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Abstract

We present a new logic-based inference engine
for natural language inference (NLI) called
MonaLog, which is based on natural logic and
the monotonicity calculus. In contrast to ex-
isting logic-based approaches, our system is
intentionally designed to be as lightweight as
possible, and operates using a small set of
well-known (surface-level) monotonicity facts
about quantifiers, lexical items and token-
level polarity information. Despite its sim-
plicity, we find our approach to be competi-
tive with other logic-based NLI models on the
SICK benchmark. We also use MonaLog in
combination with the current state-of-the-art
model BERT in a variety of settings, includ-
ing for compositional data augmentation. We
show that MonaLog is capable of generating
large amounts of high-quality training data for
BERT, improving its accuracy on SICK.

1 Introduction

There has been rapid progress on natural language
inference (NLI) in the last several years, due in
large part to recent advances in neural modeling
(Conneau et al., 2017) and the introduction of sev-
eral new large-scale inference datasets (Marelli
et al., 2014; Bowman et al., 2015; Williams et al.,
2018; Khot et al., 2018). Given the high per-
formance of current state-of-the-art models, there
has also been interest in understanding the limita-
tions of these models (given their uninterpretabil-
ity) (Naik et al., 2018; McCoy et al., 2019), as well
as finding systematic biases in benchmark datasets
(Gururangan et al., 2018; Poliak et al., 2018).

In parallel to these efforts, there have also
been recent logic-based approaches to NLI (Mi-
neshima et al., 2015; Martı́nez-Gómez et al., 2016;
Martı́nez-Gómez et al., 2017; Abzianidze, 2017;
Yanaka et al., 2018), which take inspiration from
linguistics. In contrast to early attempts at using

logic (Bos and Markert, 2005), these approaches
have proven to be more robust. However they tend
to use many rules and their output can be hard
to interpret. It is sometimes unclear whether the
attendant complexity is justified, especially given
that such models are currently far outpaced by
data-driven models and are generally hard to hy-
bridize with data-driven techniques.

In this work, we introduce a new logical in-
ference engine called MonaLog, which is based
on natural logic and work on monotonicity stem-
ming from van Benthem (1986). In contrast to
the logical approaches cited above, our starting
point is different in that we begin with the follow-
ing two questions: 1) what is the simplest logical
system that one can come up with to solve em-
pirical NLI problems (i.e., the system with mini-
mal amounts of primitives and background knowl-
edge)?; and 2) what is the lower-bound perfor-
mance of such a model? Like other approaches
to natural logic (MacCartney and Manning, 2008;
Angeli and Manning, 2014), our model works by
reasoning over surface forms (as opposed to trans-
lating to symbolic representations) using a small
inventory of monotonicity facts about quantifiers,
lexical items and token-level polarity (Hu and
Moss, 2018); proofs in the calculus are hence fully
interpretable and expressible in ordinary language.
Unlike existing work on natural logic, however,
our model avoids the need for having expensive
alignment and search sub-procedures (MacCart-
ney et al., 2008; Stern and Dagan, 2011), and re-
lies on a much smaller set of background knowl-
edge and primitive relations than MacCartney and
Manning (2009).

To show the effectiveness of our approach, we
show results on the SICK dataset (Marelli et al.,
2014), a common benchmark for logic-based
NLI, and find MonaLog to be competitive with
more complicated logic-based approaches (many
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Premise: Text CCG polarity projection

Generation and
Search Replacement KB K

All schoolgirls are on the train Hypothesis?

All happy schoolgirls are on the train

natural logic

valid inferences

Polarity/Arrow tagging

AllÒ schoolgirlsÓ areÒ onÒ theÒ train“

Figure 1: An illustration of our general monotonicity reasoning pipeline using an example premise and hypothesis
pair: All schoolgirls are on the train and All happy schoolgirls are on the train.

of which require full semantic parsing and more
complex logical machinery). We also introduce
a supplementary version of SICK that corrects
several common annotation mistakes (e.g., asym-
metrical inference annotations) based on previous
work by Kalouli et al. (2017, 2018)1. Positive
results on both these datasets show the ability of
lightweight monotonicity models to handle many
of the inferences found in current NLI datasets,
hence putting a more reliable lower-bound on what
results the simplest logical approach is capable of
achieving on this benchmark.

