
Probing RNN Encoder-Decoder Generalization of Subregular Functions
using Reduplication

Max Nelson
Department of Linguistics

University of Massachusetts Amherst
manelson@umass.edu

Hossep Dolatian
Department of Linguistics

Institute for Advanced Computational Science
Stony Brook University

hossep.dolatian@stonybrook.edu

Jonathan Rawski
Department of Linguistics

Institute for Advanced Computational Science
Stony Brook University

jonathan.rawski@stonybrook.edu

Brandon Prickett
Department of Linguistics

University of Massachusetts Amherst
bprickett@umass.edu

Abstract

This paper examines the generalization abil-
ities of encoder-decoder networks on a class
of subregular functions characteristic of natu-
ral language reduplication. We find that, for
the simulations we run, attention is a necessary
and sufficient mechanism for learning gener-
alizable reduplication. We examine attention
alignment to connect RNN computation to a
class of 2-way transducers.

1 Introduction

Reduplication is a cross-linguistically common
morphological process (Moravcsik, 1978; Rubino,
2005). It is estimated that total reduplication and
partial reduplication occur in 85% and 75% of the
world’s languages, respectively (Rubino, 2013).
Total reduplication places no bound on the size of
the reduplicant while partial does.

1. (a) wanita ! wanita⇠wanita (Indonesian)
‘woman ! women’

(b) guyon ! gu⇠guyon (Sundanese)
‘to jest ! to jest repeatedly’

Morphological and phonological processes are
sufficiently characterized by the regular class of
languages and functions, and effectively com-
puted by finite-state transducers (FSTs) (Johnson,
1972; Kaplan and Kay, 1994; Koskenniemi, 1984;
Roark and Sproat, 2007). In finite-state calcu-
lus, an FST can process the input string either
once in one direction (1-way FST), or multiple

times by going back and forth (2-way FST). 1-
way FSTs compute rational functions, while 2-
way FSTs are more expressive, computing regu-
lar functions (Engelfriet and Hoogeboom, 2001;
Filiot and Reynier, 2016).1 Most morphological
and phonological processes are in fact restricted
to subclasses of rational functions and their cor-
responding 1-way FSTs (Chandlee, 2014, 2017;
Chandlee and Heinz, 2018). The exception is to-
tal reduplication, which is uncomputable by 1-
way FSTs due to its unboundedness (Culy, 1985;
Sproat, 1992). It needs the power of 2-way FSTs,
and requires subclasses of the regular functions
(Dolatian and Heinz, 2018b).

This paper uses these subregular functions that
characterize reduplication to probe the learning
and generalization capacities of Recurrent Neu-
ral Network (RNN) architectures. While given
infinite computational power, RNNs can simu-
late Turing machines (Siegelmann, 2012), many
RNN classes and their gating mechanisms are ac-
tually expressively equivalent to weighted finite-
state acceptors (Rabusseau et al., 2019; Peng et al.,
2018). Furthermore, growing evidence suggests
that RNNs and other sequential networks prac-
tically function as subregular automata (Merrill,
2019; Weiss et al., 2018).

We extend these subregular characterizations to

1In the French literature on formal language theory, 1-way
FSTs compute rational functions. In contrast, most work in
American computer science calls this class the regular func-
tions. We follow French conventions because we also discuss
2-way FSTs which compute regular functions in their system.

31
Proceedings of the Society for Computation in Linguistics (SCiL) 2020, pages 31-42.

New Orleans, Louisiana, January 2-5, 2020

test encoder-decoder (ED; Sutskever et al., 2014)
networks. We use a typology of reduplication pat-
terns computed by subregular 2-way FSTs (Dola-
tian and Heinz, 2019) to probe the ability of the
networks to learn patterns of varying complex-
ity. Our results suggest that when adding atten-
tion (Bahdanau et al., 2014) to these models, not
only do they successfully learn and generalize all
of the attested reduplication patterns that we test,
but the attention acts in an alignment suggestive
of the subregular 2-way FSTs. In contrast, lack of
attention prohibits learning of the functions, and
the generalization is suggestive of 1-way FSTs.
This provides a principled glimpse into the inter-
pretability of these networks on well-understood
computational grounds, motivated by linguistic in-
sight (Rawski and Heinz, 2019).

The paper proceeds as follows. §2 overviews
the computation and learnability of reduplication.
Methods, results, and discussion are in §3,§4,§5,
respectively. Conclusions are in §6.

2 Background

2.1 Computing reduplication
As stated, reduplication is characterized by differ-
ent subclasses of regular functions and computed
by their corresponding FSTs, forming the hierar-
chy shown in Figure 1. 1-way FSTs compute ra-
tional functions. They are widely used in com-
putational linguistics and NLP (Roche and Sch-
abes, 1997; Beesley and Karttunen, 2003; Roark
and Sproat, 2007). 2-way FSTs are more pow-
erful. They exactly compute regular functions,
which mathematically correspond to string-to-
string transductions using Monadic Second Order
logic (Engelfriet and Hoogeboom, 2001), making
them the functional counterpart of the regular lan-
guages (Büchi, 1960). They have mostly been
used outside of NLP (Alur and Černý, 2011).

