such as Flexique (Bonami
et al., 2013). This raises several potential prob-
lems. Of particular note, orthographic systems
vary widely in phonological transparency, and
many orthographies neglect important distinguish-
ing morphophonological details such as tone, seg-
ment length, and stress placement (e.g., see Parker
and Sims in press): this creates problems with re-
spect to identifying the correct inventory of forms
that need to be compared. For example, the Es-
tonian orthography underrepresents “gradation” in
all but the stop consonants and, thereby, misrep-
resents the actual variety of contrasting forms in
Estonian paradigms. Roughly speaking, Estonian
consonants and vowels display a three-way con-
trast (short, long, and overlong) which is not repre-
sented in the orthography. This leads to the follow-
ing differences in the orthographic representations
versus the phonological reality for the noun keel
‘language’ (Mürk, 1997, 107):

Orth. Phon.
Nඈආ ඌ keel keːːl
Gൾඇ ඌ keele keːle
Pൺඋඍ ඌ keelt keːltːː
Iඅඅ ඌඁඈඋඍ ඌ keelde keːːle ҩ keːːlde
Gൾඇ ඉඅ keelte keːlte

Finally, different scripts may pose different model-
ing challenges, making it difficult to directly com-
pare a model-based metric across languages writ-
ten using various alphabets, abjads, syllabaries,
etc.
A sample of 106 closely related or overlapping

written languages provides a lot less information
about the space of possible languages than a sam-
ple of 106 unrelated languages would. This is
not a flaw in UniMorph per se and it does not re-
duce its value as a test-bed for developing morpho-
logical processors, particularly for the constrained
class of variation it models. Given the limited
range of morphological variation represented in
UniMorph, any results concerning morphological
organization beyond that sample can only support
modest claims to greater generality, which them-
selves need to articulated into testable hypotheses.
This is, of course, the same standard appropriately
posed for linguistic theories that seek to motivate
wide ranges of morphological organization exhibit-
ing extraordinarily divergent strategies of surface
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Figure 1: Geographic distribution of languages in UniMorph (languages locations from (Dryer and Haspelmath,
2013))

encoding: their credibility too is dependent on the
empirical scope and reliability of the data they an-
alyze.

3 A case study

As a concrete example, we will consider the re-
lationship between paradigm size and predictabil-
ity in morphological paradigms. Ackerman and
Malouf (2013) distinguish two dimensions of mor-
phological complexity: E-complexity (the num-
ber of affixes, allomorphs, inflection classes, etc.)
and I-complexity (the interpredictability of forms
in a paradigm). Ackerman and Malouf (2013)
conjecture that I-complexity is what is relevant
for language learnability, and that across lan-
guages E-complexity can vary widely so long as
I-complexity is low enough. More recent work
(Cotterell et al., 2019; Semenuks, 2019) suggests
that E-complexity and I-complexity may be inter-
related, and that the threshold for ‘low enough’
I-complexity may decrease as E-complexity in-
creases. In what follows, we will consider some of
the methodological choices that need to be made
in order to properly test this claim.
For the sake of discussion, we will measure E-

complexity as paradigm size, or the number of dis-
tinct feature values encoded in the database. For
example, if a nominal paradigm encodes 7 cases
and 2 numbers, the size of the paradigm is 14. If
the paradigm size varies between lexemes, we use
the most common value (i.e., the mode). To es-

timate I-complexity or predictability, we train a
model to map a citation form and feature set to a
surface form (SIGMORPHON 2016 task 1; Cot-
terell et al. 2016). Specifically, we use a neural
encoder-decoder architecture (Kann and Schütze,
2016; Silfverberg and Hulden, 2018) implemented
using OpenNMT-tf (Klein et al., 2017). Using the
model, we then calculate the average per-form neg-
ative log likelihood (ѿ) of held out data.2 The
closer this value is to zero, the better the model
is able to predict the correct forms. Note that we
are not claiming that this is the correct way to es-
timate either E- or I-complexity: we have chosen
it mostly because it is easy to calculate in a repro-
ducible way. Our goal is to focus on methodologi-
cal issues, not the viability of any specific linguis-
tic analysis.

