
Automating Gloss Generation in Interlinear Glossed Text

Angelina McMillan-Major
University of Washington / Seattle, USA

aymm@uw.edu

Abstract

Interlinear Glossed Text (IGT) is a rich data
type produced by linguists for the purposes
of presenting an analysis of a language’s se-
mantic and grammatical properties. I combine
linguistic knowledge and statistical machine
learning to develop a system for automatically
annotating low-resource language data. I train
a generative system for each language using on
the order of 1000 IGT. The input to the system
is the morphologically segmented source lan-
guage phrase and its English translation. The
system outputs the predicted linguistic annota-
tion for each morpheme of the source phrase.
The final system is tested on held-out IGT
sets for Abui [abz], Chintang [ctn], and Matsi-
genka [mcb] and achieves 71.7%, 80.3%, and
84.9% accuracy, respectively.

1 Introduction

While language documentation has a long history,
warnings from linguists such as Hale et al. (1992)
and Krauss (1992) concerning language extinction
have revitalized and expanded documentation ef-
forts by communities and linguists, though there
is still much work to be done (Seifart et al., 2018).
According to Seifart et al. (2018), it can take 40
and 100 hours to transcribe an hour of recorded
material, and even more time is required to ana-
lyze the language as a whole before annotating a
single segment of the data collected. Given the
decreasing language diversity in the world, there
is an identified and immediate need for automated
systems to assist in reducing the human hours
spent on the documentation process.

While costly to produce, the glosses in IGT al-
low linguistic generalizations that are implicitly
present in natural text to be explicitly available
for natural language processing. In addition to
supporting field linguists in collecting data, better
and more easily produced IGT would also bene-

fit end-stage projects such as machine translation
between low-resource languages by improving the
accuracy of the pre-processing modules (Xia and
Lewis, 2008). Georgi et al. (2012) used IGT
corpora to improve dependency parsing on low-
resource languages using bootstrapping methods,
while Bender et al. (2014) and Zamaraeva et al.
(2019) used IGT to build high-precision gram-
mars. Furthermore, language communities with
trained IGT generators would be able to produce
IGT for any new text found or created to aid with
either language learning, documentation, or future
translation efforts.

IGT consist of a source language phrase, a
translation of that phrase into the language of the
target audience, such as English, and glosses for
each source morpheme. The glosses highlight the
morphological and syntactic features of the source
language. Ex. 1 shows an IGT from the Kazakh
dataset in the Online Database of INterlinear text
(ODIN) (Lewis and Xia, 2010), modified from
Vinnitskaya et al. (2003).

(1) Kyz
girl.NOM

bolme-ge
room-DAT

kir-di
enter-PAST

(A/the) girl entered (a/the) room. [ISO 639-3: kaz]

In Ex. 1, the first line is the source line, the sec-
ond is the gloss line, and the third is the transla-
tion line. The strings girl, NOM, room, etc. are
all glosses, but glosses that refer to grammatical
information, such as NOM, will be referred to as
grams and the glosses that refer to semantically
contentful information, such as girl, will be re-
ferred to as stems.

In this paper I describe a system for produc-
ing the gloss line of IGT automatically. I re-
strict my system to producing just the gloss line,
given a morphologically segmented source line
and its translation line. Morphological segmenta-
tion packages such as Morfessor (Creutz and La-
gus, 2007) are widely available, and in the doc-
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umentation setting translations may be provided
by a native speaker consultant. This system could
be used in combination with such resources. The
input to the system at test time includes the mor-
phemes in the segmented source line and the trans-
lation in the bottom line, and the target output is
the gloss line.

This system does not, however, produce new
analyses of the source language. Rather it is as-
sumed that the linguistic analyses at all levels and
the transliteration are already formalized by the
documentary team. The system is then learning
patterns from the analyses in the training data and
reproducing the patterns when given new data.
While the system can be trained on one set of anal-
yses and tested on another, the performance will
depend on the amount of variation between the
analyses. This is especially significant in the low-
resource setting, where each data instance con-
tributes a relatively large amount of information as
compared to each data instance in a high-resource
setting.

A survey of the literature on IGT curation, aug-
mentation and automation is provided in §2. In §3,
I present the data used for developing and testing
the system. §4 describes both the machine learn-
ing methods and the rule-based methods of this
particular system, where the rule-based methods
provide an implementation for handling out of vo-
cabulary, also referred to as OOV, tokens. This
section also includes an explanation of the evalua-
tion metrics. §5 presents the results on the devel-
opment and test languages, as well as a systematic
error analysis. Finally, §6 discusses the challenges
and limitations inherent in casting annotation as
a classification task while exploring possible im-
provements to the current method for predicting
OOV tokens.