Regular functions2-way FST =

Rational functions1-way FST =

Seq

C-Seq

ISL OSL

C-OSL

Figure 1: Hierarchy of subregular functions

When defined over a 1-way FST, all partial
reduplicative functions are computable by Sub-
sequential (Seq) functions (Chandlee and Heinz,
2012; Chandlee, 2017), which are computed by
deterministic 1-way FSTs. Total reduplication is
uncomputable by 1-way FSTs because there is no
bound on the size of the reduplicant (Culy, 1985),
so its output language is at least Mildly Context-
Sensitive (Seki et al., 1991, 1993).

Over 2-way FSTs, both partial and total redu-
plication can be alternatively computed by a con-
catenation of subclasses of regular functions that
are analogous to 1-way FST subclasses.2 Al-
most all reduplicative processes, including to-
tal reduplication, are computed by Concatenated-
Sequential (C-Seq) functions, which are concate-
nations of Seq functions (Dolatian and Heinz,
2018a,b). Most reduplication processes are suffi-
ciently characterized by C-Seq functions because
they can almost always be decomposed into two
concatenated Seq functions: one to produce the
reduplicant via truncation Trunc(x), and one to
produce an identical copy of the base ID(x). Fig-
ure 2 shows such a division of a reduplicated word
gu⇠guyon (1b). 3 Figure 2 shows this division of
a reduplicated word gu⇠guyon (1b).

guyon

gu ⇠ guyon

Trunc(x) ID(x)

Figure 2: Initial-CV reduplication as a concatenation
of subsequential functions.

Seq functions as 1-way FSTs and C-Seq func-
tions as 2-way FSTs both compute partial redupli-
cation, but differ in their origin semantics (Dola-
tian and Heinz, 2018b), the finite-state analog to
alignment (Bojańczyk, 2014). Consider a func-
tion f , an FST T which computes f , and an input-
output pair (x, y) such that f(x) = y. Given some
substring yj in y, the origin information of yj with
respect to T is the position xi in x such that the

2See Alur et al. (2014) on the use of concatenation as a
function combinator.

3 Chandlee (2017) and Dolatian and Heinz (2018a)’s re-
sults are actually stronger. Over 1-way FSTs, most par-
tial reduplicative processes are Input-Strictly Local (ISL)
functions, a subclass of Seq functions. Over 2-way FSTs,
most reduplicative processes are the concatenation of Output-
Strictly Local (C-OSL) functions, a subclass of C-Seq.

32

Finite-state transducer Origin information
1-way a.i a.ii

q0start q1 q2

q3

q4 qf
(o:o) (t:t)

(p:p)

(a:a⇠ta)

(a:a⇠pa)

(⌃ : ⌃)

(n:n)
p a t

p a p a t

2-way b.i b.ii

q0start q1 q2

q3 q4 qf

(o:�:+1) (C:C:+1)

(V:V:-1)

(⌃:⌃:-1)
(o:⇠:+1)

(⌃:⌃:+1)

(n:�:+1)

p a t

p a p a t

Figure 3: FSTs and origin information for initial-CV reduplication

FST’s input-read head is in position xi of the in-
put x when the FST outputs the substring yj .

To illustrate, consider initial-CV copying:
f(pat) = papat. This function is computable
by either the 1-way FST in Figure 3.a.i or the 2-
way FST in Figure 3.b.i. The input is flanked by
the end boundaries o,n. The 1-way FST implic-
itly advances from left-to-right on the input string.
The 2-way FST advances left-to-right via the ex-
plicit +1 direction parameter until it produces the
first CV string (=the reduplicant). After that, it
moves right-to-left via the -1 direction parameter
and reaches the start boundary o. It then advances
left-to-right and outputs the base.4 For the input-
output pair (pat, papat), the 1-way FST generates
an ‘alignment’ or origin information such that the
entire second copy ‘pa’ is associated or generated
from the vowel ‘a’ in the input (Figure 3.a.ii). In
contrast, the 2-way FST generates the alignment
in Figure 3.b.ii where the second output ‘p’ is as-
sociated with the input consonant ‘p’. The role of
origin semantics and alignment acts as a diagnos-
tic for understanding whether the neural networks
we probe behave more like a 1-way or 2-way FST.

2.2 Learning reduplication

Chandlee et al. (2015) and Dolatian and Heinz
(2018a) respectively show that ISL (Seq) and C-
OSL (C-Seq) reduplicative processes are provably
learnable by inducing their corresponding 1-way
or 2-way FSTs in polynomial time and data. For

4See the appendix for more details on 2-way FSTs.

Dolatian and Heinz (2018a), their proof relies on
making the training data ‘boundary enriched’ with
the reduplicative boundary symbol ⇠, e.g. the
training data for initial-CV reduplication is {(pat,
pa⇠pat), (mara, ma⇠mara), etc.}. They hypothe-
size that learning without the boundary ⇠ is tanta-
mount to learning morpheme segmentation.

Gasser (1993) used simple RNNs to model
reduplication and copying functions, finding that
they could not properly learn reduplicative pat-
terns. However, Prickett et al. (2018) found that
ED networks, a class of RNNs that have per-
formed well on a number of other morphologi-
cal tasks (Cotterell et al., 2016; Kirov and Cot-
terell, 2018) could learn simple reduplicative pat-
terns. These patterns used training data that did
not represent a realistic language learning sce-
nario, since all words had the same length and syl-
lables were limited to a CV structure. We test the
extent to which ED networks are capable of learn-
ing more realistic reduplicative functions. We find
that vanilla EDs, like Prickett et al.’s, struggle to
scale to realistic data, while EDs augmented with
an attention mechanism easily acquire complex,
natural-language-based reduplication patterns.