Since our logic operates over surface forms, it
is straightforward to hybridize our models. We in-
vestigate using MonaLog in combination with the
language model BERT (Devlin et al., 2019), in-
cluding for compositional data augmentation, i.e,
re-generating entailed versions of examples in our
training sets. To our knowledge, our approach is
the first attempt to use monotonicity for data aug-
mentation, and we show that such augmentation
can generate high-quality training data with which
models like BERT can improve performance.

2 Our System: MonaLog

The goal of NLI is to determine, given a premise
set P and a hypothesis sentence H , whether H fol-
lows from the meaning of P (Dagan et al., 2005).
In this paper, we look at single-premise problems
that involve making a standard 3-way classifica-
tion decision (i.e., Entailment (H), Contradict (C)
and Neutral (N)). Our general monotonicity rea-
soning system works according to the pipeline in
Figure 1. Given a premise text, we first do Arrow
Tagging by assigning polarity annotations (i.e.,
the arrows Ò, Ó, which are the basic primitives
of our logic) to tokens in text. These surface-

1Our correction can be found at: https://github.com/
huhailinguist/SICK correction

level annotations, in turn, are associated with a set
of natural logic inference rules that provide
instructions for how to generate entailments and
contradictions by span replacements over these ar-
rows (which relies on a library of span replace-
ment rules). For example, in the sentence All
schoolgirls are on the train, the token schoolgirls
is associated with a polarity annotation Ó, which
indicates that in this sentential context, the span
schoolgirls can be replaced with a semantically
more specific concept (e.g., happy schoolgirls) in
order to generate an entailment. A generation
and search procedure is then applied to see
if the hypothesis text can be generated from the
premise using these inference rules. A proof in
this model is finally a particular sequence of edits
(e.g., see Figure 2) that derive the hypothesis text
from the premise text rules and yield an entailment
or contradiction.

In the following sections, we provide the details
of our particular implementation of these different
components in MonaLog.

2.1 Polarization (Arrow Tagging)
Given an input premise P , MonaLog first polar-
izes each of its tokens and constituents, calling the
system described by Hu and Moss (2018)2, which
performs polarization on a CCG parse tree. For
example, a polarized P could be everyÒ linguistÓ
swimÒ. Note that since we ignore morphology in
the system, tokens are represented by lemmas.

2.2 Knowledge Base K and Sentence Base S

MonaLog utilizes two auxiliary sets. First, a
knowledge base K that stores the world knowl-
edge needed for inference, e.g., semanticist § lin-
guist and swim § move, which captures the facts
that rrsemanticistss denotes a subset of rrlinguistss,

2https://github.com/huhailinguist/ccg2mono
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and that rrswimss denotes a subset of rrmovess, re-
spectively. Such world knowledge can be cre-
ated manually for the problem at hand, or derived
easily from existing resources such as WordNet
(Miller, 1995). Note that we do not blindly add
all relations from WordNet to our knowledge base,
since this would hinge heavily on word sense dis-
ambiguation (we need to know whether the “bank”
is a financial institution or a river bank to extract
its relations correctly). In the current implemen-
tation, we avoid this by adding x § y or x K3

y relations only if both x and y are words in the
premise-hypothesis pair.4 Additionally, some rela-
tions that involve quantifiers and prepositions need
to be hard-coded, since WordNet does not include
them: every “ all “ each § most § many § a few
“ several § some “ a; the § some “ a; on K off ;
up K down; etc.

We also need to keep track of relations that can
potentially be derived from the P -H sentence pair.
For instance, for all adjectives and nouns that ap-
pear in the sentence pair, it is easy to obtain: adj
+ n § n (black cat § cat). Similarly, we have n
+ PP/relative clause § n (friend in need § friend,
dog that bites § dog), VP + advP/PP § VP (dance
happily/in the morning § dance), and so on. We
also have rules that extract pieces of knowledge
from P directly, e.g.: n1 § n2 from sentences of
the pattern every n1 is a n2. One can also connect
MonaLog to bigger knowledge graphs or ontolo-
gies such as DBpedia.