2 Related Work

Approaches to IGT creation tools range in terms
of how much input is required from the human
annotator to yield the finished product. A widely
used tool for documentation is FieldWorks Lan-
guage Explorer (FLEx) (Baines, 2009). FLEx in-
cludes functionality for manually annotating inter-
linear text in addition to creating dictionaries and
other language resources. The annotation software
assists the user by retaining source-gloss pairs pre-
viously entered by the user and suggesting these
glosses when the source morpheme appears again.

The suggestions are not automatically constrained,
however, so FLEx will suggest all previously seen
glosses regardless of their likelihood given the lo-
cal context unless the user explicitly provides the
constraint information. By contrast the system
presented here calculates the likelihood of a source
morpheme being labeled with each possible gloss
given the current sequence of morphemes and se-
lects the most likely gloss automatically.

Palmer et al. (2009) (see also Baldridge and
Palmer 2009 and Palmer et al. 2010) approached
the task of IGT glossing within an active learning
framework. In an active learning framework, an-
notators label the first small batch of input data,
which is incorporated into the model in a new
training phase, and then the next batch of data
is labeled by the model and corrected by the an-
notators before being incorporated back into the
model. They trained a maximum entropy clas-
sifier to predict a gloss given a morpheme and a
context window of two morphemes before and af-
ter the morpheme in question. They had two an-
notators label IGT for Uspanteko [usp] (Mayan,
Guatemala), using data from the OKMA corpus
(Pixabaj et al., 2007). This corpus contains 32
glossed and 35 unglossed texts for a total of ap-
proximately 75,000 glossed tokens. They restrict
the number of labels in the annotation schema by
labeling stem morphemes with their part of speech
(POS) tags, as provided in the corpus. Palmer
et al. found that the expert annotator was more ef-
ficient and performed better when presented with
the model’s most uncertain predictions, but the
naive annotator annotated more accurately when
presented with random IGT rather than the most
uncertain. These results suggest that active learn-
ing strategies must take the annotator into account
in order to be optimally efficient, whereas au-
tomatic annotation does not have this constraint.
Fully automated classification approaches provide
an alternative method to IGT glossing when IGT
have already been completed.

Samardžić et al. (2015) took a classification ap-
proach to IGT generation for the Chintang [ctn]
(Kiranti, Nepal) Language Corpus dataset (Bickel
et al., 2009). This corpus is significantly larger
than the average documentation project with ap-
proximately 955,000 glossed tokens and a lexicon
with POS tags. Samardžić et al. used two clas-
sifiers to generate their labels. The first classi-
fier was based on Shen et al.’s (2007) version of
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Collins and Roark’s (2004) Perceptron learning al-
gorithm and jointly learns the order in which to
tag the sequence and the predicted tags. It an-
notated grammatical morphemes with their appro-
priate label and contentful morphemes with their
POS tags, as in Palmer et al. (2009), to limit the
total number of labels. The final step replaces the
POS labels with an appropriate English lemma us-
ing the provided lexicon which maps English lem-
mas to Chintang morphemes. Samardžić et al.
trained a trigram language model on the lexicon
IDs to predict the most likely ID when multi-
ple lemmas are possible, and back-off methods
are used when labeling a previously unseen mor-
pheme.

This paper attempts to add to the body of re-
search on IGT generation by developing a machine
learning framework that can apply to languages
with fewer resources. Whereas these previous im-
plementations rely on linguists’ input or language
specific resources, such as source language POS
tags, to produce the final output, the system pre-
sented here runs using only what is given in the
IGT training data. The following experiments at-
tempt to answer the question of how much linguis-
tic information statistical machine learning tech-
niques are able to acquire from the linguistic pat-
terns that are made explicit in IGT without any ad-
ditional resources.

3 Data

The Online Database of INterlinear text (ODIN) is
a repository of IGT examples collected from PDFs
of linguistic publications (Lewis and Xia, 2010).
ODIN contains 158,007 IGT from across 1,496
languages and 2,027 documents. The ODIN IGT
datasets are stored in the XML-linearization of the
Xigt format (Goodman et al., 2015), which in-
cludes a Python API.1 A second version of ODIN2

has been released with POS tags, dependency
parses, and word alignments provided by the IN-
terlinear Text ENrichment Toolkit (INTENT) sys-
tem (Georgi, 2016).