3 Methods

3.1 Data
We use a library of C-Seq transducers derived
from the typology of natural language reduplica-
tion patterns (Dolatian and Heinz, 2019) to gener-
ate sets of input-output mappings which we use to

33

query several ED architectures.
The typology exhibits multiple parameters and

distinctions. Already mentioned was the distinc-
tion between partial and total reduplication: copy-
ing a bounded substring of the input gu⇠guyon
(1b) vs. copying the entire potentially unbounded
input wanita ! wanita⇠wanita (1a).

For partial reduplication, one subparameter is
whether the reduplicant has a fixed size or a vari-
able size that is still smaller than some fixed nat-
ural number. Fixed-sized partial reduplication
is the most common pattern, e.g. initial CV-
copying: gu⇠guyon (1b) (Moravcsik, 1978; Ru-
bino, 2005). One instantiation of variable-length
partial reduplication is copying the initial foot
(2(a)i) (Marantz, 1982), or syllable (2(b)i) (Hau-
gen, 2005), which used to be unattested (Moravc-
sik, 1978). Another subparameter is whether
the reduplicant is adjacent to the segments it
copied (1b) or non-adjacent, i.e. wrong-sided (2c).
Wrong-sided reduplication is controversial (Nel-
son, 2003) but attested (Riggle, 2004).

2. (a) i. (dimu)rU ! dimu⇠dimurU (Yidin)
‘house’ ! ‘houses’

ii. (gindal)ba ! gindal⇠gindalba
‘lizard sp.’ ! ‘lizards’

(b) i. vu.sa ! vu⇠vusa (Yaqui)
‘awaken’ ! ‘awaken (habitual)’

ii. vam.se ! vam⇠vamse
‘hurry’ ! ‘hurry (habitual)’

(c) qanga ! qanga⇠qan (Koryak)
‘fire’ ! ‘fire (absolute)’

Over 1-way FSTs, adjacent partial reduplication
and foot/syllable copying are ISL while wrong-
sided reduplication is Seq. Over 2-way FSTs, total
reduplication and all the above partial reduplica-
tion functions are C-OSL, a subclass of C-Seq.5

We tested multiple patterns, including partial
initial and wrong-sided reduplication of the first
two syllables, total reduplication, and partial ini-
tial reduplication of the first two segments. For
each pattern, the models are given base strings
as input and trained to reproduce the base string
along with its reduplicant (i.e. a right or left con-
catenated fully or partially copied form). For all
patterns, 10,000 input-output pairs are generated,
7,000 of which are used to train the models while
the remaining 3,000 are held out to test model

5Foot and syllable copying are C-OSL if the input is
marked by syllable/foot boundaries; otherwise they’re C-Seq.

generalization. For clarity the ⇠ symbol is used
throughout this paper to denote the boundary be-
tween a base and its reduplicant, however no such
boundary is present in the model’s training data.

3.2 Models
Many ED networks were built and trained on the
datasets described above. EDs are composed of
a recurrent encoder, which sequentially processes
an input string to yield a vector representation of
the sequence in Rn, and a recurrent decoder which
takes the encoded representation of the input as a
starting state and continues producing outputs un-
til it produces a target stop symbol or reaches an
experimenter-defined maximum length. The use
of recurrent layers in both in the encoder and de-
coder allows EDs to map variable-length input se-
quences to variable-length output sequences, with
no necessary relationship between the length of
the input and target output (Sutskever et al., 2014).

Simple (SRNN) and gated (GRU) recurrence
relations were tested as the encoder and decoder
recurrent layers.6 In SRNN layers the network’s
state at any timepoint, ht, is dependent only on the
input at that timepoint and the network’s state at
the previous timepoint (Elman, 1990).

ht = tanh(Wxxt + bih + Whht�1 + bhh) (1)

Consequently, in an SRNN there is only one
path for the forward and backward propogation
of information. This leads to potential problems
for SRNNs in representing long-distance depen-
dencies (Bengio et al., 1994) and problems with
the backward flow of information during training
(Hochreiter et al., 2001). GRU layers have a series
of gates, called the reset rt, update zt, and new nt

gates, which create an alternative path of informa-
tion flow (Cho et al., 2014), as shown in (2).

rt =�(Wirxt + bir + Whrht�1 + bhr)

zt =�(Wizxt + biz + Whzht�1 + bhz)

nt =tanh(Winxt + bin + rt � (Whnht�1 + bhn))

ht =(1 � zt) � nt + zt � ht�1

(2)

In a classic ED architecture, the encoded repre-
sentation of the input is the only piece of infor-

6GRU layers have been shown to behave comparably
to LSTMs, despite having fewer parameters (Chung et al.,
2014). One difference between GRU and LSTM comes from
(Weiss et al., 2018), who suggests that LSTMs are able to
learn arbitrary anbn patterns while GRUs are not.