3.1 Lexicon size

One issue that immediately arises is that the perfor-
mance of neural models can be highly dependent
on the quantity of training data. Since there are
large differences in lexicon sizes across languages
in UniMorph, difference in model prediction (re-
flected inѿ) may be due to training issues and not
to structural differences between languages. This,
of course, is important to know, since otherwise
our results might be comparing incomparable phe-
nomena.

2See ?iiTb,ff;Bi?m#X+QKf`K�HQm7fa*BGkyky for
implementation details.
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Figure 2: Negative log likelihood (ѿ) vs. lexicon size

Figure 3: Negative log likelihood (ѿ) vs. paradigm
size, for paradigms with ?100 lexemes

To test this, we performed five-fold cross-
validation to estimate ѿ and its standard error
(the standard deviation divided by ҇6). The
results for the 87 verb paradigms and 73 noun
paradigms (we exclude Tajik nouns, which list
only one inflected form per lexeme) are given in
Figure 2. For languages with small lexicons (ӑ100
lexemes), we see both poor model performance
(i.e., high ѿ) and high variability across train/test
splits. For languages with more than 100 lexemes,
however, performance looks much more consis-
tent.
If we exclude paradigms with fewer than 100

lexemes, we are left with 55 noun paradigms and
61 verb paradigms over a total of 77 languages.
The results are shown in Figure 3. At first glance,
this appears to support the claim that languages
can have higher I-complexity if they have low E-
complexity. But, this is only true if high ѿ is
due to structural properties of the language being
tested. In the following sections, we will look at a
number of factors that can increase ѿ for particu-
lar languages without any increase in I-complexity.

3.2 Overabundance

One issue that arises in examining the UniMorph
data is that many (sub)paradigms permit more than
a single form in a cell for a given lexeme: par-
ticular combinations of feature values can be re-
alized by more than one exponent. For example,
the past tense of English dive can be either dived
or dove. There are several causes for this. Some
examples are simply data processing errors: two
distinct forms have been erroneously assigned the
same feature values in extracting the data from
Wiktionary. In other cases, the forms do share the
same features but are not interchangeable for other
reasons.
For example, the Spanish lexicon lists both sen-

tir and sentirse as infinitive forms of the verb sentir
‘to feel’, even though the second of the two forms is
(arguably) the infinitive of a different lexeme. Sim-
ilarly, the Zulu verb lexicon lists both ngiyadla and
ngidla as the 1st person singular present tense pos-
itive absolute form of the verb ukudla ‘to eat’. But,
these forms are not completely synonymous. The
exact nature of the difference between these forms
is unclear (see, e.g., Buell 2006), but they should
be distinguished somehow.
The majority of cases, however, are due to gen-

uine overabundance: multiple forms are listed be-
cause multiple forms are possible (Thornton, 2011,
2019). Wiktionary lists troféen or trofeen or troféet
or trofeet as alternate definite singular forms of
trofé ‘trophy’ in Norwegian Nynorsk, with no dif-
ference in meaning. This creates a problem for any
metric which assumes that every paradigm cell has
exactly one realization. This includes models eval-
uated using accuracy or, in our case, negative log
likelihood. Using our metric, paradigms exhibit-
ing overabundance will show higher negative log
likelihood than ones that do not, for reasons that
have no connection to how predictable or system-
atic the morphological system is.
Overall, although many languages left in the

sample don’t have any lexemes with multiple
forms filling in a paradigm cell, it is also not rare:
18 out of 55 languageswith noun paradigms and 19
out of 61 languages with verb paradigms exhibit
this pattern, out of which 16 (for nouns) and 14
(for verbs) have more than multiple forms in cell
for more than 10% of the lexemes. Regardless of
whether the reason for this pattern is genuine over-
abundance or data processing errors, it neverthe-
less introduces difficulties into further analyses.
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Figure 4: Negative log likelihood vs. paradigm size, for
reduced sample

3.3 Defectiveness

Paradigms in theUniMorph database displaymany
missing forms. In many cases this is due simply to
incompleteness: the forms exist, but for whatever
reason are not included in Wiktionary or were not
extracted. However, missing forms can also be due
to paradigm defectiveness. This is the converse of
overabundance: these are paradigm cells for which
there is no valid realization.
Like overabundance, missing data raises prob-

lems for any metric which assumes that every
paradigm cell has exactly one realization. Forms
which are missing due to incompleteness may
have the effect of hurting model performance (and
raising ѿ) without an underlying difference in
predictability. If forms are missing due to true
paradigm defectiveness, then the fact that the form
is missing is something that the model needs to
learn. As argued by Sims (2015), the absence of
a form is as much a part of the morphological sys-
tem as its presence.

