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Abstract
This paper formalizes metrical grid theory
(MGT, Prince, 1983; Hayes, 1995) and studies
its expressive power. I show that MGT analyses
of a certain form can describe stress systems
beyond the input tier-based input strictly local
functions proposed by Hao and Andersson
(2019), but conjecture that such analyses do not
describe systems beyond the input tier-based
strictly local languages of Baek (2018). These
results reveal fundamental differences between
the three formalisms.

1 Introduction
The problem of unbounded stress has proven
challenging for subregular phonology. Baek
(2018) has recently shown that unbounded stress
provides a counterexample to the weak subregular
hypothesis (Heinz, 2018), which claims that
phonological phenomena can be represented by
tier-based strictly local languages (TSL, Heinz
et al., 2011) when viewed as decision problems
that accept grammatical utterances. To remedy
this, Baek proposes that the decision to project a
symbol to the tier may be conditioned by local
contextual information such as the presence of
word boundaries. This proposal has been extended
to a generalized tier projection system in which
tier projection is implemented by arbitrary deleting
functions (Mayer and Major, 2018; Graf and
Mayer, 2018).

Viewing unbounded stress as a transduction
problem that maps underlying forms without
prosodic representation to surface forms marked
for primary stress, Hao and Andersson (2019)
show that unbounded stress systems are similarly
handeled by generalized tier projection, but that
they fall outside the class of tier-based input strictly
local functions (TISL, Chandlee, 2014). Hao and
Andersson demonstrate that default-to-opposite-
side (DO) systems can be captured by adapting

generalized tier projection to subregular functions.
However, it turns out that the “bidirectional” nature
of default-to-same-side (DS) systems cannot be
implemented by subsequential functions, which
allow only a single unidirectional pass over the
input. They instead propose that DS systems
should be understood as interaction-free weakly
deterministic functions in the sense of McCollum
et al. (2018).

These results raise conceptual questions
regarding the treatment of stress in subregular
phonology. In particular, the mechanism of
generalized tier projection intuitively seems
powerful and ad-hoc. The basic elements of
subregular phonology, namely strict locality and
the traditional tier projection system of Heinz
et al. (2011), can be viewed as formalizations of
rule and tier systems that are well-established in
phonological theory (Chandlee, 2014; Chomsky
and Halle, 1968; Goldsmith, 1976). While
generalized tier projection enables Baek (2018)
and Hao and Andersson (2019) to define classes
of finite-state machines that capture unbounded
stress, it is unclear whether generalized tier
projection is similarly grounded in existing
phonological constructs. Reflecting on this issue,
Hao and Andersson observe that the generalized
tier-projection mechanism they use to produce
Dybo’s Rule (Dybo, 1977), a model of the stress
system in Abkhaz, bears a striking resemblance
to the syllable tier used in a standard analysis
of that system within metrical grid theory
(MGT, Prince, 1983; Hayes, 1995). From that
observation we might hypothesize that stress
systems computed using generalized tier projection
naturally correspond to those described by MGT.

In this paper, I will argue that this intuition does
not hold for the transduction problem, though it
may hold for the decision problem. To that end,
I define a formal model of MGT in Section 4,
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and show in Section 5 that the stress systems
described by MGT do not correspond to those
represented by functions defined using generalized
tier projection. I also give evidence to suggest
that decision problems described by MGT can be
represented using generalized tier projection even
when their corresponding transduction problems
cannot. These results imply not only that functions
based on generalized tier projection are not
grounded in MGT, but also that the typological
predictions they make about the range of possible
stress systems differ from those made by MGT and
by decision problems.

Technical definitions used in this paper are
given in Section 2, and Section 3 reviews the
existing results on unbounded stress in subregular
phonology. Section 6 concludes.

2 Preliminaries
In this paper, uppercase Greek letters denote finite
alphabets not including the boundary symbols o
and n. The length of a string x is denoted by
|x|, and � denotes the empty string. Alphabet
symbols are identified with strings of length 1, and
individual strings are identified with singleton sets
of strings. For k � 0, ↵k denotes ↵ concatenated
with itself k-many times,↵<k denotes

Sk�1
i=0 ↵

i,↵⇤
denotes

S1
i=0 ↵

i, and↵+ denotes↵↵⇤. The longest
common prefix of a set of strings A is the longest
string lcp(A) such that every string in A begins
with lcp(A).

For sets A and B, the notation f : A ! B means
that f is a function with domain A and codomain
B. The range of f is the set {y|9x.f(x) = y} ✓ B.
A function f : A ! B is injective if for every
x, y 2 A, f(x) = f(y) if and only if x = y. A
function f : ⌃⇤ ! �⇤ is same-length if and only
if for all x 2 ⌃⇤, |f(x)| = |x|.