I selected six languages from ODIN for de-
veloping the system based on set size: Turkish
[tur], Russian [rus], Korean [kor], Japanese [jpn],
Italian [ita], and Norwegian [nob]. I use a fur-
ther three languages from language documenta-

1http://github.com/xigt/xigt
2Available at http://depts.washington.edu/

uwcl/odin/

tion projects as held-out test languages. Poor re-
sults on held-out languages compared to develop-
ment languages would suggest that the system is
inherently biased towards one language or one ty-
pological feature, such as word order; compara-
ble results between the held-out and development
languages provide evidence that the system per-
formance is not dependent on language-specific
features. The datasets for Chintang [ctn] (Kiranti,
Nepal; Bickel et al. 2009), Abui [abz] (Trans-New
Guinea, Indonesia; Kratochvı́l 2017), and Mat-
sigenka [mcb] (Maipurean, Peru; Michael et al.
2013) have been collected as part of language doc-
umentation projects and thus provide the oppor-
tunity to model system behavior in that setting.
This setting typically includes consistent glossing
schemes and native speaker consultants to provide
translation information. In order for the system
to produce models for these datasets in the same
way as the ODIN datasets, preprocessing included
converting the resources to the Xigt format and
then enriching the data using the INTENT system
(Georgi, 2016).

After filtering for IGT with identical source
lines and IGT that were not fully annotated by IN-
TENT, the Japanese and Korean sets have slightly
more than 2000 IGT each, the Russian has set
just under 1500 IGT, the Norwegian and Turkish
sets have around 1000 IGT each, and the Italian
set has around 800 IGT. Of the held-out datasets,
Matsigenka is the smallest, with just under 450
IGT due to a large portion of the corpus hav-
ing Spanish rather than English translations. The
Abui and Chintang sets are much larger with ap-
proximately 4700 IGT and 7000 IGT.3 For each
language the system is trained using 90% of the
given language’s IGT and tested on the remaining
10%. Table 1 shows the number of IGT in each
language’s train and test sets from ODIN, while
Table 2 shows the numbers for the held-out lan-
guages.

4 Methodology

I built one glossing system trained separately on
each language dataset. Upon loading each dataset,
the system removes IGT with source lines that
appear multiple times in the dataset and IGT
with missing or incomplete label references to the
glosses and source morphemes. The system then

3This is a subsample of the nearly 1 million word Chin-
tang dataset (see §2).
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formats the information in the remaining IGT to
be fed into two Conditional Random Field (CRF)
models (Lafferty et al., 2001). One model predicts
the gloss line from the source line, hereafter re-
ferred to as the source model or SRC model, while
the second model predicts the gloss line from the
translation line, hereafter translation model or TRS
model. Finally, the system incorporates the predic-
tions of both models into the final output.

I use the Japanese example in (2), originally
from Harley (1995), as a running example to show
the steps in the system.

(2) yakko-ga
yakko-n

wakko-o
wakko-a

butai-ni
stage-on

agar-ase-ta
rise-cause-past

yakko made wakko rise onto the stage [jpn]

The source line, gold glosses, and the translation
line are as they appear in the corpus.

4.1 Modeling

Conditional Random Fields (CRF) are able to clas-
sify sequences of tokens with a large number of
possible labels while being sensitive to the con-
text in which the tokens appear (Lafferty et al.,
2001) and have been shown to be effective in
low-resource settings (Ruokolainen et al., 2013).
The CRF models were built using sklearn-crfsuite
v0.3.6.4 The training algorithm uses stochastic
gradient descent with L2 regularization and a max-
imum of 50 iterations.

The SRC model predicts a gloss for each mor-
pheme in the source line. When training, the sys-
tem takes in complete IGT and uses the glosses
provided as the gold training labels. The first
whitespace-separated token in the source line
is assumed to align with the first whitespace-
separated token in the gloss line, the second source
token with the second gloss, and so forth. While
the SRC model is able to take advantage of the
context provided by adjacent morphemes, it must
also be provided with explicit features for source
word boundaries. The features for each label in-
clude the source morpheme, the current source
word, the previous and following words, and
whether or not the previous and following mor-
phemes are included in the current word (see Ap-
pendix A for an example). No processing of the
source language, such as POS tags or dependency
labels, other than the morphological segmentation
has been assumed in this model, as many lan-

4http://github.com/TeamHG-Memex/
sklearn-crfsuite

guages do not have access to NLP processing dur-
ing the documentation process. At test time the
SRC model would then output the following pre-
dicted sequence for the source line in Ex. 2:

