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Abstract

Morphological inflection, as an engineering
task in NLP, has seen a rise in the use of neu-
ral sequence-to-sequence models (Kann and
Schütze, 2016; Cotterell et al., 2018; Aha-
roni and Goldberg, 2017). While these out-
perform traditional systems based on edit rule
induction, it is hard to interpret what they
are learning in linguistic terms. We propose
a new method of analyzing morphological
sequence-to-sequence models which groups
errors into linguistically meaningful classes,
making what the model learns more transpar-
ent. As a case study, we analyze a seq2seq
model on Russian, finding that semantic and
lexically conditioned allomorphy (e.g. inani-
mate nouns like ZAVOD ‘factory’ and animates
like OTEC ‘father’ have different, animacy-
conditioned accusative forms) are responsible
for its relatively low accuracy. Augmenting
the model with word embeddings as a proxy
for lexical semantics leads to significant im-
provements in predicted wordform accuracy.

1 Introduction

Neural sequence-to-sequence models excel at
learning inflectional paradigms from incomplete
input (Table 1 shows an example inflection prob-
lem.) These models, originally borrowed from
neural machine translation (Bahdanau et al.,
2014), read in a series of input tokens (e.g. char-
acters, words) and output, or translate, them as
another series. Although these models have be-
come adept at mapping input to output sequences,
like all neural models, they are relatively uninter-
pretable. We present a novel error analysis tech-
nique, based on previous systems for learning to
inflect which relied on edit rule induction (Durrett
and DeNero, 2013). By using this to interpret the
output of a neural model, we can group errors into
linguistically salient classes such as producing the
wrong case form or incorrect inflection class.

Our broader linguistic contribution is to recon-
nect the inflection task to the descriptive literature
on morphological systems. Neural models for in-
flection are now being applied as cognitive models
of human learning in a variety of settings (Mal-
ouf, 2017; Silfverberg and Hulden, 2018; Kirov
and Cotterell, 2018, and others). They are appeal-
ing cognitive models partly because of their high
performance on benchmark tasks (Cotterell et al.,
2016, and subsq.), and also because they make
few assumptions about the morphological system
they are trying to model, dispensing with overly
restrictive notions of segmentable morphemes and
discrete inflection classes. But while these con-
structs are theoretically troublesome, they are still
important for describing many commonly-studied
languages; without them, it is relatively difficult
to discover what a particular model has and has
not learned about a morphological system. This
is often the key question which prevents us from
using a general-purpose neural network system
as a cognitive model (Gulordava et al., 2018).
Our error analysis allows us to understand more
clearly how the sequence-to-sequence model di-
verges from human behavior, giving us new infor-
mation about its suitability as a cognitive model of
the language learner.

As a case study, we apply our error anal-
ysis technique to Russian, one of the lowest-
performing languages in SIGMORPHON 2016.
We find a large class of errors in which the
model incorrectly selects among lexically- or
semantically-conditioned allomorphs. Russian
has semantically-conditioned allomorphy in nouns
and adjectives, and lexically-conditioned allomor-
phy (inflection classes) in nouns and verbs (Tim-
berlake, 2004); Section 3 gives a brief introduction
to the relevant phenomena. While these facts are
commonly known to linguists, their importance
to modeling the inflection task has not previously

402
Proceedings of the Society for Computation in Linguistics (SCiL) 2020, pages 402-411.

New Orleans, Louisiana, January 2-5, 2020



Source Features Target
ABAŠ pos=N,

case=NOM,
num=SG

ABAŠ

JATAGAN pos=N,
case=INS,
num=PL

JATAGANAMI

Table 1: An example inflection problem: the task is to
map the Source and Features to the correct, fully in-
flected Target.

been pointed out. Section 4 shows that these phe-
nomena account for most of Russian’s increased
difficulty relative to the other languages. In Sec-
tion 6, we provide lexical-semantic information to
the model, decreasing errors due to semantic con-
ditioning of nouns by 64% and of verbs by 88%.