3.4 Complications

To avoid modeling problems raised by overabun-
dance and defectiveness, we can remove from
the sample any paradigms with any overabundant
forms andmore than ten defective paradigms. This
leaves 17 verb paradigms and 12 noun paradigms
from 28 languages. The results for this reduced
sample are shown in Figure 4 and Table 1.
The outlier in the upper left (nav.N) is Navajo

nouns. The high ѿ value for Navajo nouns is
surprising, as Navajo nominal morphology is fairly
straightforward. Examination of the data shows a
number of inaccuracies or infelicities in the data
that lead to poor model performance.

Some of the errors were introduced in the pro-
cess of extracting forms from Wiktionary. The
paradigm for ééʼ ‘clothes’ is shifted up one row:
the 1p singular possessed form is listed as singular
rather the correct sheʼééʼ, the 2p singular is listed
as sheʼééʼ rather than neʼééʼ, and so on.
Most of the problems with the Navajo nominal

data, however, are consequences of the decisions
made by the designers of the Navajo wiktionary.
First, a brief summary of Navajo nominal morphol-
ogy: nouns in Navajo form a fairly small, closed
class. Inalienably possessed nouns (mostly kin re-
lations and body parts) appear in an indefinitely
possessed form (átááʼ ‘someone’s forehead’) or
with a possessive prefix (shítááʼ ‘my forehead’).
Alienably possessed nouns may appear as a bare
stem (sǫʼ ‘star’), as possessed form (azǫʼ ‘some-
one’s star’), or as a possessed form with a posses-
sive prefix (shizǫʼ ‘my star’). The possessive pre-
fixes show relatively little allomorphy, but the pos-
sessed form and the bare stem sometimes differ in
arbitrary ways. Most Navajo nouns are unmarked
for number, but a few personal nouns take a plural
suffix -ké or -yóó.
The Navajo noun paradigms in Wiktionary list

only the possessed forms. For alienably-possessed
nouns, the bare stem (e.g., sǫʼ) is the citation
form for the lexeme but is not included in the
paradigm. For inalienably-possessed nouns, the in-
definite possessed form is the citation form. This
inconsistency makes the two noun classes look
more different than they actually are. More prob-
lematic is the fact many nouns have separate dic-
tionary entries for possessed forms: ké ‘foot’ is
also listed under bikee’, hakee’, and akee’, the
3rd person, 4th person, and indefinite possessed
forms. From the model’s perspective, this looks
like four separate lexemes (with four different cita-
tion forms) that happen to share the same inflected
forms.
Three other high ѿ paradigms in Table 1 are

Pashto nouns, Urdu nouns, and Yiddish verbs.
Like all the language samples, these paradigms are
written using the practical orthography of the lan-
guage. In the case of Urdu and Pashto, the writ-
ing system (based on Arabic by way of Persian)
is an abjad: consonants are included, but many
vowels are left unspecified when they should be
clear to the reader from context. The Yiddish al-
phabet is adapted from Hebrew and is a full alpha-
bet, but the mapping between Yiddish letters and
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Language pos features ѿ s.e. macroarea family genus