(3) yakko-n pizza-acc taro-dat sit-cause-past

The second model, or TRS model, predicts
the gloss that is aligned with each word in the
translation line. The gold labels for the transla-
tion to gloss line predictions are provided by IN-
TENT, which has automatically labeled the bilin-
gual alignments between one gloss and one trans-
lation word. As a result, multi-word expressions
are not considered in the TRS model unless they
are explicit in the glosses. Many of the words in
the translation line are not aligned with a gloss,
so an additional null label is included. The fea-
tures for each label include the translation word,
its lemma as provided by the StanfordNLP API
(Manning et al., 2014), and the POS tag and de-
pendency structure for the translation word as pro-
vided by INTENT (again, see Appendix A for an
example). The TRS model then outputs the fol-
lowing predicted sequence for the translation line
in Ex. 2:

(4) yakko NA NA NA NA NA NA

NA stands for Not Aligned and is the most likely
tag for the model to output. The content words that
would be expected to be aligned in the translation
line, wakko, rise, and stage, are not aligned in this
case due to wakko and rise being OOV items, and
stage having only been seen once in the training
data. For further discussion of the TRS model’s
behavior, see §6. For both models, tokens that
contain only punctuation are labeled with the gloss
PUNC. Additionally, a dummy label is included in
case of reference errors while accessing the data
or when the features are not available. This may
be the case with punctuation or with non-English
words that the StanfordNLP lemmatizer is not able
to process.

4.2 Integrating Model Hypotheses

At test time the given source line and its transla-
tion line are processed by their respective mod-
els. The output of each model is then assessed by
the system. The system first checks whether the
source tokens and their predicted glosses have co-
occurred in the training data and whether the trans-
lation tokens and their predicted glosses have co-
occurred in the training data. If a gloss is predicted
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Figure 1: Visualization of the system

by both models and is supported by the training
data, it’s saved as a final prediction. If the SRC and
TRS models disagree and the TRS model’s pre-
diction is supported by the training data, the TRS
model’s prediction is saved as the final prediction.
If the original source token has been seen in the
training data, but an exact match was not predicted
by the translation line, the SRC model’s predic-
tion takes precedence. This is motivated by the
fact that source tokens that are labeled with grams
may not be aligned with a token in the translation.

If the source morpheme has not previously been
seen, it is assumed to be a stem, and the lemma of
an aligned translation lemma is used as the gloss
(see § 6 for further discussion). If the source to-
ken is both unseen and unaligned, the system first
checks to seen if there is an exact match between
the morpheme and a translation word. Otherwise,
the system separates the predicted grams, as iden-
tified by the gram list, from the SRC model’s pre-
dicted gloss. Based on the grams, the system
attempts to match the morpheme with a transla-
tion lemma with the same POS tag or argument
role, using the grams to predict the morpheme’s
POS tag and the INTENT metadata to identify the
translation words’ POS tags or dependency struc-
ture. For example, if a case marker such as nomi-
native is predicted, the system will look for a noun
marked as the subject in the translation tokens.
This process is implemented for nouns and verbs
since OOV items are most likely to be in those cat-
egories. Finally, if the model is still unsure of the
final prediction, the system selects the lemma of
an unaligned translation word or the word itself if
it cannot be lemmatized.

Continuing with the example from the previous
section, the system now has the prediction infor-
mation from Ex. 3 and 4. The system confirms that
it has seen yakko, ga, o, ni, ase, and ta glossed as
yakko, n, acc, dat, cause, and past, respectively,
so it keeps those as final predictions. The system
has seen butai in the training data but not glossed

as taro, so it replaces the SRC model’s predic-
tion with the previously seen gloss, stage. The
token wakko is an OOV item, but an exact match
is found in the translation line, so the token itself
is used as the gloss, replacing pizza. The token
agar is also an OOV item, but because no grams
were predicted by the TRS model, the system does
not make any assumptions about the source POS
tag and defaults to the token predicted by the SRC
model. The resulting final prediction is:

(5) yakko-n wakko-acc stage-dat sit-cause-past

4.3 Evaluation

The system’s performance is evaluated by compar-
ing each gloss in each test IGT’s final output to
the gold standard glosses provided in the datasets.
The system produces a label for each morpheme,
so the recall provides no additional information.
Comparing the final output in Ex. 5 with the gold
gloss in Ex. 2, yakko, n, wakko, stage, cause, and
past are correct for a total of 6/9. The system pre-
cision is given in terms of the micro-average over
all tokens in all the IGT in each languages’ test
dataset.

I further analyze the system output by breaking
down the system performance in terms of stems
and grams. Labels are identified as grams or stems
during the scoring process using a list of grams
collected during the development of ODIN. The
ODIN gram list covers many frequently used cat-
egories such as person, gender and case and has
multiple realizations for each category’s values.