A subsequential finite-state transducer (SFST)
is a 6-tuple T = hQ,⌃,�, q0,!,!i, where

• Q is the set of states, with q0 2 Q being the
start state;

• ⌃ and � are the input and output alphabets,
respectively;

• ! : Q ⇥ ⌃ ! Q ⇥ �⇤ is the transition
function; and

• ! : Q ! �⇤ is the final output function.

For x 2 ⌃⇤; y 2 �⇤; and q, r 2 Q, the notation
q

x:y��! r means that T emits y to the output stream

and transitions to state r if it reads x in the input
stream while it is in state q. Letting f : ⌃⇤ ! �⇤,
we say that T computes f if for every x 2 ⌃⇤,
f(x) = y!(q), where q0

x:y��! q. A function is
subsequential if it is computed by an SFST.

For a string x 6= �, I use the following indexing
notation.

• For 1  i  j  |x|, x[i : j] is the substring
of x such that x = wx[i : j]y, where |w| =
i � 1 and |y| = |x| � j.

• For �|x|  u, v  |x| and 1  i  j  |x|,
x[u : v] = x[i : j] if u ⌘ i mod (|x| + 1)
and v ⌘ j mod (|x| + 1).

• For each i, x[i] := x[i : i]; x[i :] := x[i : |x|];
and x[: i] := x[1 : i].

The remainder of this section reviews
the algebraic characterization of subsequential
functions as well as tier projection and strict
locality.

2.1 Subsequential Functions
Independently of SFSTs, the subsequential
functions can be characterized using two
operations on string functions.
Definition 1. Let f : ⌃⇤ ! �⇤. We define the
function f : ⌃⇤ ! �⇤ by

f (x) := lcp ({f(xy)|y 2 ⌃⇤}) .

For any x, y 2 ⌃⇤, f!x (y) denotes the string such
that f(xy) = f (x)f!x (y). We refer to f!x as the
translation of f by x and to f as f top.

The translations of a subsequential function
may be used to construct the minimal SFST for
that function, analogously to the Nerode–Myhill
construction for the minimal finite-state automaton
of a regular language.
Theorem 2 (Raney, 1958). A function f :
⌃⇤ ! �⇤ is subsequential if and only if the set
{f!x |x 2 ⌃⇤} is finite.

For a subsequential function f with minimal
SFST T , the translations of f are in bijection with
the states of T . After reading input x, T outputs
f (x) and enters the state corresponding to f!x .

2.2 Homomorphisms
This paper will frequently make use of a class of
functions known as homomorphisms.
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Definition 3. A function h : ⌃⇤ ! �⇤ is a
homomorphism if for every x, y 2 ⌃⇤, h(xy) =
h(x)h(y).

Intuitively, homomorphisms are functions that
replace each symbol of ⌃ with a string in �⇤. As
such, homomorphisms are completely determined
by their values on the input alphabet.

Proposition 4. Let h, g : ⌃⇤ ! �⇤ be
homomorphisms. If h(x) = g(x) for each x 2 ⌃,
then h = g.

2.3 Locality and Tier Projection
Tier projections are functions that delete certain
symbols in an input string x. A tier ⌧ can be
used to enhance notions of locality defined by
grammars, automata, and transducers by having
local dependencies be enforced between adjacent
symbols in ⌧(x) instead of x, effectively ignoring
symbols deleted by ⌧ .

Definition 5. A tier projection is a function ⌧ :
⌃⇤ ! ⌃⇤ such that ⌧(�) = � and for all x 2 ⌃+,
⌧(x) = y1y2 . . . y|x|, where for each i, yi is either
x[i] or �. If ⌧ is a homomorphism, then we identify
⌧ with the subset � ✓ ⌃ such that for all � 2 �,
⌧(�) = �.

Symbols not deleted by a tier projection are said
to be projected to the tier. Tier-based strictly local
functions are defined to be functions computed by
minimal SFSTs whose states record the most recent
k � 1 symbols projected to some tier, for some
k > 0. In this paper, we assume that the states only
record symbols from the SFST input projected to
the tier; variants of the definitions below where the
tier projects symbols of the output have also been
defined (Chandlee, 2014; Chandlee et al., 2015;
Burness and McMullin, 2019).