2 Background

The inflection task described above is an instance
of the paradigm cell filling problem (Ackerman
et al., 2009), and models a situation which both
computational and human learners face. For hu-
mans, the PCFP is closely related to the “wug
test” (Berko, 1958): given some previously un-
seen word, how does a speaker produce a different
inflected form? As Lignos and Yang (2016) and
Blevins et al. (2017) point out, the same Zipfian
distribution that makes other NLP tasks (e.g. MT)
difficult is also at play in morphology, namely that
no corpus will ever exist that has every wordform
from every lexeme. For theoretical morphologists,
the difficulty of the PCFP on average is a mea-
sure of the learnability of a morphological system,
with implications for language typology (Acker-
man et al., 2009; Ackerman and Malouf, 2013; Al-
bright, 2002; Bonami and Beniamine, 2016; Sims
and Parker, 2016).

Ackerman et al.’s (2009) formulation of the
PCFP relies on a simple concatenative model in
which words are divided into stems and affixes,
and in which each affix is treated as a discrete
value. Cotterell et al. (2018) points out that this
model is ill-suited to dealing with phenomena
like phonological alterations or stem suppletion.
Newer models (Silfverberg and Hulden, 2018;
Malouf, 2017; Cotterell et al., 2018) use sequence-
to-sequence inflection models to avoid these short-
comings.

Faruqui et al. (2016) introduced the use
of attention-based neural sequence-to-sequence
learning for the inflection task, building on models
from machine translation (Bahdanau et al., 2014).
Their model treats input as a linear series where
grammatical features and characters are encoded
as one-hot embeddings and passed to a bidirec-
tional encoder LSTM; output for each paradigm
cell is produced by a separate decoder. Kann
and Schütze (2016) extended Faruqui et al.’s ar-
chitecture by using ensembling and by using a
single decoder, shared across all output paradigm
cells, to account for data sparsity. Later systems
(Aharoni and Goldberg, 2017; Kann and Schütze,
2017) have made changes to the input represen-
tation and the architecture, for instance incorpo-
rating variants of hard attention and autoencoding.
From a theoretical standpoint, all these models are
“a-morphous” (Anderson, 1992) or “inferential-
realizational” (Stump, 2001)— rather than assume
a concatenative process which stitches discrete
morphemes together into surface word forms, they
learn a flexible, generalizable transduction, ei-
ther between a stem and surface form (Anderson,
1992; Stump, 2001), or between pairs of surface
forms (Albright, 2002; Blevins, 2006).

Some older learning-based inflection systems,
such as Durrett and DeNero (2013), exploit se-
quence alignment across strings. Alignment-based
systems essentially treat morphology as concate-
nation. While they do not perform full-scale mor-
phological analysis (since they do not account for
phonological alternations), in languages which are
mostly concatenative, they do tend to isolate affix-
like units as sequences of adjacent insertions or
deletions. This property has been criticized in the
neural literature (Faruqui et al., 2016) since it rep-
resents processes like vowel harmony by enumer-
ating large sets of surface allomorphs, making the
learning problem harder. We agree with these crit-
icisms from the modeling standpoint, but we ex-
ploit the interpretability of the technique in our
analysis of model results.

Our study of Russian concludes that
semantically- and lexically-conditioned allo-
morphy constitutes a problem for current neural
reinflection models. This is because such models
are trained to map input to output character
sequences; they do not typically have access
to information about what the words they are
inflecting mean. We show that, by providing
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word embeddings as meaning representations,
we can reduce this source of error and bring
Russian closer to the other languages studied in
SIGMORPHON 2016.

Recently the NLP community has also pushed
for greater transparency with neural models (xci,
2017; ana, 2019). Wilcox et al. (2018) showed
that RNNs learn hierarchical structure in sentences
like island constraints. Faruqui et al. demon-
strated that RNNs can automatically learn which
vowel pairs participate in vowel harmony alterna-
tion. Our error analysis allows us to interpret what
neural models are learning, reconnecting inflec-
tion tasks to linguistic intuitions by generalizing
over error classes.