There may be morpheme labels that contain
multiple glosses, each separated by a period. In
these cases, the predicted label is evaluated as a
whole when scoring the system accuracy. When
determining the system performance over stems
and grams, however, the predicted label is split on
each period and each gloss is checked against the
ODIN gram list to determine if it is a gram or not.
The gold label is also split if it contains at least
one period. For each gloss in the gold label, if it
is seen in the predicted label, it is considered cor-
rect, regardless of the order. Because the system
may predict a label that has more or fewer glosses
than the gold label, both the precision and recall
are calculated. Each metric is presented in terms
of the micro-average over all the stem tokens and
the micro-average over all the gram tokens.

Ex. 2 does not contain any instances of a single
label containing multiple glosses, so the combined
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Lang. [ISO 639-3] Train Test Acc
Japanese [jpn] 2062 229 77.8%
Korean [kor] 1956 217 75.6%
Norwegian [nob] 958 107 63.1%
Turkish [tur] 894 99 60.3%
Italian [ita] 732 81 59.9%
Russian [rus] 1322 147 53.2%

Table 1: Development languages, number of IGT train-
ing and test instances for each model, and test accuracy.

score for the stems and morphemes is not different
from the morpheme score. In a more complicated
example from the Japanese dataset originally from
Bobaljik (n.d.), there are two instances of multi-
gloss labels, last.night and by.dat.

(6) yuube
last.night

kuruma-ga
car-nom

doroboo-ni
robber-by.dat

nusum-are-ta
steal-pass-past

Last night, cars were stolen by a thief. [jpn]

The SRC model predicts the sequence japanese
car-nom thief-by steal-pass-past. The TRS model
predicts that last, night and thief are glosses. The
rest of the words are not predicted to be aligned,
and the final output is determined to be last car-
nom thief-by steal-pass-past. In this output, the
predicted label for yuube is missing a stem, night,
thief is predicted instead of robber, and the pre-
dicted label for ni is missing a gram, dat. The
morpheme score is 5/8, but the stem precision is
3/4, the gram precision is 4/4, the stem recall is
3/5, and the gram recall is 4/5.

5 Results

The results of all the development languages vary
greatly, ranging from 53.2% to 77.8% accuracy.5

There is a noticeable trend in which the relative
model accuracy is predictable from the number of
test IGT, with the exception of the Russian dataset.
Table 1 shows the number of test IGT, training
IGT, and system accuracy per development lan-
guage. Table 2 shows the same information for the
held-out languages, with an increasing number of
training IGT over the same test set for Abui and
Chintang. In addition to training on the full train-
ing sets, I also train the system on the initial 25%,
50%, and 75% of the training data for Abui and
Chintang to see the effect of training set size on
the system accuracy and train again on a random

5Code and instructions for reproducing these re-
sults are available at https://github.com/
mcmillanmajora/IGTautoglossing.

Lang. [ISO 639-3] Train Test Acc
Matsigenka [mcb] 388 43 84.9%
Chintang [ctn] 6589 677 80.3%

initial 75% 4941 677 74.6%
random 75% 4941 677 74.3%
initial 50% 3294 677 72.6%

random 50% 3294 677 72.5%
initial 25% 1646 677 68.7%

random 25% 1646 677 69.0%
Abui [abz] 4295 447 71.7%

initial 75% 3224 447 69.9%
random 75% 3224 447 70.4%

initial 50% 2149 447 68.7%
random 50% 2149 447 69.1%

initial 25% 1076 447 66.1%
random 25% 1076 447 64.9%

Table 2: Held-out languages, number of training and
test IGT, and test accuracy. Training instances were
selected randomly if random or from the beginning of
the dataset if initial. Test IGT were held constant.

25%, 50%, and 75% of the training data to see the
effect of vocabulary overlap. These datasets in-
clude IGT from different documentation sessions,
so the assumption is that consecutive IGT are more
likely to have been created at the same time and
therefore contain repeated words. These sets are
all tested using the same IGT in the test set for the
full training data experiment.

5.1 Development Languages
Among the development languages, the system
had the highest accuracies with the Korean and
Japanese datasets at 75.6% and 77.8%. The
Japanese training set had just over 2000 IGT and
the Korean training set had just under 2000 IGT.
Both sets had slightly more than 200 test IGT.
The system performed less well over the Italian,
Turkish and Norwegian datasets at 59.9%, 60.3%,
and 63.1%, respectively. These datasets had less
than half the data of the Japanese and Korean
datasets. The system performed worst over the
Russian dataset, at 53.2% accuracy on 1322 train-
ing instances, almost a third more than the Norwe-
gian dataset.