34

mation that is passed from the encoder to the de-
coder. This forces all necessary information in
the input to be stored in this vector and preserved
throughout the decoding process. In all experi-
ments presented below, the target outputs consist
of a concatenated reduplicant and base. Because
the model must reproduce the base. it must pre-
serve the identity of all phonemes in the input se-
quence. In order to test the ability of the model
to learn the reduplicative function independent of
its ability to store segment identities over arbitrar-
ily long spans, a global weighted attention mech-
anism was incorporated into some of the models.
This is a key point of departure from previous at-
tempts to model reduplication with ED networks.

Attention allows the decoder to selectively at-
tend to the hidden states of the encoder by learning
a set of weights, Watt, which map the decoder’s
current state to a set of weights over timesteps in
the input, and then concatenating the current de-
coder hidden state, ht, the weighted combination
of all encoder hidden states to yield a new current
decoder state, htt (Bahdanau et al., 2014; Luong
et al., 2015). This is illustrated in Equation 3,
where E is a matrix of size input length ⇥ hid-
den dimensionality such that the ith row contains
the encoder hidden state at timepoint i.

htt = CAT(ht,�(Wattht)
T E) (3)

In this way, the decoder can pull information
directly from the encoder by learning an alignment
between the output and input representations.

The next section presents the results of train-
ing networks with either SRNN or GRU recurrent
layers with and without an attention mechanism
and then testing their ability to generalize the tar-
get pattern. All networks are trained to minimize
phoneme level cross-entropy.

4 Results

In this section, we test ED networks on their abil-
ity to learn partial (§4.1,4.3) and total reduplica-
tion (4.2). Within partial reduplication, we test if
they can learn adjacent reduplication vs. wrong-
sided reduplication, and fixed-size vs. variable-
length reduplication.

4.1 Partial reduplication
One simplifying assumption of previous work is
that the reduplicant is a fixed-length substring of
the base. This section tests the extent to which ED

networks are able to learn reduplicative functions
that copy a variably sized substring of the base in
a way that is sensitive to linguistic structure which
is not explicitly encoded in the training data.

Models were trained on initial and wrong-sided
reduplication in which the reduplicant consisted
of the first two-syllables in the word. Syllables
were defined to be as onset-maximizing as possi-
ble and complex onsets and codas were included
in the training data. This means that, for words
with more than two syllables, the target redupli-
cant included everything between the left edge
of the word and the right edge of the second
vowel (initial: tasgatri!tasga⇠tasgatri, wrong-
sided: tasgatri!tasgatri⇠tasgat). For words with
only one or two vowels the reduplicant was the
entire word (tasgat!tasgat⇠tasgat). Due to the
variable presence of onsets and codas, both simple
and complex, reduplicants in these test cases vary
in length between 2 and 10 phonemes, and may
contain either 1 or 2 vowels.

In order for the model to learn this pattern, it
must learn to identify which phonemes are conso-
nants and which are vowels, must learn the syllab-
ification rules, and must learn to handle the one-
syllable exceptional case. Table (1) shows the gen-
eralization accuracy for the tested network archi-
tectures on datasets instantiating this pattern. As
will be discussed in §4.3, the success of networks
without attention is partially dependent on char-
acteristics of the target language, namely the size
of the language’s segment inventory and permit-
ted string lengths. To highlight these effects, re-
sults are reported from a representative small lan-
guage, which has 10 unique phonemes and permits
bases of between 3 and 9 segments, and a large
language, which has 26 unique phonemes and per-
mits bases of between 3 and 15 segments.

Non-attention Attention
Small Large Small Large

Initial
SRNN 0.107 0.000 0.997 0.990

GRU 0.787 0.234 1.000 1.000

wrong-sided
SRNN 0.001 0.000 0.995 0.994

GRU 0.682 0.236 1.000 1.000

Table 1: Generalization accuracy by network type for
all four languages that were tested.

The results suggest that the attention-based
models are able to learn and generalize both initial
and wrong-sided two-syllable reduplication pat-
terns in a way that is robust to recurrence rela-

35

tion and language size. Non-attention GRU mod-
els show mild success in the small language, but
seem heavily affected by language size, a result
that will be explored thoroughly in §4.3. Non-
attention RNN models are unable to learn the pat-
terns in any of the simulations we ran.

The attention-based models are able to learn an
alignment between the input and output that al-
lows them to pull information directly from the
input during decoding, sidestepping a potential
information bottleneck at the encoded represen-
tation. To illustrate the alignment functions, an
SRNN trained on two-syllable initial reduplication
was used to make predictions about novel forms
and the attention weights were stored. Figure (4)
plots the attention weights for this model at ev-
ery step in decoding for the three-syllable word
pastapo and the two-syllable word spaftof (‘<’
and ‘>’ represent start-of-sequence and end-of-
sequence tokens, respectively).

Figure 4: Attention weights over input (horizontal) at
each time step of correct decoding of reduplicated form
(vertical) for two-syllable initial reduplication of the
words pastapo and spaftof. Darker squares indicate a
lower weight on the alignment between two timesteps.

The attention weights confirm that the model
learned an alignment between corresponding
phonemes in the input and output. A single
phoneme in the input has an output correspondent
in both the base and reduplicant. These examples
also illustrate the model’s ability to i) identify the
cut-off point for the reduplicant even when it is not
explicitly marked and to ii) identify exceptional
cases where the word is only two syllables and
thus the reduplicant consists of material past the
second vowel. In pastapo the model cuts off the
reduplicant after the second vowel and in spaftof
the model correctly includes the coda consonant
because the word consists of only two syllables.