3 Russian Inflectional Morphology

We select Russian as our language of analysis be-
cause it was among the three worst-performing
languages in the SIGMORPHON 2016 shared
task, falling 4+ percentage points behind the other
languages. Problems with the design of the Navajo
and Maltese datasets may have been the source
of the problems with those languages,1 but this
cannot explain the Russian results. The discrep-
ancy hints at some linguistic property which dis-
tinguishes Russian from the other languages. Be-
low, we give an overview of the Russian morpho-
logical system, concentrating on nouns, verbs, and
adjectives, the parts of speech targeted by the SIG-
MORPHON 2016 shared task.

Russian is an East Slavic language which, in
line with other Slavic languages, makes heavy use
of inflectional morphology. Russian nouns and
verbs belong to inflectional classes: groups of
words which share a common set of inflectional
affixes.

Russian nouns and adjectives have six primary
cases—nominative, accusative, genitive, dative,
locative, and instrumental—and two numbers, sin-
gular and plural. We follow the classification sys-
tem of Timberlake (2004), which groups nouns
into three primary inflection classes (I, II, and III)
with subclasses (IA, IB, IIIA, IIIB, and IIIC).

Within these classes, however, the formation of
the accusative is further subdivided based on se-
mantics. Specifically, in class IA accusative sin-

1 As announced by the SIGMORPHON shared task orga-
nizers.

2 Examples in this paper are presented in scientific
transliteration instead of Cyrillic for accessibility; our system
processes Cyrillic characters.

Case Singular Plural
Nominative ;, -’, -J, -IJ -”, -I, -II

Accusative N or G
Genitive -A, -JA, -IJA -OV, -EJ,

-EV, -IEV

Dative -U, -JU, -IJU -AM, -JAM,
-IJAM

Instrumental -OM, -EM,
-IEM

-AMI, -JAMI,
-IJAMI

Locative -E, -II -AX, -JAX,
-IJAX

Table 2: An example of class IA, showing the effect
of animacy in the orthography2across the singular and
plural accusative forms, where N or G indicate where
syncretism occurs in the accusative form based on ani-
macy.

gular and plural and in classes IB, II, and III ac-
cusative plurals, the accusative exhibits syncretism
with either the genitive (for animates) or the nom-
inative (for inanimates). In the case of the ani-
mate noun STUDENT (‘student’), for example, the
nominative singular form is student and the ac-
cusative singular and genitive singular forms are
both studenta. Conversely, for MESTO (‘place’),
the accusative singular and nominative singular
both have the form mesto, but the genitive singu-
lar is mesta. An example of how this phenomenon
looks at the paradigm level for class IA can be seen
in Figure 2.

Adjectives in Russian must agree with case,
gender, and number of the nouns they modify.
They also exhibit the same syncretism in the plu-
ral and masculine singular forms, based on the an-
imacy of the noun that the adjective modifies.3

Russian also has two verb classes based on
what Timberlake calls a verb’s thematic ligature
(i.e. a thematic vowel). A verb is either an i-
conjugation verb or an e-conjugation verb, de-
pending on the vowel used to create the present
tense stem. For example, MOLČAT’ (‘to be silent’)
forms the present tense stem with -i (namely
molč-i-), making its second person singular form
molčiš’. Likewise, for a verb like BROSAT’ (‘to
toss’), its present tense stem is brosae-, formed
with the theme vowel -e, making its second person
singular form brosaeš’. For verbs with monomor-

3 Predicative adjectives have an additional short form
which only agrees with gender and number since they only
use nominative suffixes. Active participles are inflected as
adjectives.
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t ! č d ! ž s ! š st ! šč
k ! č z ! ž x ! š sk ! šč

g ! ž
p ! pl f ! fl m ! ml
b ! bl v ! vl

Table 3: Russian makes use of phonological alterna-
tion, which it encodes orthographically for some char-
acters.