A clearer pattern in the system’s performance
over the development languages arises when the
labels are broken down into stems and grams, as
seen in Table 3. For stems, precision scores range
between 60.9% and 73.3% and recall scores range
between 59.9% and 71.6%, whereas the precision
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Lang. Prec. Rec.
Stem Gram Stem Gram

jpn 73.3% 88.2% 71.6% 85.4%
kor 72.1% 83.0% 70.5% 80.5%
nob 63.8% 73.5% 62.7% 65.8%
tur 61.7% 63.8% 61.1% 56.1%
ita 63.6% 60.6% 62.6% 48.8%
rus 60.9% 67.4% 59.9% 49.2%

Table 3: Analysis of system performance on develop-
ment languages with precision and recall for stems and
grams.

scores for grams range between 60.6% and 88.2%
and the recall scores range between 48.8% and
85.4%. Japanese, Korean, and Norwegian all have
higher scores for grams than stems in both preci-
sion and recall. That trend reverses for Turkish,
Italian, and Russian, where the recall for grams
is lower than stems. Japanese, Korean, and Turk-
ish have much lower ratios of stems to grams,
each having about 3 stem morphemes for every
2 grams. Russian, Italian, and Norwegian have
about 5, 7, and 10 stems, respectively, for every 2
grams. Norwegian’s high ratio is likely due to the
syntactic similarity between it and English, which
makes glossing with inflected English words eas-
ier. Because grams are often not annotated as sep-
arate morphemes, poor recall on grams would con-
tribute to over lower scores on morpheme accu-
racy even if the stem is correctly predicted because
the evaluation considers the predicted label as a
whole. This is particularly true in the ODIN data,
which also suffers from errors introduced when
extracting IGT from linguistic papers and from
what Lewis and Xia (2008) call IGT bias. IGT
are most likely presented for a specific phenomena
that is unique within the language and is overly
represented in the paper compared to broader con-
texts. As a result, the set of IGT pulled from a sin-
gle paper are likely skewed and the glossing may
reflect the focus on a particular portion of the sen-
tence, if a full sentence is given.

5.2 Held-out Languages
The system achieved higher accuracies over the
Matsigenka and Chintang datasets than the de-
velopment sets and comparable accuracies for the
Abui dataset. The system achieved a higher ac-
curacy for Matsigenka, 84.9%, than it did for any
of the development datasets, which all had at least
twice as much training data. The system was also

Lang. Prec. Rec.
Stem Gram Stem Gram

mcb 73.5% 96.0% 70.3% 95.8%
ctn 71.2% 92.5% 69.9% 92.9%

init. 75% 60.7% 92.2% 60.4% 92.9%
rand. 75% 60.5% 92.0% 59.9% 92.7%
init. 50% 57.2% 91.1% 56.2% 92.2%

rand. 50% 57.3% 91.1% 56.2% 92.1%
init. 25% 51.0% 88.7% 51.0% 91.1%

rand. 25% 51.1% 89.0% 51.3% 91.3%
abz 70.3% 83.4% 72.5% 85.8%

init. 75% 68.4% 81.9% 70.6% 84.5%
rand. 75% 69.0% 82.7% 71.1% 85.1%

init. 50% 66.9% 81.4% 68.8% 83.4%
rand. 50% 67.8% 82.1% 69.5% 84.5%

init. 25% 63.4% 79.6% 65.6% 82.9%
rand. 25% 63.0% 79.9% 65.0% 81.4%

Table 4: Analysis of system performance on held-out
languages with precion and recall for stems and grams.

trained for randomized and initial subsets of the
training data for Abui and Chintang, resulting in
7 total experiments for each language. Table 2
shows the results on the various splits. The Abui
results range from 66.1% to 71.7% on 447 test
IGT, and the Chintang results range from 69% to
80.3% on 677 test IGT.

The held-out languages do pattern with the
well-performing development datasets in terms of
higher precision and recall for grams than stems.
Table 4 shows the gram precision ranging from
79.6% to 96.0% and the gram recall ranging from
81.4% to 95.8% over all of the datasets. The stem
scores have greater ranges, from 51% to 73.5%
for precision and 51% to 72.5% for recall. The
Chintang and Abui subsets do not differ more than
2% accuracy between the randomized and the non-
randomized training set pairs. The Chintang stem
precision and recall increase the most between the
75% and full sets, but the Abui stems see the
biggest increase between the 25% and 50% sub-
sets.