Definition 6. Let k > 0, and let ⌧ : ⌃⇤ ! ⌃⇤

be a tier projection. A function f : ⌃⇤ ! �⇤

is generalized input strictly k-local on tier ⌧ (k-
GTISL on tier ⌧ ) if for all x, y 2 ⌃⇤,

⌧ (x)[: 1 � k] = ⌧ (y)[: 1 � k]

implies f!x = f!y . We say that f is

• input strictly k-local (k-ISL) if ⌧ is the
identity function;1

1In the automata theory literature, k-ISL functions are
known as k-local functions (Vaysse, 1986). See Sakarovitch
(2009, pp. 661–664) for an overview.

• input strictly k-local on tier ⌧ (k-TISL on tier
⌧ ) if ⌧ is a homomorphism; and

• j-input strictly k-local on tier ⌧ (j-I-k-TISL
on tier ⌧ ) if ⌧ is j-TISL.

Remark 7. Homomorphisms are 1-ISL functions.
Tier-based strictly local languages are defined

to be sets of strings whose images under some
tier projection only contain substrings deemed
permissible.
Definition 8. Let k > 0, and let ⌧ : ⌃⇤ ! ⌃⇤ be a
tier projection. A language L ✓ ⌃⇤ is generalized
strictly k-local on tier ⌧ (k-GTSL on tier ⌧ ) if there
exists S ✓ (⌃[{o,n})k such that for all x 2 ⌃⇤,
x 2 L if and only if every length-k substring of
ok�1⌧(x)nk�1 is in S. We say that L is

• strictly k-local (k-SL) if ⌧ is the identity
function;

• strictly k-local on tier ⌧ (k-TSL on tier ⌧ ) if
⌧ is a homomorphism; and

• j-input strictly k-local on tier ⌧ (j-I-k-TSL
on tier ⌧ ) if ⌧ is j-ISL.

3 Stress in Subregular Phonology
Stress is a phonological process in which syllables
are assigned varying levels of prominence (i.e.,
primary stress, secondary stress, or no stress)
with respect to one another. Stress is culminative,
meaning that each word contains exactly one
maximally-prominent syllable. Stress is usually
represented by marking syllables with their
prominence levels, leaving all other information
about those syllables intact. This section introduces
the formalism I use to represent stress and
reviews the current results on stress in subregular
phonology.

Throughout this paper, I treat syllables as atomic
units, and I represent them using symbols drawn
from an alphabet ⌃. Words, being strings of
syllables, are elements of ⌃⇤. When a syllable
� 2 ⌃ is assigned primary stress, I mark
this syllable with a diacritic �́. I do not mark
syllables for secondary stress. Thus, the set ⌃́ :=
(⌃ [ {�́|� 2 ⌃})⇤ is the complete alphabet of
symbols used to discuss stress.

Using this representation, stress in a particular
language can be construed in two ways. Firstly, we
may think of a stress system as a function mapping
words without stress marking to words with stress
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marking. This formalizes the transduction problem
for stress.
Definition 9. A stress system is a same-length
function s : ⌃⇤ ! ⌃́⇤ such that for every x 2 ⌃+,
there exists i > 0 and � 2 ⌃ such that

• x[i] = � and s(x)[i] = �́; and

• for all j > 0, if j 6= i, then s(x)[j] = x[j].

Remark 10. All stress systems are injective.
Secondly, we can think of a stress system as the

set of all words in which stress has been assigned
correctly. This formalizes the decision problem for
stress.
Definition 11. A stress constraint is any subset
C ✓ ⌃́ such that C is the range of some stress
system s : ⌃⇤ ! ⌃́⇤.

These formalizations are “equivalent” in the
sense that we can easily convert between them.
Definition 12. Let s : ⌃⇤ ! ⌃́⇤ be a stress system.
The stress constraint given by s is the range of s.
Definition 13. Let C ✓ ⌃́⇤ be a stress constraint.
The stress system given by C is the stress system
sC : ⌃⇤ ! ⌃́⇤ whose range is C.

A well-known example of a stress system is
the leftmost heavy otherwise rightmost (LHOR)
system (Hayes, 1995). In this system, syllables are
either light or heavy. The leftmost heavy syllable
in a word receives primary stress. If there are no
heavy syllables in a word, then the rightmost (light)
syllable receives primary stress. In Kwak’wala, for
example, heavy syllables are those that contain a
long vowel or a vowel with a coda consisting of [m],
[n], or [l] (Bach, 1975). Some illustrative examples
are given below.