This section showed that attention-based mod-
els can learn initial and wrong-sided reduplication
even when the pattern is complicated by sensitiv-
ity to linguistic structure that results in variable-
length reduplicants. Once the network has learned
enough structure to perform syllabification, the
two-syllable partial reduplicative function is C-
Seq. The next section examines the extent to
which these networks learn unbounded copying,
i.e. total reduplication.

4.2 Total reduplication

We test the ability of ED networks to learn
and generalize total reduplication: wanita !
wanita⇠wanita (1a). As mentioned, total redu-
plication is not a rational function and is uncom-
putable with a 1-way FST, since there is no upper
bound on the size of the copied string. However, it
is a C-Seq function and computable by the corre-
sponding 2-way FST. Total reduplication is thus a
crucial test case for the RNN behavior.

As in §4.1, SRNN and GRU models with
and without attention are trained on large and
small languages where small languages have 10
phonemes and base lengths between 3 and 9 seg-
ments, and large languages have 26 phonemes and
base lengths between 3 and 15 segments.

Non-attention Attention
Small Large Small Large

SRNN 0.046 0.0 0.999 0.985
GRU 0.705 0.211 0.999 0.995

Table 2: Generalization accuracy by network type on
both the large and small total reduplication patterns.

Table 2 shows the generalization accuracy for
all network configurations. The results are nearly
identical to those for the partial reduplication pat-
terns in §4.1. Attention models can robustly learn
the pattern, with negligible effects of recurrence
relation or language size. Without attention, no
model fully succeeds in generalizing the total
reduplication pattern, with the best performance
coming from the GRU on the small language.

These results show that attention-based models
can learn a generalizable total reduplication func-
tion as well as they can learn partial reduplication
functions. This means that attention-based ED
network generalization does not distinguish be-
tween total and partial reduplication, despite glar-
ing functional and automata-theoretic differences

36

in the functions themselves. This clearly sug-
gests that an RNN architecture that can learn both
functions necessarily computes a C-Seq function,
which properly includes both processes. Further-
more, as discussed in §5, the interpretability of
the corresponding FST characterization (2-way vs
1-way) and its origin semantics provides a direct
computational link to the attention mechanism of
these RNN architectures.

4.3 Alphabet size and string length effects

As shown so far, network architecture is not the
only factor that influences a network’s ability to
learn a target reduplicative function. The compo-
sition of the target language, in terms of the num-
ber of segments in the language and the number of
permitted string lengths, can have a dramatic ef-
fect on model behavior.

The effect of model architecture and language
composition was investigated by testing the extent
to which all network configurations could learn
simple reduplication pattern while systematically
varying the size of the segment inventory and per-
mitted base lengths in the data. The reduplica-
tive function chosen for these tests copied a fixed-
window of two segments for initial reduplication:
guyon!gu⇠guyon. This was chosen because it is
typologically well-attested (Moravcsik, 1978; Ru-
bino, 2005, 2013) and also predicted to be the sim-
plest reduplication pattern for the network to learn
(since it is insensitive to linguistic structure and
has a fixed-length reduplicant).

Data that followed this pattern was gener-
ated for languages with 10, 18, and 26 unique
phonemes in their inventory and which permit
bases to vary from 3 to between 5 and 10 seg-
ments. These results are shown in Figure (5).7 The
top panel shows the effect of alphabet size; string
lengths are fixed between 3 and 8. The bottom
panel, which shows the effect of string lengths; al-
phabet size is fixed at 26. The lines paralleling 1.0
in the top panel show that the ability of attention-
based models to learn the target function is robust
to alphabet size. The lines paralleling 1.0 in the
bottom panel illustrate that attention-based mod-
els are similarly robust to string length variation.

In contrast, the non-attention models show large
effects of alphabet size and string length. The non-

7The reported results are from initial reduplication with a
window size of two segments, however, wrong-sided redupli-
cation and a larger window size of three were also tested with
nearly identical results.

Figure 5: Effect on varying alphabet size and maximum
string length, with minumum string length fixed at 3, on
generalization accuracy.

attention SRNN shows very limited success. It is
able to generalize with a very limited number of
string lengths; but when maximum string length
exceeds 7, it is no longer able to learn the target
function at all. Consequently, the accuracy of the
SRNN in the top panel, where maximum string
length is fixed at 9, is stuck at 0.0 across all al-
phabet sizes.

The effects of both string length and alphabet
size are also visible for the non-attention GRU.
In the top panel, where maximum string length
is fixed at 9, a decrease in generalization accu-
racy as a function of alphabet size is observed.
The effect of maximum string length on the non-
attention GRU is less dramatic than on the SRNN,
but the GRU still displays a decrease from near
ceiling accuracy with lengths between 3 and 5, to
⇠ 0.60 when lengths range between 3 and 10.

The sensitivity of non-attention SRNN and
GRU models to alphabet size and string length are
likely a result of the fact that these models are
unable to directly reference the input during de-
coding and must pass all information through the
encoder bottleneck. This hypothesis is strength-
ened by the fact that, without attention, the GRU
performs much better than the SRNN. The GRU
has extra gates between timepoints which aid in
the long-distance preservation of information, mit-
igating the bottleneck problem to an extent. How-

37

ever, while this assists the GRU network, it is not
enough to make alphabet size and word length
non-issues. The non-attention GRU is similar in
architecture to the LSTM model of Prickett et al.
(2018), with a slightly different training objective,
suggesting that their model would similarly have
difficulty scaling up.