A sentence base S, on the other hand, stores the
generated entailments and contradictions.

2.3 Generation

Once we have a polarized CCG tree, and some §
relations in K, generating entailments and contra-
dictions is fairly straightforward. A concrete ex-
ample is given in Figure 2. Note that the gener-
ated § instances are capable of producing mostly
monotonicity inferences, but MonaLog can be ex-
tended to include other more complex inferences
in natural logic, hence the name MonaLog. This
extension is addressed in more detail in Hu et al.
(2019).

Entailments/inferences The key operation for
generating entailments is replacement, or sub-
stitution. It can be summarized as follows: 1)

3K means “is contradictory to”.
4There may be better and robust ways of incorporating

WordNet relations to K; we leave this for future work.

For upward-entailing (UE) words/constituents, re-
place them with words/constituents that denote
bigger sets. 2) For downward-entailing (DE)
words/constituents, either replace them with those
denoting smaller sets, or add modifiers (adjectives,
adverbs and/or relative clauses) to create a smaller
set. Thus for everyÒ linguistÓ swimÒ, MonaLog
can produce the following three entailments by re-
placing each word with the appropriate word from
K: mostÒ linguistÓ swimÒ, everyÒ semanticistÓ
swimÒ and everyÒ linguistÓ moveÒ. These are
results of one replacement. Performing
replacement for multiple rounds/depths can
easily produce many more entailments.

Contradictory sentences To generate sentences
contradictory to the input sentence, we do the fol-
lowing: 1) if the sentence starts with “no (some)”,
replace the first word with “some (no)”. 2) If the
object is quantified by “a/some/the/every”, change
the quantifier to “no”, and vice versa. 3) Negate
the main verb or remove the negation. See exam-
ples in Figure 2.

Neutral sentences MonaLog returns Neutral if
it cannot find the hypothesis H in S.entailments
or S.contradictions. Thus, there is no need to
generate neutral sentences.

2.4 Search

Now that we have a set of inferences and contra-
dictions stored in S, we can simply see if the hy-
pothesis is in either one of the sets by comparing
the strings. If yes, then return Entailment or Con-
tradiction; if not, return Neutral, as schematically
shown in Figure 2. However, the exact-string-
match method is too brittle. Therefore, we apply a
heuristic. If the only difference between sentences
S1 and S2 is in the set {“a”, “be”, “ing”}, then S1

and S2 are considered semantically equivalent.
The search is implemented using depth first

search, with a default depth of 2, i.e. at most 2 re-
placements for each input sentence. At each node,
MonaLog “expands” the sentence (i.e., an entail-
ment of its parent) by obtaining its entailments and
contradictions, and checks whether H is in either
set. If so, the search is terminated; otherwise the
systems keeps searching until all the possible en-
tailments and contradictions up to depth 2 have
been visited.
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P : AÒ schoolgirlÒ withÒ aÒ blackÒ bagÒ
isÒ onÒ aÒ crowdedÒ trainÒ

AÒ girlÒ withÒ aÒ blackÒ bagÒ
isÒ onÒ aÒ crowdedÒ trainÒ

A girl
is on a crowded train

A girl is on a train

AÒ schoolgirlÒ withÒ aÒ bagÒ
isÒ onÒ aÒ crowdedÒ trainÒ

......

AÒ schoolgirlÒ isÒ
onÒ aÒ crowdedÒ trainÒ

......

No schoolgirl is

on a crowded train

A schoolgirl with a bag

is not on a crowded train

...

co
ntra

dict
ion

co
ntra

dict
ion

co
ntra

dict
ion

Figure 2: Example search tree for SICK 340, where P is A schoolgirl with a black bag is on a crowded train,
with the H: A girl with a black bag is on a crowded train. Only one replacement is allowed at each step.
Sentences at the nodes are generated entailments. Sentences in rectangles are the generated contradictions. In
this case our system will return entail. The search will terminate after reaching the H in this case, but for
illustrative purposes, we show entailments of depth up to 3. To exclude the influence of morphology, all sentences
are represented at the lemma level in MonaLog, which is not shown here.