(14) LHOR stress in Kwak’wala (Boas et al.,
1947; Bach, 1975)
a. [tsº@ma"a:tud] ‘to melt away

something in the ear’
b. ["ba:bagw@m] ‘boys’
c. [g@g@"n@m] ‘wives’

LHOR stress can be formalized using the
following stress system. Heavy syllables are
represented by the symbol H, while light syllables
are represented by the symbol L.
Definition 15. Let ⌃ := {H, L}. The LHOR
system is defined as follows. For u 2 L⇤, v 2 ⌃,

and w 2 ⌃⇤,

LHOR(uvw) =

(
uv́w, v = H
uwv́, uvw 2 L+.

It is easy to see that the transduction problem
for LHOR is I-TISL but not TISL.
Proposition 16. LHOR is not TISL.

Proof. Fixing k > 0 and homomorphic tier ⌧ , let
us show that LHOR is not k-TISL on ⌧ . Suppose
L /2 ⌧ . Then, observe that su↵k�1(⌧ (�)) =
su↵k�1(⌧ (L)) = o, but LHOR!� (�) = �,
while LHOR!L (�) = Ĺ. Thus, LHOR is not k-
TISL on ⌧ if L /2 ⌧ . But if L 2 ⌧ , then we have
LHOR!HLk(H) = H and LHOR!Lk(H) = LH́ even
though su↵k�1(HLk) = su↵k�1(Lk) = Lk�1.
Therefore, LHOR is also not k-TISL on ⌧ if L 2 ⌧ ,
so we conclude that it is not TISL.

Proposition 17. LHOR is 2-I-2-TISL.

Proof. Consult Figure 1.

Similarly, as Baek (2018) shows, the decision
problem for LHOR is I-TSL but not TSL.
Proposition 18. CLHOR is not TSL.

Proof. Fix k > 0, and suppose CLHOR is k-TSL
on homomorphic tier ⌧ . It is clear that H́, Ĺ 2
⌧ ; otherwise, we would have H́H́, ĹĹ 2 CLHOR.
Furthermore, we must have H 2 � and L 2 �,
since otherwise we would have HH́ 2 CLHOR and
ĹL 2 CLHOR, respectively. Thus, every symbol of
⌃́ is projected to tier ⌧ , so CLHOR is k-SL.

Now, let S ✓ (⌃́,o,n)k be the set of substrings
that are permitted to appear in strings of CLHOR,
and let x := LkH́Lk. Since x 2 CLHOR,
every length-k substring of ok�1xnk�1 is in S.
However, observe that every length-k substring of
ok�1xxnk�1 = ok�1LkH́L2kH́Lknk�1 is also
a substring of ok�1xnk�1, and is therefore also
in S. Thus, we have deduced that xx 2 CLHOR,
contradicting the definition of CLHOR.

Proposition 19. CLHOR is 2-I-2-TSL.

Proof. Let  be the homomorphic tier projection
given by {H, H́, Ĺ}, and let ⌧ be defined by

⌧(x) :=

(
 (x)L, x 2 ⌃⇤L
 (x), otherwise.

In other words, ⌧ is the same as  , except the last
symbol of the input is always projected. It is easy
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ostart H

L: Ĺ

L : �

L : L

H : LH́

L : L, H : H

H : H́

ostart L

H

L : L
L : �

H : HH : H

H : H
L : �

Figure 1: A 2-I-2-TISL SFST for LHOR (top) and a
2-ISL SFST for its tier projection (bottom).

to see that ⌧ is 2-ISL. Now, observe that CLHOR

is 2-I-2-TSL on tier ⌧ with permissible substrings
oH́, oĹ, HH, HL, Hn, H́H, H́L, H́n, Ĺn, Ln, and
on.

As these examples illustrate, the I-TISL
functions and I-TSL languages form the current
subregular complexity bounds for attested
subsequential stress systems and their associated
stress constraints (Baek, 2018; Hao and Andersson,
2019).2 These results extend those of Heinz
(2009), Rogers et al. (2013), and Heinz (2014),
who observed that stress constraints belong to
restrictive subclasses of the regular languages.
Other ways of refining the subregular hierarchy for
stress have been proposed; Rogers and Lambert
(2019), for example, define the strictly piecewise
local and the piecewise locally testable language
classes. The remainder of this paper will seek
to compare metrical grid theory against the
benchmarks I-TISL and I-TSL benchmarks.

4 Metrical Grid Theory

Treatments of stress in phonological theory are
typically based on the intuition that phonemes
are organized into hierarchical structures, each

2Hao and Andersson (2019) and Koser and Jardine (To
appear) show that some stress systems are not subsequential;
I do not consider such systems in this paper.