Samardžić et al. (2015) achieve 96% accu-
racy on 200,000 test word tokens in the Chin-
tang dataset using approximately 800,000 word to-
kens for training. My system is maximally tested
on 7250 Chintang morphemes using only 55,000
training morphemes and achieves 80.3% accuracy.
My system also does not assume any language-
specific metadata, while Samardžić et al. make
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use of a Chintang lexicon containing high-quality
source POS tags. They also provide an analysis
of their system’s performance over lexical labels
(stems) and functional labels (grams). In general,
their model’s performance over grams increases
with the training set size, while the performance
over stems remains fairly constant. Samardžić
et al. attribute this pattern to the sequential inclu-
sion of IGT collected from source texts that differ
lexically or stylistically as well as differing anno-
tation schema over these sources.

6 Error Analysis

In investigating the predictions made by the mod-
els and the final output glosses, a number of in-
consistencies in the ODIN datasets became ap-
parent. Processing errors occur when there are
a mismatched number of source morphemes and
gloss labels, such as when a multi-word expres-
sion is used as a single gloss and contains whites-
pace or when a coindexation variable is included
in the source line as a separate token. Some in-
stances also include additional punctuation indi-
cating clausal boundaries. Authors of linguistic
papers use IGT to illustrate syntactic and semantic
properties of languages and these additional anno-
tations are often included to highlight the relevant
information for the audience.

Due to the wide range of authors from which
the ODIN IGT originate, many grams may refer to
the same grammatical concept, as shown in Ex. 2
and 6 from the Japanese dataset. The morpheme
ga indicates the nominative case, but is labeled as
n in Ex. 2 and nom in Ex. 6. The system treats
these labels as unique though they are intended to
be synonymous. In contrast to the unintended am-
biguity, Ex. 7 and Ex. 9 below both contain the
Chintang morpheme lo, but in Ex. 6 it is labeled
as okay and in Ex. 8 it is labeled surp as in the
morpheme indicates the speaker’s surprise.

(7) lo
okay

sat
seven

na
top

maha
not

na
top

okay, not seven [ctn] (Bickel et al., 2009)

Furthermore, lo can also appear as a nominative
suffix for the interrogative pronoun sa, meaning
who (Paudyal, 2015). While these functions are
difficult for the system to differentiate, it can learn
the contexts for each function given enough ex-
amples and consistent annotation. Multiple labels
for the same function, however, will cause the sys-
tem to try to discriminate between instances of the

same context, as in the case of the truly ambiguous
morphemes. Furthermore, the high accuracy over
the test languages suggests that the consistency of
the annotations has a stronger effect on the system
performance than dataset size.

The system also contributes a number of con-
sistent errors. For example, in this IGT from the
Korean dataset the system relies too heavily on the
source line, ignoring the correct TRS model pre-
dictions.

(8) emeni-ka
mother-nom

us-usi-ess-up-nita
smile-sh-pst-pol-dec

mother smiled [kor] (Yang, 1994)

The SRC model predicts the sequence mother-nom
miss-hon-pst-pol-dec and the TRS model predicts
that mother and smile are glosses, however the
system keeps the incorrect gloss miss from the
SRC model because us and miss co-occurred in
the training data. This suggests that overall system
performance might improve if the source predic-
tions were preferred for grams and the translation
predictions for stems.

However, across all of the languages, the TRS
model frequently predicts only the null label, as
seen in Ex. 4. The training data alignments some-
times do not include alignments between grams
and English function words, so a significant por-
tion of the information in the translation line is
not incorporated into the model. Including a pre-
processing step to supplement the INTENT align-
ments by aligning English function words with
likely glosses, such as was and past, may improve
the TRS model accuracy by decreasing the likeli-
hood of the null label.

Further improvements could also be made in the
selection and lemmatization of OOV replacements
from the translation. The system often fails to find
the correct stem, and even when it does find the
stem, it may not be a direct match with gold gloss.

(9) yo-ni
dem.across-dir

terso
straight

lo
surp

nang
but

there straightly [ctn] (Bickel et al., 2009)

In predicting the glosses for the source line in
Ex. 9, the SRC model outputs the sequence
dem.across-dir really surp but. The system identi-
fies terso and straightly as OOV items, but fails to
lemmatize straightly to straight.

This example also shows that the stem and gram
scores for the held-out languages are not entirely
accurate, as the non-ODIN annotations contain
grams like surp not covered by the ODIN gram

345



list. While this doesn’t affect the the overall mor-
pheme score, it may indicate that the patterns seen
in the held-out data stem and gram scores don’t re-
flect the system’s true performance as reliably as
the patterns over the development data. Allowing
for project-specific gram lists may improve and
provide more confidence in gram and stem scores.