3 MonaLog and SICK

We perform two experiments to test MonaLog. We
first use MonaLog to solve the problems in a com-
monly used natural language inference dataset,
SICK (Marelli et al., 2014), comparing our results
with previous systems. Second, we test the quality
of the data generated by MonaLog. To do this, we
generate more training data (sentence pairs) from
the SICK training data using our system, and per-
forme fine-tuning on BERT (Devlin et al., 2019),
a language model based on the transformer archi-
tecture (Vaswani et al., 2017), with the expanded
dataset. In all experiments, we use the Base, Un-
cased model of BERT5.

3.1 The SICK Dataset

The SICK (Marelli et al., 2014) dataset includes
around 10,000 English sentence pairs that are an-
notated to have either “Entailment”, “Neutral” or
“Contradictory” relations. We choose SICK as
our testing ground for several reasons. First, we
want to test on a large-scale dataset, since we
have shown that a similar model (Hu et al., 2019)
reaches good results on parts of the smaller Fra-
CaS dataset (Cooper et al., 1996). Second, we
want to make our results comparable to those of
previous logic-based models such as the ones de-
scribed in (Bjerva et al., 2014; Abzianidze, 2015;
Martı́nez-Gómez et al., 2017; Yanaka et al., 2018),
which were also tested on SICK. We use the data
split provided in the dataset: 4,439 training prob-
lems, 4,906 test problems and 495 trial problems,

5https://github.com/google-research/bert

see Table 1 for examples.

3.2 Hand-corrected SICK
There are numerous issues with the original SICK
dataset, as illustrated by Kalouli et al. (2017,
2018).

They first manually checked 1,513 pairs tagged
as “A entails B but B is neutral to A” (AeBBnA)
in the original SICK, correcting 178 pairs that
they considered to be wrong (Kalouli et al., 2017).
Later, Kalouli et al. (2018) extracted pairs from
SICK whose premise and hypothesis differ in only
one word, and created a simple rule-based sys-
tem that used WordNet information to solve the
problem. Their WordNet-based method was able
to solve 1,651 problems, whose original labels in
SICK were then manually checked and corrected
against their system’s output. They concluded that
336 problems are wrongly labeled in the original
SICK. Combining the above two corrected sub-
sets of SICK, minus the overlap, results in their
corrected SICK dataset6, which has 3,016 prob-
lems (3/10 of the full SICK), with 409 labels dif-
ferent from the original SICK (see breakdown in
Table 2). 16 of the corrections are in the trial
set, 197 of them in the training set and 196 in the
test set. This suggests that more than one out of
ten problems in SICK are potentially problematic.
For this reason, two authors of the current paper
checked the 409 changes. We found that only 246
problems are labeled the same by our team and by
Kalouli et al. (2018). For cases where there is dis-
agreement, we adjudicated the differences after a

6https://github.com/kkalouli/SICK-processing
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orig. corr.
id premise hypothesis label label
219 There is no girl in white dancing A girl in white is dancing C C
294 Two girls are lying on the ground Two girls are sitting on the ground N C
743 A couple who have just got married

are walking down the isle
The bride and the groom are leaving
after the wedding

E N

1645 A girl is on a jumping car One girl is jumping on the car E N
1981 A truck is quickly going down a hill A truck is quickly going up a hill N C
8399 A man is playing guitar next to a

drummer
A guitar is being played by a man next
to a drummer

E n.a.

Table 1: Examples from SICK (Marelli et al., 2014) and corrected SICK (Kalouli et al., 2017, 2018) w/ syntactic
variations. n.a.:example not checked by Kalouli and her colleagues. C: contradiction; E: entailment; N: neutral.

total N Ñ E E Ñ C N Ñ C E Ñ N
409 14 7 190 198

Table 2: Changes from SICK to corrected SICK
(Kalouli et al., 2017, 2018).

discussion.
We are aware that the partially checked SICK

(by two teams) is far from ideal. We therefore
present results for two versions of SICK for exper-
iment 1 (section 4): the original SICK and the ver-
sion corrected by our team. For the data augmen-
tation experiment in section 5, we only performed
fine-tuning on the corrected SICK. As shown in
a recent SICK annotation experiment by Kalouli
et al. (2019), annotation is a complicated issue in-
fluenced by linguistic and non-linguistic factors.
We leave checking the full SICK dataset to future
work.