⇤ Word
⇤ ⇤ ⇤ ⇤ Foot

⇤ ⇤ ⇤⇤ ⇤⇤ ⇤ ⇤⇤ ⇤ ⇤ Syllable
L L H́ H L H L L

⇤ Word
⇤ Foot

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ Syllable
L L L L L L L Ĺ

Figure 2: Sample metrical grids for the LHOR system.

level of which imposes prominence relations on its
elements. While current approaches in Optimality
Theory (OT) use constraints on the shapes of
prosodic units and the prominence relations they
impose (Prince and Smolensky, 1993, 2004;
McCarthy and Prince, 1986, 1996, 1993), metrical
theory has provided several frameworks for
understanding stress outside of OT.3 This section
reviews and formalizes metrical grid theory (MGT,
Prince, 1983; Halle and Vergnaud, 1987; Idsardi,
1992; Halle and Idsardi, 1995; Hayes, 1995), a
classic example of such a framework.

According to MGT, prosodic relations are
represented using diagrams like the ones that
appear in Figure 2. Each syllable is associated
with a continuous stack of asterisks. The height
of each stack represents the prosodic prominence
of its associated syllable, with the tallest stack
marking primary stress and the second-tallest
stack(s) marking secondary stress. Each layer
of asterisks represents a level of the prosodic
hierarchy: the bottom asterisks, the syllable layer,
mark the location of each syllable; the middle
asterisks, the foot layer, mark syllables that are
prominent within their respective feet; and the top
asterisk, the word layer, marks the syllable with
the greatest prominence in the word.

The placement of asterisks within the diagram
is determined as follows. In the syllable layer,
all light syllables receive an asterisk, while all
heavy syllables receive two asterisks (⇤⇤). Thus,
the syllable layer serves to record which syllables
are heavy and which are light. In the foot layer,
asterisks are placed by applying one or more of the
following rules.

• Quantity Sensitivity (QS): Place an asterisk
directly above each ⇤⇤ in the syllable layer.

3See Kager (1995) for a survey overview of various
approaches in metrical theory.
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• Perfect Grid: Place an asterisk in every
second position, starting from the first
(PG(odd)) or the second (PG(even)) position.

• End Rule: Place an asterisk in the first
(ER(foot,�)) or last (ER(foot,⇤)) position.

In Figure 2, for example, foot-level asterisks
are assigned according to QS and ER(foot,⇤).
Applying both rules means that an asterisk is added
to a position if and only if either QS or ER(foot,⇤)
adds an asterisk to that position. Finally, the single
word-layer asterisk is assigned according to the
following End Rule.

• End Rule: Place an asterisk directly above the
first (ER(word,�)) or the last (ER(word,⇤))
asterisk in the foot layer.

Using these rules, LHOR is implemented in MGT
as follows: the foot-level asterisks are assigned
using QS and ER(foot,⇤), and the word-level
asterisk is assigned using ER(word,�). In words
containing a heavy syllable, such as L2H́HLHL2,
the leftmost asterisk on the foot level occurs
directly above the leftmost H in the word. Thus,
ER(word,�) assigns primary stress to the leftmost
H. In words without a heavy syllable, such as
L8, QS does not place any asterisks on the foot
layer, so the leftmost asterisk of the foot layer
is the single asterisk placed by ER(foot,⇤). This
occurs at the right word boundary, so ER(word,⇤)
assigns primary stress to the rightmost syllable.

4.1 Formalizing MGT
Let us now give a precise definition of the system
we have informally described. To represent stacks
of asterisks, I annotate alphabet symbols with a
subscript indicating the number of asterisks above
that symbol. Since ⇤⇤ only occurs in the syllable
layer directly above an H, I do not distinguish
between a single position in the grid that contains
⇤⇤ and a single position that contains only one
asterisk. For example, the upper grid in Figure 2 is
represented by the string L2

1H3H2L1H2L1L2.
Definition 20. Let⌃ be any alphabet, and for every
� 2 ⌃, let �1,�2, . . . be symbols not in ⌃́. Let
⌃0 := ⌃, and for i � 0, define the alphabet ⌃i :=
{�i|� 2 ⌃}, with �0 = � for each � 2 ⌃. Let
⌃j :=

Sj
i=0 ⌃i and ⌃⇤ :=

S1
i=0 ⌃i.

In this formalization, each rule must be
associated with a particular level in the prosodic
hierarchy. A rule associated with level i, where

�start L1 : L1, H1 : H2

Figure 3: A homomorphic SFST implementing QS.

the syllable layer is level 1, takes as input a grid
whose tallest stack of asterisks is at most i levels
tall, and increments the height of stacks ending at
the previous level by one.
Definition 21. For i > 0, a level-i rule is a same-
length subsequential function ⇢ : ⌃⇤i ! ⌃⇤i such
that for each x 2 ⌃⇤i and for each position j,

• if x[j] = �i�1 for some � 2 ⌃, then either
⇢(x)[j] = �i�1 or ⇢(x)[j] = �i;

• otherwise, ⇢(x)[j] = x[j].