The differing annotation schemata also make
it difficult to draw cross-linguistic conclusions as
each annotation schema is founded in a different
set of theoretical assumptions. These experiments,
however, do show some of the challenges that ma-
chine learning techniques have with language as a
data type as opposed to other sequential data. Be-
cause of the learning algorithm’s reliance on the
surrounding context of each label to make predic-
tions, the linguistic properties that introduce more
possible answers to a morpheme’s label due to am-
biguous contexts make the predictions more diffi-
cult. For example, non-concatenative morphology,
highly polysemous source morphemes, and irreg-
ularities in word order will all compound to make
the information that the algorithm is able to learn
from the training data more sparse. All languages
contain these complexities to some degree, but the
amount that is present in the training data will have
a large effect on the system performance.

7 Future Work

Over all the languages, the system performance
would improve by modifying how the system bal-
ances the information from the SRC and TRS
models. Providing confidence scores for each pre-
dicted gloss and reducing the influence of the SRC
model are immediate steps toward better accura-
cies. A pretrained TRS model over multiple lan-
guage datasets may also minimize the number of
OOV items in the model, thereby increasing the
confidence of non-null glosses. Georgi (2016) saw
a boost in the precision of alignments between the
gloss line and the translation line using this tech-
nique with a statistical aligner, though the heuris-
tic approach ultimately had a better F1 score due
to higher recall. Georgi proposed that this was due
to the variable word order of the gloss line when
combining data from across languages, which sug-
gests that the classification approach may be more
robust to this variation as the model is learning
the mapping from the translation word to the gloss
rather than the alignment itself.

While the current implementation focuses on

English translations, the submodules for POS tag-
ging and dependency parsing could be modified
to support documentation efforts using other high-
resource languages. Further modification of the
feature input system would allow users to make
use of any additional resources available to their
project. Confidence scores on all output labels
would also help the end user in quickly identify-
ing possible OOV or ambiguous tokens.6 Once
the model performance has been optimized over
the available datasets, the true test of the system
would be to monitor usability and its effect on the
number of human hours required in an ongoing
documentation project, as in Palmer et al. (2009).

8 Conclusion

This work outlines an initial supervised system for
automatically annotating IGT given a morpheme-
segmented source phrase and its translation. The
system uses CRFs to predict the glosses from the
source and translation lines individually and com-
bines the information in a heuristic fashion to form
a final prediction. The system was developed on
six languages from ODIN, and tested on held-out
languages. The held-out language datasets were
provided by linguists and native speaker collabo-
rators, modeling the intended use case of a docu-
mentation project. An intrinsic evaluation shows
that system performs better on the held-out lan-
guage datasets than the development data from
ODIN, but the error analysis suggests that this is
due to differences in annotation practices. Further
work is needed to improve the system’s final pre-
diction selection, particularly with regards to OOV
items.
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A Model Features

Using Ex. 2 as an illustration of the tagging pro-
cess at test time, the system takes the source line as
input then formats it to be fed into the SRC model.
The representations for the first three morphemes
can be seen in Table 5, where i is the current posi-
tion in the sequence, mi is the current morpheme,
wi is the current word, wi�1 is the previous word,
mi+1 in wi is the following morpheme if it oc-
curs within the same word as mi, and so on. The
value BOS refers to the beginning of the sentence,
and the value for the wi+1 feature for phrase-final
morphemes is EOS, which refers to the end of the
sentence.

feat. name i = m1 i = m2 i = m3...
mi yakko ga wakko
wi yakko-ga yakko-ga wakko-o

wi�1 BOS BOS yakko-ga
wi+1 wakko-o wakko-o butai-ni

mi�1 in wi NONE yakko NONE
mi+1 in wi ga NONE o

Table 5: Feature representation of the source line.

Again using Ex. 2, the TRS model would take
the translation line as input and format it to be fed
into the model. The representations for the first
three words can be seen in Table 6, where i is the
current position in the sequence, twi is the current
translation word, dsi is the dependency structure
tag of the current word as given by the INTENT
system, psi is the POS tag as given by INTENT,
and lemi is the lemma of the word as given by the
StanfordNLP lemmatizer.

feat. name i = tw1 i = tw2 i = tw3...
twi yakko made wakko
dsi nsubj root dobj
psi nnp vbd nnp

lemi yakko make wakko

Table 6: Feature representation of the translation line.
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