Albanian V 120 0.094 0.002 Eurasia Indo-European Albanian
Ancient Greek N 15 0.475 0.018 Eurasia Indo-European Greek
Bulgarian V 20 0.060 0.012 Eurasia Indo-European Slavic
Catalan V 48 0.073 0.002 Eurasia Indo-European Romance
Classical Syriac N 13 0.164 0.112 Eurasia Afro-Asiatic Semitic
Crimean Tatar N 6 0.155 0.021 Eurasia Altaic Turkic
Danish V 6 0.021 0.018 Eurasia Indo-European Germanic
Dutch V 15 0.060 0.006 Eurasia Indo-European Germanic
Estonian N 30 0.154 0.014 Eurasia Uralic Finnic
Friulian V 46 0.147 0.023 Eurasia Indo-European Romance
Georgian N 19 0.052 0.006 Eurasia Kartvelian Kartvelian
Hebrew N 26 0.118 0.027 Eurasia Afro-Asiatic Semitic
Hindi V 211 0.210 0.116 Eurasia Indo-European Indic
Irish V 63 0.111 0.010 Eurasia Indo-European Celtic
Lithuanian V 49 0.084 0.010 Eurasia Indo-European Baltic
Lower Sorbian V 21 0.143 0.058 Eurasia Indo-European Slavic
Navajo N 8 0.925 0.317 North America Na-Dene Athapaskan
Occitan V 46 0.134 0.013 Eurasia Indo-European Romance
Pashto N 6 0.477 0.125 Eurasia Indo-European Iranian
Persian V 136 0.025 0.006 Eurasia Indo-European Iranian
Quechua N 256 0.039 0.023 South America Quechua Quechua
Quechua V 38 0.028 0.016 South America Quechua Quechua
Romanian V 35 0.162 0.026 Eurasia Indo-European Romance
Slovenian V 20 0.301 0.042 Eurasia Indo-European Slavic
Tatar N 6 0.252 0.024 Eurasia Altaic Turkic
Turkish V 120 0.036 0.006 Eurasia Altaic Turkic
Urdu N 6 0.514 0.107 Eurasia Indo-European Indic
Yiddish V 7 0.410 0.177 Eurasia Indo-European Germanic

Table 1: Results for reduced sample
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Unicode characters is not one-to-one. It is possi-
ble that these orthographic differences might make
estimates of ѿ difficult to compare across lan-
guages with different writing systems.
Ancient Greek nouns also have a high ѿ, but

likely not for orthographic reasons. Rather, these
paradigms encode overabundance using punctua-
tion rather than multiply filled paradigm cells. For
example, the genitive singular of κοῦρος ‘youth’
is given as “κούρου / κουροῖο / κούροιο / κουρόο /
κούροο”. This is presumably meant to reflect five
variant forms, but the model would count that as
one long (and hard to guess) form.
Another outlier, this time in the number of fea-

tures, is Albanian verbs (sqi.V). According to Uni-
Morph (and Wiktionary), each Albanian verb has
120 distinct forms. However, this number includes
periphrastic tenses formed by combining an in-
flected verbwith a particle and/or an auxiliary verb.
This is a bit like countingwill have been being seen
as a distinct form of the verb ‘see’ in English.
The design choices embodied in Wiktionary are

not necessarily incorrect. It is helpful for Navajo
learners to have separate dictionary entries for pre-
fixed forms. And, a strong argument can be made
that periphrastic forms should be included as part
of the paradigm in both Albanian and in English
(e.g., Ackerman and Webelhuth 1998; Ackerman
and Stump 2004; Bonami 2015). But, if one’s goal
is to use UniMorph data for cross-linguistic com-
parison, then these kinds of choices need to be
made in a standardized way and clearly articulated.
The issue is not whether data choices are right or
wrong, but whether those choices are transparent
and appropriate for a particular use.

3.5 Galton’s problem
Even excluding Navajo nouns and the other out-
liers, the pattern of languages shown in Fig-
ure 4 suggests that languages in the sample with
large paradigms show low ѿ. Without Navajo
nouns, there are 17 verb paradigms and 11 noun
paradigms from 27 languages in the sample. Is this
enough to draw any conclusions about language in
general?
So far, in our discussion we have used quanti-

tative but not statistical methods. The difficulty
with applying standard hypothesis testing methods
to the problem is that languages that are genetically
and/or areally related cannot be treated as indepen-
dent observations. Of the 23 languages in the re-
maining sample, 16 are Indo-European and 21 are

Eurasian. If the data is not analyzed using methods
taking these phylogenetic and geographic proximi-
ties between the data points into account, the anal-
yses could produce spurious correlations (Roberts
and Winters, 2013). This is what Naroll (1965)
calls Galton’s Problem: the problem of making
inferences based on auto-correlated observations.
Early work in quantitative typology addressed

this problem through careful sample construction
(Bybee, 1985; Dryer, 1988; Perkins, 1989). More
recent efforts have applied hierarchical modeling
techniques to control for genetic and areal affects.
A survey of these techniques is beyond the scope
of this paper, but see Bakker (2011) and (Bickel,
2015) for some proposals.