Example 22. Figure 3 shows an SFST
implementing QS as a level-2 rule. Since L1

represents a column with a single asterisk and H1

represents a column with ⇤⇤, this SFST simply
changes all H1s to H2. ER(i,�) is represented by
the following level-i rule:

ER�
i (x) =

(
y�iz, x = y�i�1z and y 2 ⌃⇤i�2

x, otherwise.

ER(i,�) places an asterisk above the leftmost
asterisk on level i � 1. Symbols in ⌃i [ ⌃i�1

represent syllables with an asterisk on level i � 1;
symbols in ⌃i represent syllables with an asterisk
on both level i � 1 and level i. If the first symbol
of x in ⌃i [ ⌃i�1 is of the form �i�1 2 ⌃i�1,
then this symbol is incremented to �i. If the first
symbol of x in ⌃i [ ⌃i�1 is of the form �i 2 ⌃i,
then this symbol is left unchanged: ER(i,�) is
still understood to add an asterisk on the ith level,
but an asterisk has already been added there by
another rule. If x does not contain any symbols
of ⌃i [ ⌃i�1, then ER(i,�) does not add any
asterisks. Observe that ER�

i is 2-TISL on tier
⌃i [ ⌃i�1.

The mapping of input words to their metrical-
grid representations is simply the composition
of a sequence of rules. Since rules can only
place asterisks on top of existing asterisks from
the previous layer, the rules in the sequence are
required to be monotonically increasing in their
associated level of the hierarchy.4

4This requirement is known in the phonological literature
as the continuous column constraint (Hayes, 1995).

266



Definition 23. For i > 0, an i-level metrical grid
is a function ⇢ : ⌃⇤ ! ⌃⇤i such that

⇢ = ⇢n � ⇢n�1 � · · · � ⇢0

for some n > 0, where

• ⇢0 : ⌃⇤ ! ⌃⇤1 is the homomorphism given
by ⇢(�) = �1 for all � 2 ⌃;

• ⇢n is a level-i rule; and

• for all j, if ⇢j is a level-k rule, then ⇢j+1 is
either a level-k rule or a level-(k + 1) rule.

From an i-level metrical grid, we recover the
stress system described by the grid by assuming
that asterisks on level i represent primary stress.

Definition 24. Let ⇢ be an i-level metrical grid.
The stress system induced by ⇢ is the stress system
s⇢ := si � ⇢, where si : ⌃⇤i ! ⌃́⇤ is the
homomorphism given by

si(�j) :=

(
�́, j = i

�, j < i.

5 Expressive Power of MGT

Trivially, the version of MGT formalized in
Subsection 4.1 can express any subsequential stress
system s: since level-i rules are allowed to be
arbitrary subsequential functions, it suffices to
construct a grid consisting of a level-2 rule that
places an asterisk above the syllable assigned
primary stress by s. In this section, I show
that MGT is strictly more expressive than the I-
TISL functions. The example that separates MGT
from the I-TISL functions is motivated by Hao
and Andersson’s (2019) formalization of Dybo’s
Rule (Dybo, 1977), a description of unbounded
stress in Abkhaz. I review Hao and Andersson’s
implementation of Dybo’s Rule both as a stress
system and as a 3-level grid in Subsection 5.1. In
Subsection 5.2, I show that a slight modification
of Hao and Andersson’s stress system is in fact not
I-TISL, even though the ability of MGT and I-TSL
languages to describe the system is not affected by
the change in representation, as will be shown in
Subsection 5.3.

5.1 Dybo’s Rule
In Abkhaz, syllables are lexically marked as
being dominant or recessive. Dybo’s Rule is an
LHOR stress system in which dominant syllables
not followed by other dominant syllables are
considered to be heavy, and all other syllables are
considered to be light. This is illustrated by the
following examples, where dominant syllables are
underlined.