phemic bases, the class to which the verb be-
longs (and thus what theme vowel it combines
with to form the present tense stem) is not nor-
mally thought to be predictable from its syntac-
tic frame or its semantics. It is an idiosyncratic
(i.e. lexically-conditioned) property which learn-
ers have to memorize for each verb they learn.
For verbs with derived bases the situation is more
complicated, since derivational suffixes systemat-
ically determine the inflection class of a verb. For
example, verbs formed with the highly productive
-ova suffix (beseda, ‘conversation’; besed-ova-t’,
‘converse’) always belong to the e-conjugation.
Transitivity and inflection class are also some-
times related in derived verbs, although not per-
fectly predictably so. For instance, derived verbs
formed with -i (e.g. čist-yj, ‘clean (adj)’; čist-i-
t’, ‘clean (verb)’) tend to be transitive (Townsend,
1975).

Verb stems can also undergo phonological al-
ternation, in which the final consonant of a stem
changes to another when being inflected for cer-
tain parts of the paradigm (e.g. EZDIT’ (‘to ride’)
becomes ezžu in the first person present singular
cell). Further common alternations can be seen in
Table 3.

Finally, both nouns and verbs sometimes
have morphological stress alternations within the
paradigm. These tend to affect high token fre-
quency lexemes, and are thus salient to speak-
ers and learners, but do not affect the majority
of words. Counted by type frequency, more than
97% of nouns have fixed stress throughout the
paradigm (Brown et al., 2007). Stress alternations
are not encoded orthographically.

4 Error Analysis

As mentioned in Section 2, some pre-neural sys-
tems for predicting a novel inflected wordform
from a source wordform focused on inducing edit
operations from one string to another using se-

BUMAŽKA ! BUMAŽEK (‘paper.DIM’)
NOM.SG ! GEN.PL
Gold:

b u m a ž k a
3 b u m a ž e k

+e -a

Predicted:
b u m a ž k a

7 b u m a ž o k
+o -a

Table 4: Sample induced edit rules can be used to com-
pare gold vs. predicted differences in the MED’s output
for error mining. These automatic annotations we sub-
sequently analyzed as missing insertions/deletion and
erroneous insertions/deletions.

quence alignment (Durrett and DeNero, 2013).
These approaches model the differences between
two strings as a series of insert and delete oper-
ations. While the alignment approach has been
superseded by neural models with better perfor-
mance, we re-apply it here in order to automati-
cally compare and group predicted edit operations
vs. gold edit operations. Rather than aligning
source to target forms, we align the gold target
form to the proposed target form from the system.
For example, if a model learning English plurals
incorrectly learned that the ending -en was produc-
tive, we would see a surplus of -s ! -en errors.

Errors viewed in this way often have natural
linguistic interpretations, especially when corre-
lated with the paradigm cells in which they oc-
cur. As seen in Table 4, the model correctly pre-
dicted the zero genitive plural ending for the noun
BUMAŽKA (‘paper.DIM’), but erroneously inserted
an o (bumažok) instead of an e (bumažek). This is
an example of stem alternation in nouns that oc-
curs when there is a zero ending (i.e. nomina-
tive singular or genitive plural, depending on the
class). The vowel inserted is always an e or an o,
but in this case the wrong vowel was selected.

We used the 2016 SIGMORPHON dataset. Al-
though ideally we would like to have had access to
a dataset which more accurately encoded Russian
phonology and stress, to our knowledge no such
corpus exists. Using the SIGMORPHON dataset,
we trained the original MED setup Kann and
Schütze made publicly available4 using the hyper-
parameters they specified. Other input forms, such

4 http://cistern.cis.lmu.de/med/
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as thos used by Cotterell et al. (2018), are possi-
bly more realistic, but we wished to see why in a
controlled setting (i.e. using citation forms) Rus-
sian underperformed as compared to languages
like Spanish and German. We then extracted er-
rors from the MED system’s performance on the
validation set, which had 1,591 wordform predic-
tions in total. In using Durrett and DeNero’s se-
quence alignment approach to isolate the differ-
ences in edit operations, we were able to anno-
tate each error as a missing deletion (-d), an erro-
neous deletion (+d), a missing insertion (-i), or
an erroneous insertion (+i). From here we were
able to group erroneous outputs which contained
the same edit operations. An example of how we
compared and annotated each gold/prediction pair
can be seen in Table 5. We can compare these to
cases where the same edit operations occur in cor-
rect answers. This indicates whether an erroneous
edit is entirely unattested (i.e. noise), or whether it
represents a mis-application of a transform which
would have been legitimate for a different source
word or target paradigm cell.