3.6 Construct validity

Based on the results so far, there is suggestive ev-
idence for a relationship between the number of
cells in a paradigm and ѿ as predicted by an
encoder-decoder model. The final step in any ty-
pological study has to be to show that these met-
rics applied in this way to this dataset connect to
a relevant linguistic notion. In this case, a crucial
question is whether ѿ, a measure of how well a
model predicts forms, is a reasonable measure of
the I-complexity of a paradigm, or how predictable
forms are. This is the question of construct valid-
ity: does the test measure what it claims to mea-
sure?
As we said above, our goal in this paper is to

highlight some of the methodological issues that
come in using text databases (such as UniMorph)
for typology. Our use of ѿ is only for the sake of
demonstration and we make no particular claims
about its linguistic relevance. But, if this were a
paper making a typological claim, then it would
be essential to justify our confidence in the partic-
ular metric being used. Readers need to keep this
requirement in mind when assessing and interpret-
ing the linguistic value of results based on compu-
tational analyses of natural language data.

4 Conclusions

Large text databases open up exciting prospects for
typological research, but they also create new chal-
lenges for cross-disciplinary collaboration: lin-
guistic morphologists and typologists are prac-
ticed curators of the types of data that are most
profitably investigated by new computational tech-
niques. The previous section presented a hypothet-
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ical typological investigation using UniMorph in
order to highlight some of the difficulties in car-
rying out such an investigation. Any work ap-
plying computational models to primary linguistic
data (e.g., information-theoretic investigations of
UniMorph along the lines of Cotterell et al. 2019;
Pimentel et al. 2019; Wu et al. 2019) need to be
carried out and evaluated with these challenges in
mind. As an emergent interdisciplinary commu-
nity, we should develop a set of best practices for
using the resources we have and in developing a
collaboratively determined direction for improv-
ing those resources.
As a start, we propose some basic requirements:

• Use UniMorph (Kirov et al., 2016, 2018) as
a resource for building databases, not as a
database itself: text databases should be seen
as a guide for formulating directions of in-
quiry and identifying the types and nature of
data required for systematic inquiry. The data
established for this purpose must be reliable
and representative for the task at hand.

• Document all choices: In order to achieve
maximum transparency and replicability,
all choices concerning data selection, pre-
processing, representation, parsing, and
modeling should be clearly specified, along
with their rationales.

• Intended claims and hypotheses associated
with analysis and results should be clearly ar-
ticulated in order to identify their importance
in the context of similar research within rel-
evant linguistic approaches to morphological
analysis. This is crucial in order to evaluate
the research results from both a linguistic and
computational perspective: if such results are
novel, in what ways do they contribute to our
understanding of natural language morphol-
ogy and to the computational analysis of mor-
phological phenomena.

• Given the cross-disciplinary nature of the rel-
evant contributions, the vetting process for
the evaluation of submissions should be dis-
tributed among linguists and computational
modelers, in order to ensure research that re-
flects the most accurate and critical assess-
ments from contributing fields.

References
Farrell Ackerman and Robert Malouf. 2013. Morpho-

logical organization: The low conditional entropy
conjecture. Language, 89:429–464.

Farrell Ackerman and Gregory Stump. 2004.
Paradigms and periphrasis: A study in realization-
based lexicalism. In Louisa Sadler and Andrew
Spencer, editors, Projecting Morphology, pages
111–157. CSLI Publications, Stanford.

Farrell Ackerman and Gert Webelhuth. 1998. A Theory
of Predicates. CSLI Publications, Stanford.

Roee Aharoni and Yoav Goldberg. 2017. Morphologi-
cal inflection generation with hard monotonic atten-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2004–2015, Vancouver,
Canada. Association for Computational Linguistics.

