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Recurrent neural networks (RNNs; Elman,
1990) use continuous vector representations, yet
they perform remarkably well on tasks that depend
on compositional symbolic structure, such as ma-
chine translation. The inner workings of neural
networks are notoriously difficult to understand,
so it is far from clear how they manage to encode
such structure within their vector representations.

We hypothesize that they do this by learning to
compile symbolic structures into vectors using the
tensor product representation (TPR; Smolensky,
1990), a general schema for mapping symbolic
structures to numerical vector representations. To
test this hypothesis, we introduce Tensor Prod-
uct Decomposition Networks (TPDNs), which are
trained to use TPRs to approximate existing vec-
tor representations. If a TPDN is able to closely
approximate the representations generated by an
RNN, it would suggest that the RNN’s strategy for
encoding compositional structure is to implicitly
implement the type of TPR used by the TPDN.

Using this method, we show that networks
trained on artificial tasks using digit sequences
discover structured representations appropriate to
the task; e.g., a model trained to copy a se-
quence will encode left-to-right position (first, sec-
ond, third...), while a model trained to reverse
a sequence will use right-to-left position (last,
second-to-last, third-to-last...). Thus, our analy-
sis tool shows that RNNs are capable of discover-
ing structured, symbolic representations. Surpris-
ingly, however, we also show, in several real-world
networks trained on natural language processing
tasks (e.g., sentiment prediction), that the repre-
sentations used by the networks show few signs of
structure, being well approximated by an unstruc-
tured (bag-of-words) representation. This finding
suggests that popular training tasks for sentence
representation learning may not be sufficient for
inducing robust structural representations.

Tensor Product Decomposition Networks: To
represent a symbolic structure with a TPR, each
component of the structure (e.g., each element
in a sequence) is called a filler, and the fillers
are paired with roles that represent their positions
(Figure 2a). Each filler fi and — crucially — each
role ri has a vector embedding; these two vectors
are combined using their tensor product fi ⌦ ri,
and these tensor products are summed to produce
the representation of the sequence:

P
fi ⌦ ri.

To test whether a set of vector encodings can be
approximated with a TPR, we introduce the Tensor
Product Decomposition Network (TPDN; Figure
1c), a model that is trained to use TPRs to approxi-
mate a given set of vector representations that have
been generated by an RNN encoder. Approxima-
tion quality is evaluated by feeding the outputs of
the trained TPDN into the decoder from the orig-
inal RNN and measuring the accuracy of the re-
sulting hybrid architecture (Figure 1d). We refer
to this metric as substitution accuracy.

Approximating RNN representations: To es-
tablish the effectiveness of the TPDN at uncover-
ing the structural representations used by RNNs,
we first apply the TPDN to sequence-to-sequence
networks (Sutskever et al., 2014) trained on a
copying objective: they are expected to encode a
sequence of digits and then decode that encoding
to reproduce the same sequence (Figure 1a).

We ran this experiment with two types of
sequence-to-sequence RNNs: linear RNNs, which
process sequences in linear order, and tree RNNs,
which process sequences in accordance with a tree
structure. These experiments revealed that the en-
codings of the linear RNN could be approximated
very closely (with a substitution accuracy of over
0.99 averaged across five runs) with a TPR us-
ing the bidirectional role scheme, which encodes
the distance from the start of the sequence and
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Figure 1: (a) A sequence-to-sequence model performing copying. (b) The tensor product. (c) A TPDN trained to
approximate the encoding E from Figure 1a: (1) The fillers and roles are embedded. (2) The fillers and roles are
bound together using the tensor product. (3) The tensor products are summed. (4) The sum is flattened into a vector
by concatenating the rows. (5) A linear transformation is applied to get the final encoding. (d) The architecture for
evaluation: using the original sequence-to-sequence model’s decoder with the trained TPDN as the encoder.

the distance from the end of the sequence. By
contrast, the tree RNN was closely approximated
by a role scheme encoding tree position but not
by any of the role schemes encoding linear posi-
tion. These results show that RNNs are capable of
learning to generate compositional symbolic rep-
resentations and that the nature of these represen-
tations is closely related to the RNN’s structure.

Approximating sentence representations: We
now investigate whether the TPDN’s success with
digit sequences will extend to naturally occur-
ring linguistic data. We use sentence representa-
tions from four natural language processing mod-
els: two linear RNNs, InferSent and Skip-thought;
and two tree RNNs, the Stanford sentiment model
(SST) and SPINN. All four models are reasonably
well approximated with a bag of words, which
only encodes which words are in the sentence
and does not encode any sort of sentence struc-
ture; other role schemes which do encode structure
showed only modest improvements (Figure 3b).

Conclusion: With heavily structure-sensitive
tasks, sequence-to-sequence RNNs learned rep-
resentations that were extremely well approxi-
mated by tensor-product representations. By con-
trast, sentence encoders from the natural language
processing literature could be reasonably well-
approximated with an unstructured bag of words,
suggesting that the representations of these mod-
els were not very structure-sensitive. These results
suggest that, when RNNs learn to encode compo-
sitional structure, they do so by adopting a strategy
similar to TPRs, but that existing tasks for training
sentence encoders are not sufficiently structure-
sensitive to induce RNNs to encode such structure.
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Figure 2: (a) The filler-role bindings assigned by the
six role schemes to the sequence 5239. (b) The tree
used to assign tree roles to this sequence.
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Figure 3: Results. (a) Substitution accuracies for lin-
ear and tree RNNs trained on copying. (b) The pro-
portion of test examples on which classifiers trained on
sentence encodings gave the same predictions for these
encodings and for their TPDN approximations, aver-
aged across four tasks. The dotted line indicates chance
performance.
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