4 Experiment 1: Using MonaLog
Directly

4.1 Setup and Preprocessing

The goal of experiment 1 is to test how accurately
MonaLog solves problems in a large-scale dataset.
We first used the system to solve the 495 problems
in the trial set and then manually identified the
cases in which the system failed. Then we deter-
mined which syntactic transformations are needed
for MonaLog. After improving the results on the
trial data by introducing a preprocessing step to
handle limited syntactic variation (see below), we
applied MonaLog on the test set. This means that
the rule base of the system was optimized on the
trial data, and we can test its generalization capa-
bility on the test data.

The main obstacle for MonaLog is the syntactic

variations in the dataset, illustrated in some exam-
ples in Table 1. There exist multiple ways of deal-
ing with these variations: One approach is to ‘nor-
malize’ unknown syntactic structures to a known
structure. For example, we can transform passive
sentences into active ones and convert existential
sentences into the base form (see ex. 8399 and 219
in Table 1). Another approach is to use some more
abstract syntactic/semantic representation so that
the linear word order can largely be ignored, e.g.,
represent a sentence by its dependency parse, or
use Abstract Meaning Representation. Here, we
explore the first option and leave the second ap-
proach to future work. We believe that dealing
with a wide range of syntactic variations requires
tools designed specifically for that purpose. The
goal of MonaLog is to generate entailments and
contradictions based on a polarized sentence in-
stead.

Below, we list the most important syntactic
transformations we perform in preprocessing7.

1. Convert all passive sentences to active using
pass2act8. If the passive does not contain a
by phrase, we add by a person.

2. Convert existential clauses into their base
form (see ex. 219 in Table 1).

3. Other transformations: someone/anyone/no
one Ñ some/any/no person; there is no man
doing sth. Ñ no man is doing sth.; etc.

4.2 Results
The results of our system on uncorrected and cor-
rected SICK are presented in Table 3, along with
comparisons with other systems.

7For the complete list of transformations see: https://
github.com/huhailinguist/SICK correction

8https://github.com/DanManN/pass2act
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system P R acc.
On uncorrected SICK

majority baseline – – 56.36
hypothesis-only baseline

– – 56.87
(Poliak et al., 2018)

MonaLog (this work)
MonaLog + all transformations 83.75 70.66 77.19

Hybrid: MonaLog + BERT 83.09 85.46 85.38
ML/DL-based systems

BERT (base, uncased) 86.81 85.37 86.74
(Yin and Schütze, 2017) – – 87.1

(Beltagy et al., 2016) – – 85.1
Logic-based systems

(Bjerva et al., 2014) 93.6 60.6 81.6
(Abzianidze, 2015) 97.95 58.11 81.35

(Martı́nez-Gómez et al., 2017) 97.04 63.64 83.13
(Yanaka et al., 2018) 84.2 77.3 84.3

On corrected SICK
MonaLog + existential trans. 89.43 71.53 79.11

MonaLog + pass2act 89.42 72.18 80.25
MonaLog + all transformations 89.91 74.23 81.66

Hybrid: MonaLog + BERT 85.65 87.33 85.95
BERT (base, uncased) 84.62 84.27 85.00

Table 3: Performance on the SICK test set, original
SICK above and corrected SICK below. P / R for Mon-
aLog averaged across three labels. Results involving
BERT are averaged across six runs; same for later ex-
periments.

Our accuracy on the uncorrected SICK
(77.19%) is much higher than the majority base-
line (56.36%) or the hypothesis-only baseline
(56.87%) reported by Poliak et al. (2018), and
only several points lower than current logic-based
systems. Since our system is based on natural
logic, there is no need for translation into logical
forms, which makes the reasoning steps trans-
parent and much easier to interpret. I.e., with
entailments and contradictions, we can generate a
natural language trace of the system, see Fig. 2.