Matthew Baerman, Dunstan Brown, and Greville G.
Corbett. 2002. The Surrey syncretisms database.
?iiT,ffrrrXbK;Xbm``2vX�+XmFfbvM+`2iBbKf
BM/2tX�bTt.

Matthew Baerman, Dunstan Brown, and Greville G.
Corbett. 2005. The Syntax-Morphology Interface: A
Study of Syncretism. Cambridge University Press.

Dik Bakker. 2011. Language sampling. In Jae Jung
Song, editor, The Oxford Handbook of Typology. Ox-
ford University Press.

Christian Bentz and Bodo Winter. 2013. Languages
withmore second language learners tend to lose nom-
inal case. Language Dynamics and Change, pages
1–27.

Balthasar Bickel. 2015. Distributional typology: statis-
tical inquiries into the dynamics of linguistic diver-
sity. In Balthasar Bickel, Bernd Heine, and Heiko
Narrog, editors, The Oxford Handbook of Linguistic
Analysis (2 ed.). Oxford University Press.

Balthasar Bickel and Johanna Nichols. 2002. Autoty-
pologizing databases and their use in fieldwork. In
Proceedings of the International LRECWorkshop on
Resources and Tools in Field Linguistics, Las Pal-
mas.

Olivier Bonami. 2015. Periphrasis as collocation. Mor-
phology, 25:63–110.

Olivier Bonami, Gauthier Caron, and Clément Plancq.
2013. Flexique: an inflectional lexicon for spoken
French.

Leston Buell. 2006. The Zulu conjoint/disjoint verb
alternation: focus or constituency? In Laura J.
Downing, Lutz Marten, and Sabine Zerbian, editors,
Papers in Bantu grammar and description, pages
9–30. Zentrum für Allgemeine Sprachwissenschaft,
Sprachtypologie und Universalienforschung, Berlin.

305



Joan L. Bybee. 1985. Morphology: A study of the
relation between meaning and form. Benjamins,
Philadelphia.

Ryan Cotterell, Christo Kirov, Mans Hulden, and Ja-
son Eisner. 2019. On the complexity and typol-
ogy of inflectional morphological systems. Transac-
tions of the Association for Computational Linguis-
tics, 7:327–342.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 Shared Task—
Morphological Reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin. Associa-
tion for Computational Linguistics.

Michael Cysouw. 2003. The Paradigmatic Structure of
Person Marking. Oxford University Press.

Johannes Dellert and Gerhard Jäger, editors. 2017.
NorthEuraLex (version 0.9).

Matthew S. Dryer. 1988. Object-verb order and
adjective-noun order: Dispelling a myth. Lingua,
pages 185–217.

Matthew S. Dryer. 1989. Large linguistic areas and lan-
guage sampling. Studies in Language, 13(2):257–
292.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig.

Joseph H. Greenberg. 1963. Some universals of gram-
mar with particular reference to the order of mean-
ingful elements. In JosephH. Greenberg, editor,Uni-
versals of Grammar, pages 73–113.MIT Press, Cam-
bridge.

Oliver A. Iggesen. 2005. Case-asymmetry: A World-
Wide Typological Study on Lexeme-class-dependent
Deviations in Morphological Case Inventories. Lin-
com Europa, Muenchen.

Oliver A. Iggesen. 2013. Number of cases. In
Matthew S. Dryer and Martin Haspelmath, editors,
The World Atlas of Language Structures Online.
Max Planck Institute for Evolutionary Anthropology,
Leipzig.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
555–560, Berlin, Germany. Association for Compu-
tational Linguistics.

Mary Ritchie Key and Bernard Comrie, editors. 2015.
The Intercontinental Dictionary Series. Max Planck
Institute for Evolutionary Anthropology, Leipzig.

Christo Kirov, Ryan Cotterell, John Sylak-Glassman,
GéraldineWalther, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sebastian Mielke, Arya McCarthy,
Sandra Kübler, David Yarowsky, Jason Eisner, and
Mans Hulden. 2018. UniMorph 2.0: Universal mor-
phology. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC-2018), Miyazaki, Japan. European
Languages Resources Association (ELRA).