The lack of a difference between the attention-
based GRU and SRNN corroborates the idea that
when this information bottleneck is not an issue
both architectures are capable of learning general-
izable reduplication.

5 Discussion

5.1 Origin semantics and alignment

As explained in §2.1, partial reduplication can be
computed as a function with either 1-way or 2-way
FSTs. However, the two finite-state algorithms
differ in their origin semantics or alignment. The
alignment difference is simulated by the attention-
based RNNs. The alignments learned by attention-
based models for partial reduplication in §4.1 and
§4.3 are analogous to the origin semantics com-
puted by the 2-way FST. We illustrate in Figure 6.

p a t

p a p a t

Figure 6: (left): Attention weights over input (hori-
zontal) at each time step of correct decoding of redu-
plicated form (vertical) for the mapping pat!pa⇠pat.
Darker squares indicate a lower weight on the align-
ment between two timesteps. (right): Origin semantics
of 2-way FST from Figure 3b.ii.

While both Seq and C-Seq functions sufficiently
characterize partial reduplication, this 2-way-like
alignment suggests that the RNNs are generaliz-
ing C-Seq functions (see Fig. 4 for other exam-
ples). This extends to total reduplication (§4.2)
whose alignment when learned by the attention-
based RNNs suggests the same origin information
as 2-way FSTs. These results hint at the expressiv-
ity of the ED models, explicitly connecting their

computations to the 2-way automata characteriz-
ing this subregular class.

5.2 Generality of copying mechanisms

The results suggest that the same general-purpose
mechanism can be used to model both partial and
total reduplication. The attention-based RNNs
learned both processes with near-equal ease and
generalizability and the same tools. This learn-
ing result fits well with reduplicative typology and
theory. Partial and total reduplication are typo-
logically and diachronically linked. If a language
has partial reduplication, then it almost always has
total reduplication, often because the former de-
veloped from the latter (Rubino, 2013). Because
of this dependence, certain linguistic theories use
the same mechanisms to generate both processes
(Inkelas and Zoll, 2005).

Computationally, our result fits with the charac-
terization of reduplication over 2-way FSTs (Dola-
tian and Heinz, 2018b) but not over 1-way FSTs
(Chandlee et al., 2012). Because total reduplica-
tion cannot be modeled by a 1-way FSTs, some
suggest that total and partial reduplication are on-
tologically different and should be computed with
separate mechanisms (Roark and Sproat, 2007;
Chandlee, 2017). In contrast, when computed over
2-way FSTs, both reduplicative processes fall un-
der the same subclass of C-Seq functions.

5.3 Scaling problems

The results from §4.3 shows that attention-based
RNNs could equally well learn a partial redupli-
cation function regardless of alphabet size input
size. In contrast, attention-less RNNs suffer. For
an attention-less RNN, learning initial-CV copy-
ing with a small alphabet over smaller words is
significantly easier then learning it with a larger
alphabet over larger words. Their scaling diffi-
culty is reminiscent of 1-way FST treatments of
partial reduplication. To compute partial redupli-
cation, 1-way FSTs can suffer a significant state
explosion as alphabet size or reduplicant size in-
creases. This is why some call 1-way FSTs ‘bur-
densome models’ for partial reduplication (Roark
and Sproat, 2007, 54). 2-way FSTs do not suffer
from state explosion (Dolatian and Heinz, 2018b).

6 Conclusions

We showed that RNN encoder-decoder networks
with attention can learn partial and total redupli-

38

cation patterns. Non-attention models exhibited
mixed success in learning generalizable reduplica-
tion functions in a way that was dependent on al-
phabet size and string length, suggesting that their
failure is attributable to the information bottleneck
between encoder and decoder rather than an in-
ability to learn the target function. This corrob-
orates the finding by Weiss et al. (2018) that re-
current networks’ expressive power is restricted in
practice, and shows the fruitfulness of using well-
understood subregular classes to probe this expres-
sivity.

References
Rajeev Alur, Adam Freilich, and Mukund

Raghothaman. 2014. Regular combinators for
string transformations. In Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), CSL-LICS
’14, pages 9:1–9:10, New York, NY, USA. ACM.

Rajeev Alur and Pavol Černý. 2011. Streaming trans-
ducers for algorithmic verification of single-pass
list-processing programs. In Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’11,
pages 599–610, New York, NY, USA. ACM.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kenneth Beesley and Lauri Karttunen. 2003.
Finite-state morphology: Xerox tools and
techniques. CSLI Publications.

Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

Mikołaj Bojańczyk. 2014. Transducers with ori-
gin information. In Automata, Languages, and
Programming, pages 26–37, Berlin, Heidelberg.
Springer.

J. Richard Büchi. 1960. Weak second-order arithmetic
and finite automata. Mathematical Logic Quarterly,
6(1-6):66–92.

Jane Chandlee. 2014. Strictly Local Phonological
Processes. Ph.D. thesis, University of Delaware,
Newark, DE.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, pages 1–43.