Our results on the corrected SICK are even
higher (see lower part of Table 3), demonstrating
the effect of data quality on the final results. Note
that with some simple syntactic transformations
we can gain 1-2 points in accuracy.

Table 4 shows MonaLog’s performance on the
individual relations. The system is clearly very
good at identifying entailments and contradic-
tions, as demonstrated by the high precision val-
ues, especially on the corrected SICK set (98.50
precision for E and 95.02 precision for C). The
lower recall values are due to MonaLog’s current
inability to handle syntactic variation.

Based on these results, we tested a hybrid model
of MonaLog and BERT (see Table 3) where we ex-
ploit MonaLog’s strength: Since MonaLog has a
very high precision on Entailment and Contradic-
tion, we can always trust MonaLog if it predicts
E or C; when it returns N, we then fall back to
BERT. This hybrid model improves the accuracy
of BERT by 1% absolute to 85.95% on the cor-
rected SICK. On the uncorrected SICK dataset, the
hybrid system performs worse than BERT. Since
MonaLog is optimized for the corrected SICK, it
may mislabel many E and C judgments in the un-
corrected dataset. The stand-alone BERT system
performs better on the uncorrected data (86.74%)
than the corrected set (85.00%). The corrected set
may be too inconsistent since only a part has been
checked.

Overall, these hybird results show that it is pos-
sible to combine our high-precision system with
deep learning architectures. However, more work
is necessary to optimize this combined system.

4.3 Error Analysis

Upon closer inspection, some of MonaLog’s er-
rors consist of difficult cases, as shown in Table 5.
For example, in ex. 359, if our knowledge base K

contains the background fact chasing § running,
then MonaLog’s judgment of C would be correct.
In ex. 1402, if crying means screaming, then the
label should be E; however, if crying here means
shedding tears, then the label should probably be
N. Here we also see potentially problematic labels
(ex. 1760, 3403) in the original SICK dataset.

Another point of interest is that 19 of Mona-
Log’s mistakes are related to the antonym pair man
vs. woman (e.g., ex. 5793 in Table 5). This points
to inconsistency of the SICK dataset: Whereas
there are at least 19 cases tagged as Neutral (e.g.,
ex. 5793), there are at least 17 such pairs that are
annotated as Contradictions in the test set (e.g.,
ex. 3521), P: A man is dancing, H: A woman is
dancing (ex. 9214), P: A shirtless man is jumping
over a log, H: A shirtless woman is jumping over
a log. If man and woman refer to the same entity,
then clearly that entity cannot be man and woman
at the same time, which makes the sentence pair a
contradiction. If, however, they do not refer to the
same entity, then they should be Neutral.
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E C N
P R P R P R

uncorr. SICK 97.75 46.74 80.06 70.24 73.43 94.99
corr. SICK 98.50 50.46 95.02 73.60 76.22 98.63

Table 4: Results of MonaLog per relation. C: contradiction; E: entailment; N: neutral.

id premise hypothesis SICK corr. SICK Mona
359 There is no dog chasing an-

other or holding a stick in its
mouth

Two dogs are running and
carrying an object in their
mouths

N n.a. C

1402 A man is crying A man is screaming N n.a. E
1760 A flute is being played by a girl There is no woman playing a

flute
N n.a. C

2897 The man is lifting weights The man is lowering barbells N n.a. E
2922 A herd of caribous is not cross-

ing a road
A herd of deer is crossing a
street

N n.a. C

3403 A man is folding a tortilla A man is unfolding a tortilla N n.a. C
4333 A woman is picking a can A woman is taking a can E N E
5138 A man is doing a card trick A man is doing a magic trick N n.a. E
5793 A man is cutting a fish A woman is slicing a fish N n.a. C

Table 5: Examples of incorrect answers by MonaLog; n.a. = the problem has not been checked in corr. SICK.