We find that the system often produced nouns
with the wrong case suffix. In 14% of the to-
tal errors, accounting for 29% of all errors affect-
ing nouns, the MED system produced a form of
the noun that exists, but corresponds to a differ-
ent case than the target one. MED also produced
verbs with inflections corresponding to the wrong
inflection class. These cases account for 10% of
the overall errors and 23% of the verb-specific er-
rors. Other errors involved incorrect edits to the
stem (in all parts of speech). These accounted for
72% of the overall error rate. These cases were
often only a single edit away from the gold word-
form, but were more drastic in other cases. We
investigated how many of these edits represented
mis-applied rules which had been observed else-
where in training. Surprisingly, every erroneous
edit rule discovered in the system output had been
seen in the training data. We include examples of
these error types in Table 7 and summarize the er-
ror rates in Table 6.

Many of the noun case errors involve the
accusative case, and in particular, an incorrect
choice between semantically-conditioned alterna-
tives. As discussed in Section 3, the accusative is
syncretic with the genitive or the nominative, con-
ditioned on animacy. In these errors, the system
proposes an accusative which matches a correctly

inflected form of the word, but not the right one.
For instance, the first row of Table 7 shows the
proposed accusative of OZNOB ‘the chills, shak-
ing’. This matches the genitive form rather than
the nominative, which we can easily diagnose by
looking for cells in the gold paradigm where the
+A edit rule appears.

Verb errors tend to involve alternations charac-
teristic of confusion between i- and e-conjugation
verbs. Stem edits often introduce or delete sounds
which participate in phonologically motivated al-
ternations, but are not restricted to the contexts in
which those alternations legitimately appear.

Error
type

Form

Case 7 OZNOB-A

3 OZNOB-;
7 MEXANIZM-OV

3 MEXANIZM-Y

Verb 7 DOŽD-I-Š’SJA

class 3 DOŽD-E-Š’SJA

Stem 7 REZG-G-OVORČIVY

edits 3 RAZ-;-GOVORČIVY

7 ZA-P-O-ŠČ-ENNYJ

3 ZA-K-A-Č-ENNYJ

7 SANKTPETE-TE-R-B-BUR-
B-ŽCAM

3 SANKTPETE-;-R-;-BUR-;-
ŽCAM

Table 7: Examples of the three main error groups we
found produced by the MED system on the 2016 SIG-
MORPHON dataset. An 7 is an incorrect prediction
and the 3 below is the gold wordform. Empty set sym-
bols (;) indicate an erroneous insertion.

5 Model Improvements

In this section, we incorporate a proxy for lexi-
cal semantics into the model input representations,
leading to improved results. This is useful from
a practical standpoint, but also as a clear demon-
stration that semantic conditioning was responsi-
ble for many of the errors which we discussed in
the previous section.

As our source for semantic information, we use
word embeddings (Mikolov et al., 2013; Socher
et al., 2013; Xu et al., 2015). We concatenate the
output from the bidirectional encoder with the ci-
tation form’s embedding. Equipped with this in-
formation, the model should be able to learn phe-
nomena like the animacy-dependent syncretism
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Gold Predicted Rule Annotation Category
ABSOLJUTISTA ABSOLJUŠČISTA -T+Š+Č +d+i+i phonological alternation
DERŽIŠ’SJA DERŽAEŠ’SJA -I+A+E +d+i+i verb class
ABDOMEN ABDOMENA +A +i animacy

Table 5: An example of the annotation we performed, where ‘-’ indicates ‘missing’ and ‘+’ indicates ‘erroneous’.
Additionally, ‘i’ indicates ‘insertion’ and ‘d’ deletion, so ‘-i’ and ‘+d’ is a missing insertion and erroneous deletion
respectively. Collating the grammatical information in the dataset with these annotation allowed us generalize over
the errors.