Christo Kirov, John Sylak-Glassman, Roger Que, and
David Yarowsky. 2016. Very-large scale pars-
ing and normalization of Wiktionary morphological
paradigms. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), pages 3121–3126.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,
pages 67–72, Vancouver, Canada. Association for
Computational Linguistics.

Ryan Cotterell Ekaterina VylomovaMiikka Silfverberg
Kyle Gorman, Arya D. McCarthy and Magdalena
Markowska. 2019. Weird inflects but OK: Making
sense of morphological generation errors. In CoNLL
2019.

Natalia Levshina. 2016. Why we need a token-
based typlogy: A case study of analytic and lexical
causatives in fifteen European languages. Folia Lin-
guistica, 50(2):507–542.

Arya D. McCarthy, Miikka Silfverberg, Ryan Cotterell,
Mans Hulden, and David Yarowsky. 2018. Marrying
universal dependencies and universal morphology.
In Proceedings of the Second Workshop on Univer-
sal Dependencies (UDW 2018), pages 91–101, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Harri William Mürk. 1997. A Handbook of Estonian:
Nouns, Adjectives and Verbs. Indiana University
Uralic and Altaic Series, v. 163. Indiana University,
Bloomington.

Raoul Naroll. 1965. Galton’s problem: The logic of
cross-cultural research. Social Research, 32:428–
451.

Jeff Parker and Andrea Sims. in press. Irregularity,
paradigmatic layers, and the complexity of inflec-
tion class systems: A study of Russian nouns. In
P. Arkadiev and F. Gardani, editors, The Complexi-
ties of Morphology. Oxford University Press.

Revere D. Perkins. 1989. Statistical techniques for
determining language sample size. Studies in Lan-
guage, 13:293–315.

Tiago Pimentel, Arya D. McCarthy, Damian Blasi,
Brian Roark, and Ryan Cotterell. 2019. Meaning to
form: Measuring systematicity as information. In

306



Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1751–
1764, Florence, Italy. Association for Computational
Linguistics.

Seán Roberts and James Winters. 2013. Linguistic di-
versity and traffic accidents: Lessons from statistical
studies of cultural traits. PLOS ONE, 8(8):1–13.

Arturs Semenuks. 2019. Investigating relationship be-
tween i-complexity and population size. Poster pre-
sented at the Workshop on Interaction and the Evo-
lution of Linguistic Complexity, Edinburgh.

Steven Shearing, Christo Kirov, Huda Khayrallah, and
David Yarowsky. 2018. Improving low resource ma-
chine translation using morphological glosses (non-
archival extended abstract). In Proceedings of the
13th Conference of the Association for Machine
Translation in the Americas (Volume 1: Research Pa-
pers), pages 132–139, Boston, MA. Association for
Machine Translation in the Americas.

Miikka Silfverberg and Mans Hulden. 2018. An
encoder-decoder approach to the paradigm cell fill-
ing problem. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2883–2889, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Andrea D. Sims. 2015. Inflectional Defectiveness.
Cambridge University Press, Cambridge.

John Sylak-Glassman. 2016. The composition and use
of the universal morphological feature schema (Uni-
Morph schema). working draft, v. 2.

Anna M. Thornton. 2011. Overabundance (multiple
forms realizing the same cell): A non-canonical phe-
nomenon in Italian verb morphology. In Martin
Maiden, John Charles Smith, Maria Goldbach, and
Marc-Olivier Hinzelin, editors, Morphological Au-
tonomy: Perspectives From Romance Inflectional
Morphology. Oxford University Press.

Anna M. Thornton. 2019. Overabundance in morphol-
ogy. In Oxford Research Encyclopedia of Linguis-
tics. Oxford University Press.

Bernhard Wälchli and Michael Cysouw. 2012. Lexical
typology through similarity semantics: Toward a se-
mantic map of motion verbs. Linguistics, 50(3):671–
710.

Shijie Wu, Ryan Cotterell, and Timothy O’Donnell.
2019. Morphological irregularity correlates with fre-
quency. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5117–5126, Florence, Italy. Association for
Computational Linguistics.

307