5 Experiment 2: Data Generation Using
MonaLog

Our second experiment focuses on using Mona-
Log to generate additional training data for ma-
chine learning models such as BERT. To our
knowledge, this is the first time that a rule-based
NLI system has been successfully used to generate
training data for a deep learning application.

5.1 Setup

As described above, MonaLog generates entail-
ments and contradictions when solving problems.
These can be used as additional training data for
a machine learning model. I.e., we pair the newly
generated sentences with their input sentence, cre-
ating new pairs for training. For example, we take
all the sentences in the nodes in Figure 2 as infer-
ences and all the sentences in rectangles as con-
tradictions, and then form sentence pairs with the
input sentence. The additional data can be used
directly, almost without human intervention.

Thus for experiment 2, the goal is to examine
the quality of these generated sentence pairs. For
this, we re-train a BERT model on these pairs.
If BERT trained on the manually annotated SICK
training data is improved by adding data generated
by MonaLog, then we can conclude that the gen-

erated data is of high quality, even comparable to
human annotated data, which is what we found.

More specifically, we compare the performance
of BERT models trained on a) SICK training data
alone, and b) SICK training data plus the entail-
ing and contradictory pairs generated by Mona-
Log. All experiments are carried out using our
corrected version of the SICK data set.

However, note that MonaLog is designed to
only generate entailments and contradictions.
Thus, we only have access to newly generated ex-
amples for those two cases, we do not acquire any
additional neutral cases. Consequently, adding
these examples to the training data will introduce a
skewing that does not reflect the class distribution
in the test set. Since this will bias the machine
learner against neutral cases, we use the following
strategy to counteract that tendency: We relabel all
cases where BERT is not confident enough for ei-
ther E or C into N. We set this threshold to 0.95
but leave further optimization of the threshold to
future work.

5.2 Data Filtering and Quality Control

MonaLog is prone to over-generation. For exam-
ple, it may wrongly add the same adjective be-
fore a noun (phrase) twice to create a more spe-
cific noun, e.g., young young man § young man §

325



label premise hypothesis comm.
E A woman be not cooking something A person be not cooking something correct
E A man be talk to a woman who be seat

beside he and be drive a car
A man be talk correct

E A south African plane be not fly in a
blue sky

A south African plane be not fly in a
very blue sky in a blue sky

unnat.

C No panda be climb Some panda be climb correct
C A man on stage be sing into a micro-

phone
A man be not sing into a microphone correct

C No man rapidly be chop some mush-
room with a knife

Some man rapidly be chop some mush-
room with a knife with a knife

unnat.

E FewÒ peopleÓ beÓ eatÓ atÓ redÓ tableÓ
inÓ aÓ restaurantÓ withoutÓ lightÒ

FewÒ largeÓ peopleÓ beÓ eatÓ atÓ
redÓ tableÓ inÓ aÓ AsianÓ restaurantÓ
withoutÓ lightÒ

correct

Table 6: Sentence pairs generated by MonaLog, lemmatized.

label total correct wrong unnatural
E 56 49 0 7
C 44 41 0 3

Table 7: Quality of 100 manually inspected sentences.

man. Since it is possible that such examples influ-
ence the machine learning model negatively, we
look into filtering such examples to improve the
quality of the additional training data.

We manually inspected 100 sentence pairs gen-
erated by MonaLog to check the quality and natu-
ralness of the new sentences (see Table 6 for exam-
ples). All of the generated sentences are correct in
the sense that the relation between the premise and
the hypothesis is correctly labeled as entailment or
contradiction (see Table 7). While we did not find
any sentence pairs with wrong labels, some gener-
ated sentences are unnatural, as shown in Table 6.
Both unnatural examples contain two successive
copies of the same PP.

Note that our data generation hinges on correct
polarities on the words and constituents. For in-
stance, in the last example of Table 6, the polar-
ization system needs to know that few is down-
ward entailing on both of its arguments, and
without flips the arrow of its argument, in order
to produce the correct polarities, on which the
replacement of MonaLog depends.