(25) Dybo’s Rule in Abkhaz (Spruit, 1986)
a. [d@

>
tShala"wama] ‘Does (s)he usually

go?’
b. [a"Kwak’jam@sa] ‘(the) poniard’
c. [apha"ra] ‘to pleat’
d. [maa"k’@] ‘one handle’

The dominant syllables [wa] in (25a), [Kwa] and
[ma] in (25b), and [ra] in (25c) are heavy,
since they are not followed by another dominant
syllable. In (25a) and (25c), the sole heavy syllable
receives primary stress. In (25b), the first of the
two heavy syllables receives primary stress. (25d)
does not have any heavy syllables, so the last
syllable receives primary stress by default. Hao and
Andersson (2019) represent Dybo’s Rule using the
following stress system.
Definition 26. Let ⌃ := {D, R}. The two-letter
Dybo’s Rule is the stress system ↵ : ⌃⇤ ! ⌃́⇤

defined as follows. For u 2 R⇤D⇤, v 2 ⌃, and
w 2 ⌃⇤,

↵(uvw) :=

(
uv́w, v = D and w /2 D⌃⇤

uwv́, uvw 2 R⇤.

In the two-letter Dybo’s Rule, dominant
syllables are represented by D and recessive
syllables are represented by R. The first D not
followed by an R receives primary stress. This
stress system turns out to be an I-TISL function.
Proposition 27 (Hao and Andersson, 2019). The
two-letter Dybo’s Rule is 2-I-3-TISL.

Hao and Andersson implement this system in
MGT using a 3-level grid of the form ER�

3 �⇢1�⇢0,
where ⇢0 is as defined in Definition 23 and ⇢1 is
given by the 2-ISL SFST shown in the right panel
of Figure 4. Following the MGT analysis of LHOR
stress, ⇢1 serves to mark all heavy syllables, as
well as the last syllable, with an asterisk on level 2.
Thus, ⇢1 places an asterisk above all Ds followed
by an R, along with the last syllable.
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R R R R R R R Ŕ

ostart R1

D1

: R2
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R1 : �

R1 : R1

D1 : �

D1 : D1

D1 : R1

R1 : D2

Figure 4: Left: Sample metrical grids for the two-letter Dybo’s Rule. Right: 2-ISL SFST implementing the level-2
rule for the two-letter Dybo’s Rule.

5.2 MGT vs. I-TISL Functions
Let us now introduce the following variant of the
two-letter Dybo’s Rule.
Definition 28. Let ⌃ := {D, E, R}. The three-
letter Dybo’s Rule is the stress system � : ⌃⇤ ! ⌃́⇤

defined as follows. For u 2 R⇤{D, E}⇤, v 2 ⌃, and
w 2 ⌃⇤,

�(uvw) :=

(
uv́w, v 6= R and w /2 {D, E}⌃⇤
uwv́, uvw 2 R+.

The three-letter Dybo’s Rule is exactly like the
two-letter Dybo’s Rule, except that there are two
alphabet symbols representing dominant syllables:
D and E. The MGT analysis of the two-letter
Dybo’s Rule can be easily adapted to the three-
letter Dybo’s Rule just by identifying E with D. The
I-TISL implementation of the two-letter Dybo’s
Rule, however, cannot be applied to the three-letter
Dybo’s Rule.
Theorem 29. The three-letter Dybo’s Rule is not
i-I-j-TISL on tier ⌧ for any i, j, or ⌧ .

Proof. Suppose � is i-I-j-TISL on tier ⌧ . Observe
that

�!EiD(R) = D́R �!EiE(R) = ÉR
�!EiR(R) = R �!Ei (R) = ÉR,

thus ⌧ (EiD), ⌧ (EiR), and ⌧ (Ei) must all be
distinct. Let t := ⌧ (Ei), and for � 2 ⌃, let t�
be such that ⌧ (Ei�) = tt�. Clearly, t� 6= � for
every �.

Let q0 be the start state of the minimal SFST T
for ⌧ , let q be the state of T corresponding to ⌧!Ei ,
let ! be the transition function of T , and let r, y,
and z be such that

q0
Ei:y��! q

DEi:z���! r.

Since ⌧ is i-ISL and

Ei[: 1 � i] = EiDEi[: 1 � i] = Ei�1,

we must have ⌧!EiDEi = ⌧!Ei , thus r = q. It follows
that for every k � 0, ⌧ (Ei(DEi)k) = yzk. Since
tE � z, it must be the case that |yzk| � k.

Now, observe that

⌧ (DREi(DEi)j)[: 1 � j]

= ⌧ (DREi)zj [: 1 � j]

= yzj [: 1 � j]

= ⌧ (Ei(DEi)j)[: 1 � j].

Therefore, ⌧!DREi(DEi)j = ⌧!Ei(DEi)j . However, this
contradicts the fact that

⌧!DREi(DEi)j (R) = R 6= ÉR = ⌧!Ei(DEi)j (R),

so we conclude that � is not i-I-j-TISL on tier ⌧
for any i, j, or ⌧ .