Jane Chandlee, Angeliki Athanasopoulou, and Jeffrey
Heinz. 2012. Evidence for classifying metathesis
patterns as subsequential. In The Proceedings of the
29th West Coast Conference on Formal Linguistics,
pages 303–309, Somerville, MA. Cascillida Press.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output strictly local functions. In 14th Meeting on
the Mathematics of Language, pages 112–125.

Jane Chandlee and Jeffrey Heinz. 2012. Bounded
copying is subsequential: Implications for metathe-
sis and reduplication. In Proceedings of the 12th
Meeting of the ACL Special Interest Group on
Computational Morphology and Phonology, SIG-
MORPHON ’12, pages 42–51, Montreal, Canada.
Association for Computational Linguistics.

Jane Chandlee and Jeffrey Heinz. 2018. Strict lo-
cality and phonological maps. Linguistic Inquiry,
49(1):23–60.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The sigmorphon 2016 shared taskmor-
phological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 10–22.

Christopher Culy. 1985. The complexity of the vo-
cabulary of Bambara. Linguistics and philosophy,
8:345–351.

Hossep Dolatian and Jeffrey Heinz. 2018a. Learn-
ing reduplication with 2-way finite-state transduc-
ers. In Proceedings of Machine Learning Research:
International Conference on Grammatical Inference,
volume 93 of Proceedings of Machine Learning
Research, pages 67–80, Wroclaw, Poland.

Hossep Dolatian and Jeffrey Heinz. 2018b. Model-
ing reduplication with 2-way finite-state transduc-
ers. In Proceedings of the 15th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, Brussells, Belgium.
Association for Computational Linguistics.

Hossep Dolatian and Jeffrey Heinz. 2019. Redtyp: A
database of reduplication with computational mod-
els. In Proceedings of the Society for Computation
in Linguistics, volume 2. Article 3.

Jeffrey L Elman. 1990. Finding structure in time.
Cognitive science, 14(2):179–211.

39

Joost Engelfriet and Hendrik Jan Hoogeboom. 2001.
MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput.
Logic, 2(2):216–254.

Emmanuel Filiot and Pierre-Alain Reynier. 2016.
Transducers, logic and algebra for functions of finite
words. ACM SIGLOG News, 3(3):4–19.

Michael Gasser. 1993. Learning words in time:
Towards a modular connectionist account of the
acquisition of receptive morphology. Indiana Uni-
versity, Department of Computer Science.

Jason Haugen. 2005. Reduplicative allomorphy and
language prehistory in Uto-Aztecan. In Bernhard
Hurch, editor, Studies on reduplication, 28, pages
315–350. Walter de Gruyter, Berlin.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and
Jürgen Schmidhuber. 2001. Gradient flow in recur-
rent nets: the difficulty of learning long-term depen-
dencies. In John F Kolen and Stefan C Kremer, edi-
tors, A field guide to dynamical recurrent networks.
John Wiley & Sons.

Sharon Inkelas and Cheryl Zoll. 2005. Reduplication:
Doubling in Morphology. Cambridge University
Press, Cambridge.

C Douglas Johnson. 1972. Formal aspects of
phonological description. Mouton The Hague.

Ronald M Kaplan and Martin Kay. 1994. Regular mod-
els of phonological rule systems. Computational
linguistics, 20(3):331–378.

Christo Kirov and Ryan Cotterell. 2018. Recurrent
neural networks in linguistic theory: Revisiting
pinker and prince (1988) and the past tense debate.
Transactions of the Association for Computational
Linguistics, 6:651–665.

Kimmo Koskenniemi. 1984. A general computational
model for word-form recognition and production. In
Proceedings of the 10th international conference on
Computational Linguistics, pages 178–181. Associ-
ation for Computational Linguistics.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR,
abs/1508.04025.

Alec Marantz. 1982. Re reduplication. Linguistic
inquiry, 13(3):435–482.

William Merrill. 2019. Sequential neural networks as
automata. In Proceedings of the Deep Learning and
Formal Languages workshop at ACL 2019.

Edith Moravcsik. 1978. Reduplicative constructions.
In Joseph Greenberg, editor, Universals of Human
Language, volume 1, pages 297–334. Stanford Uni-
versity Press, Stanford, California.

Nicole Alice Nelson. 2003. Asymmetric anchoring.
Ph.D. thesis, Rutgers University, New Brunswick,
NJ.

Hao Peng, Roy Schwartz, Sam Thomson, and Noah A
Smith. 2018. Rational recurrences. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1203–1214.

Brandon Prickett, Aaron Traylor, and Joe Pater. 2018.
Seq2seq models with dropout can learn generaliz-
able reduplication. In Proceedings of the Fifteenth
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 93–100.

Guillaume Rabusseau, Tianyu Li, and Doina Precup.
2019. Connecting weighted automata and recur-
rent neural networks through spectral learning. In
AISTATS.

Jonathan Rawski and Jeffrey Heinz. 2019. No free
lunch in linguistics or machine learning: Response
to pater. Language, 94:1.

Jason Riggle. 2004. Nonlocal reduplication. In
Proceedings of the 34th meeting of the North
Eastern Einguistics Society. Graduate Linguistic
Student Association, University of Massachusetts.

Brian Roark and Richard Sproat. 2007. Computational
Approaches to Morphology and Syntax. Oxford
University Press, Oxford.