In order to filter unnatural sentences, such as the
examples in Table 6, we use a rule-based filter and
remove sentences that contain bigrams of repeated
words9. We experiment with using one quarter or

9We also investigated using a bigram based language

one half randomly selected sentences in addition
to a setting where we use the complete set of gen-
erated sentences.

5.3 Results

Table 8 shows the amount of additional sentence
pairs per category along with the results of us-
ing the automatically generated sentences as ad-
ditional training data.

It is obvious that adding the additional train-
ing data results in gains in accuracy even though
the training data becomes increasingly skewed to-
wards E and C. When we add all additional sen-
tence pairs, accuracy increases by more than 1.5
percent points. This demonstrates both the robust-
ness of BERT in the current experiment and the
usefulness of the generated data. The more data
we add, the better the system performs.

We also see that raising the threshold to rela-
bel uncertain cases as neutral gives a small boost,
from 86.51% to 86.71%. This translates into 10
cases where the relabeling corrected the answer.

Finally, we also investigated whether the hy-
brid system, i.e., MonaLog followed by the re-
trained BERT, can also profit from the addi-
tional training data. Intuitively, we would expect
smaller gains since MonaLog already handles a
fair amount of the entailments and contradictions,
i.e., those cases where BERT profits from more
examples. However the experiments show that
the hybrid system reaches an even higher accuracy
of 87.16%, more than 2 percent points above the

model to filter out non-natural sentences. However, this af-
fected the results negatively.
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training data # E # N # C acc.
SICK.train: baseline 1.2k 2.5k 0.7k 85.00
1/4 gen. + SICK.train 8k 2.5k 4k 85.30
1/2 gen. + SICK.train 15k 2.5k 7k 85.81
all gen. + SICK.train 30k 2.5k 14k 86.51
E, C prob. threshold = 0.95 30k 2.5k 14k 86.71
Hybrid baseline 1.2k 2.5k 0.7k 85.95
Hybrid + all gen. 30k 2.5k 14k 87.16
Hybrid + all gen. + threshold 30k 2.5k 14k 87.49

Table 8: Results of BERT trained on MonaLog-generated entailments and contradictions plus SICK.train (using
the corrected SICK set).

baseline, equivalent to roughly 100 more problems
correctly solved. Setting the high threshold for
BERT to return E or C further improves accuracy
to 87.49%. This brings us into the range of the
state-of-the-art results, even though a direct com-
parison is not possible because of the differences
between the corrected and uncorrected dataset.

6 Conclusions and Future Work

We have presented a working natural-logic-based
system, MonaLog, which attains high accuracy on
the SICK dataset and can be used to generated nat-
ural logic proofs. Considering how simple and
straightforward our method is, we believe it can
serve as a strong baseline or basis for other (much)
more complicated systems, either logic-based or
ML/DL-based. In addiction, we have shown that
MonaLog can generate high-quality training data,
which improves the accuracy of a deep learning
model when trained on the expanded dataset. As
a minor point, we manually checked the corrected
SICK dataset by Kalouli et al. (2017, 2018).

There are several directions for future work.
The first direction concerns the question how to
handle syntactic variation from natural language
input. That is, the computational process(es) for
inference will usually be specified in terms of
strict syntactic conditions, and naturally occurring
sentences will typically not conform to those con-
ditions. Among the strategies which allow their
systems to better cope with premises and hypothe-
ses with various syntactic structures are sophisti-
cated versions of alignment used by e.g. MacCart-
ney (2009); Yanaka et al. (2018). We will need to
extend MonaLog to be able to handle such vari-
ation. In the future, we plan to use dependency
relations as representations of natural language in-
put and train a classifier that can determine which

relations are crucial for inference.
Second, as mentioned earlier, we are in need

of a fully (rather than partially) checked SICK
dataset to examine the impact of data quality on
the results since the partially checked dataset may
be inherently inconsistent between the checked
and non-checked parts.

Finally, with regard to the machine learning ex-
periments, we plan to investigate other methods of
addressing the imbalance in the training set cre-
ated by additional entailments and contradictions.
We will look into options for artificially creating
neutral examples, e.g. by finding reverse entail-
ments10, as illustrated by Richardson et al. (2019).
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