The 2-I-3-TISL SFST given by Hao and
Andersson (2019) for the two-letter Dybo’s Rule
projects DR sequences to the tier. When the SFST
encounters a contiguous block of Ds, it must delay
its output by one time step, as shown below,
because it is unknown whether or not the current
D should be assigned stress. Stress is not assigned
until the SFST encounters an R or the end of the
input string has been reached.

oo D:���! oD D:D��! . . .
D:D��! oD R:D́R���! DR

Once the tier contains a full DR sequence, the SFST
knows that stress has already been assigned, and
therefore does not assign stress for the remainder
of its computation.

With the three-letter Dybo’s Rule, the state needs
to record the identity of the most recent input
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symbol in order to delay the output by one time
step. The only way to do this with an I-TISL SFST
is to project the most recent input symbol to the
tier.

oo D:���! oD E:D��! DE D:E��! ED ! . . .

Since an ISL tier projection cannot distinguish
between the first block of dominant syllables in its
input and subsequent blocks of dominant syllables,
the schema shown above requires every block of
dominant syllables to be projected to the tier. These
syllable blocks overflow the memory provided by
the tier, thus preventing it from recording whether
or not stress has already been assigned.

5.3 MGT vs. I-TSL Languages
Despite the fact that the three-letter Dybo’s Rule is
not I-TISL, the stress constraint it induces is I-TSL.
Proposition 30. C� is 2-I-3-TSL.

Proof. Let ⌧ be the 2-ISL tier projection that
projects

• all instances of D́, É, and Ŕ;

• all instances of DR, DŔ, ER, EŔ, D́R, D́Ŕ,
ÉR, and ÉŔ; and

• the last symbol of the input.

Now, observe that C� is 2-I-3-TSL on tier ⌧ , with
the following permissible substrings: oo�́, ooŔ,
oon,o�́R,o�́n,oŔn,onn,�R�,�Rn, R�R,
Rnn, �́R�, �́Rn, �́nn, and Ŕnn, where �, � 2
{D, E}.

The tier projection described here is similar to
the tier projection used for Hao and Andersson’s
(2019) 2-I-3-TISL implementation of ↵. Like the
2-I-2-TSL grammar for CLHOR, the 2-I-3-TSL
grammar for C� projects all heavy syllables and
stressed syllables to the tier, along with the last
syllable of the input. Unlike the grammar for
CLHOR, the grammar for C� also projects recessive
syllables following dominant syllables. This allows
the grammar to ensure that all stressed dominant
syllables are dominant: they must be immediately
followewd by either R or n.

Because neither an ITSL grammar nor a metrical
grid needs to produce the surface form as output,
the problem of using the tier to delay computation
does not arise for the ITSL implementation of C�

or for the MGT analysis of �. While there is still a

discrepancy between layer 2 of the MGT analysis
and the tier projection used for C�, I conjecture
based on this observation that MGT describes
ITSL decision problems.
Conjecture 31. Let ⇢ = ER�

3 � ⇢1 � ⇢0 be a 3-
level metrical grid. If ⇢1 is ISL, then Cs⇢ is I-TSL.

6 Conclusion
In comparing the I-TISL implementation of ↵
with the MGT analysis, Hao and Andersson
(2019) express the intuition that generalized
tier projections and MGT are similar in that
both systems use intermediate representations
in order to compute stress. The analysis of
Section 5 has revealed that this similarity is
superficial because the computations carried
out by I-TISL functions, I-TSL languages, and
metrical grids are fundamentally different from
one another. The most prominent of the differences
discussed here is that systems implementing
the transduction problem need to transfer a
substantial amount of information about the
underlying form to the surface form, while
systems implementing the decision problem only
need to retain enough information to distinguish
a grammatical string from an ungrammatical
one. Thus, the transduction problem may be
viewed as conceptually more difficult than the
decision problem.5 While metrical grids compute
transductions, their memory capabilities are
enhanced by the fact that rule composition allows
state information to be encoded in intermediate
layers. Conjecture 31 suggests that this enhanced
memory may be sufficient for MGT to bridge the
gap between the transduction problem and the
decision problem.

In conclusion, the comparison of generalized
tier projection with metrical grids provides
an instructive example of an analytical tool—
intermediate representations of prominence
relations—that behaves differently depending on
the formalism in which it is instantiated. This
approach could potentially offer a way to compare
different theoretical frameworks in terms of how
they accommodate superfically similar proposals.
I leave the exploration of such ideas to future work.

5This asymmetry mirrors the relationship between search
problems and decision problems in computational complexity
theory (see Arora and Barak, 2009, pp. 54–55 for an
overview). The conjecture that NP ) P captures the intuition
that the search problem is the more difficult one.
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