Emmanuel Roche and Yves Schabes. 1997.
Finite-state language processing. MIT press.

Carl Rubino. 2005. Reduplication: Form, function and
distribution. In Studies on reduplication, pages 11–
29. Mouton de Gruyter, Berlin.

Carl Rubino. 2013. Reduplication. Max Planck Insti-
tute for Evolutionary Anthropology, Leipzig.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science,
88(2):191–229.

Hiroyuki Seki, Ryuichi Nakanishi, Yuichi Kaji,
Sachiko Ando, and Tadao Kasami. 1993. Par-
allel multiple context-free grammars, finite-state
translation systems, and polynomial-time recog-
nizable subclasses of lexical-functional grammars.
In Proceedings of the 31st annual meeting on
Association for Computational Linguistics, pages
130–139. Association for Computational Linguis-
tics.

Hava T Siegelmann. 2012. Neural networks and analog
computation: beyond the Turing limit. Springer Sci-
ence & Business Media.

Richard William Sproat. 1992. Morphology and
computation. MIT press, Cambridge:MA.

40

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. CoRR, abs/1409.3215.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018.
On the practical computational power of finite preci-
sion rnns for language recognition. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 740–745.

A Appendix

The definition and illustration for 2-way FSTs are
taken from Dolatian and Heinz (2018b). We use
o,nas the start and end boundaries.

3) Definition: A 2-way, deterministic FST is a
six-tuple (Q,⌃n,�, q0, F, �) such that:

Q is a finite set of states,
⌃n = ⌃[{o,n} is the input alphabet,
� is the output alphabet,
q0 2 Q is the initial state,
F ✓ Q is the set of final states,
� : Q ⇥ ⌃ ! Q ⇥ �⇤ ⇥ D is the
transition function where the direction
D = {�1, 0, +1}.

For a survey on legitimate configurations in a 2-
way FSTs, its computational properties, and com-
plexity diagnostics, please see Dolatian and Heinz
(2018b).

To illustrate 2-way FSTs, Figure 7 shows a 2-
way FST for total reduplication. The 2-way oper-
ates by:

1. reading the input tape once from left to right
in order to output the first copy,

2. going back to the start of the input tape by
moving left until the start boundary o is
reached,

3. reading the input tape once more from left to
right in order to output the second copy.

Specifically, this figure is interpreted as follows.
The symbol ⌃ stands for any segment in the alpha-
bet except for {o,n}. The arrow from q1 to itself
means this 2-way FST reads ⌃, writes ⌃, and ad-
vances the read head one step to the right on the
input tape. The boundary symbol ⇠ is a symbol
in the output alphabet �, and is not necessary. We
include it only for illustration.

We show an example derivation in Figure 8 for
the input-output pair (wanita, wanita⇠wanita) (1a

using the 2-way FST in Figure 7. The derivation
shows the configurations of the computation for
the input wanita and is step by step. Each tuple
consists of four parts: input string, output string,
current state, transition. In the input string, we
underline the input symbol which FST will read
next. The output string is what the 2-way FST has
outputted up to that point. The symbol � marks
the empty string. The current state is what state
the FST is currently in. The transition represents
the used transition arc from input to output. In the
first tuple, there is no transition arc used (N/A).
But for other tuples, the form of the arc is:

input state
input symbol:output string��������������!

direction
output state

41

q0start q1 q2 q3 qf
(o,�,+1)

(⌃,⌃,+1)

(n,�,-1)

(⌃,�,-1)

(o,⇠,+1)

(⌃,⌃,+1)

(n,�,+1)

Figure 7: 2-way FST for total reduplication.

Outputting the first copy
1. (owanitan, �, q0 , N/A) 9. (owanitan, wanita⇠, q2, q1

n:⇠��!
-1

q2)

2. (owanitan, �, q1, q0
o:���!
+1

q1) 10. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

3. (owanitan, w, q1, q1
⌃:⌃��!
+1

q1) 11. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

4. (owanitan, wa, q1, q1
⌃:⌃��!
+1

q1) 12. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

5. (owanitan, wan, q1, q1
⌃:⌃��!
+1

q1) 13. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

6. (owanitan, wani, q1, q1
⌃:⌃��!
+1

q1) 14. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

7. (owanitan, wanit, q1, q1
⌃:⌃��!
+1

q1) 11. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

8. (owanitan, wanita, q1, q1
⌃:⌃��!
+1

q1)

Outputting the second copy

12. (owanitan, wanita⇠, q3, q2
o:���!
+1

q3) 15. (owanitan, wanita⇠wani, q3, q3
⌃:⌃��!
+1

q3)

13. (owanitan, wanita⇠w, q3, q3
⌃:⌃��!
+1

q3) 15. (owanitan, wanita⇠wanit, q3, q3
⌃:⌃��!
+1

q3)

14. (owanitan, wanita⇠wa, q3, q3
⌃:⌃��!
+1

q3) 16. (owanitan, wanita⇠wanita, q3, q3
⌃:⌃��!
+1

q3)

14. (owanitan, wanita⇠wan, q3, q3
⌃:⌃��!
+1

q3) 17. (owanitan, wanita⇠wanita, qf , q3
n:n��!
+1

qf)

Figure 8: Derivation of wanita!wanita⇠wanita.

42