Error type Percentage Error Number
Noun class 14% 20
Verb class 10% 15
Stem edits 72% 128

Table 6: A summary of the results from our errors anal-
ysis. Results do not sum to 100% since these are only
the most frequent errors and can co-occur.

discussed above. We have no a priori reason to
expect the model to improve its performance on
verb class errors, since class membership is a lexi-
cal property of the verb stem and not semantically
conditioned. However, verbal derivational mor-
phology can affect a verb’s meaning and also de-
termines its inflection class, so an indirect effect of
semantics is possible. We show below that embed-
dings are also helpful for verbs, an issue we return
to in Section 7.

We modified the original MED code, built in
Blocks,5 so that the output from the encoder could
be concatenated with the 300-dimensional word
embedding from Kutuzov and Andreev (2015).
Since using these embeddings more than doubles
the parameter space of the MED system, the model
takes longer to converge. We therefore allowed
the system to train up to 50 epochs, instead of
the 20 Kann and Schütze needed for their models
to converge. Both the original MED system and
our modified version use early stopping. Once the
model has converged, we evaluate system perfor-
mance by measuring accuracy at the word level.

6 Results

The overall accuracy rates of a single trained MED
system and our system are shown in Table 8. Fol-
lowing Kann and Schütze (2016), we also train
and evaluate ensembles of five models (Table 9).
In each case, our model performs about one per-
centage point better (significant using McNemar’s

5 https://github.com/mila-udem/blocks

test). The jump in significance scores between the
validation and test is due to the relative sizes of
these datasets (1,591 and 22,334, respectively).

System Val Test
MED base system 90.03 88.88
MED + word embeddings 91.95⇤ 90.06⇤⇤⇤⇤

Table 8: Overall results on the validation and test set,
using only a single trained model (ensemble of 1). Sig-
nificance is reported using McNemar’s test where * in-
dicates p < 0.05, ** p < 0.01, *** p < 0.001, and
**** p < 0.0001.

System Val Test
MED base system 92.14 91.49
MED + word embeddings 93.33⇤ 92.38⇤⇤⇤⇤

Table 9: Overall results on the validation and test set,
using an ensemble of 5 trained models (ensemble of 5).
Significance is reported using McNemar’s test where *
indicates p < 0.05, ** p < 0.01, *** p < 0.001, and
**** p < 0.0001.

We reapply our error analysis to determine error
reduction rates by error category. Reductions were
largest in noun cases and verb class, with a reduc-
tion of more than 50% for both. As seen in Table
10, stem edit errors were least improved. For a
breakdown of errors by noun class, see Table 12.

We conduct two other experiments to rule out
alternate accounts of the performance increase.
First, our model with word embeddings has access
to higher-dimensional input for decoding (600 di-
mensions vs. 300), and therefore to more param-
eters. We ran a model with 600-dimensional em-
beddings but no word embeddings, in order to test
whether this could be responsible for the gain, but
found no significant differences from our baseline
system.

Second, we do not expect the word embedding
system to encode inflectional information directly
(since it operates at the word level with no access

407



Error type Decrease in
error rate

Current
error rate

Noun class 64.2% 5%
Verb class 88.1% 1%
Stem edits 44.1% 40%

Table 10: Overall error reduction rates in all three error
types we considered.

to character information). However, we make ab-
solutely sure that this is not the case by retraining
the word embeddings on a stemmed version of our
Russian corpus (processed with the NLTK stemmer
(Bird, 2006)). Performance using these word em-
beddings is not significantly different from our re-
sults using regular word embeddings.

The error reduction rates by category which we
report above are based on the relatively small SIG-
MORPHON 2016 validation set, and do not rep-
resent enough data to conduct statistical analyses
by category or paradigm cell. To further break
down the improvements quantitatively, we created
secondary evaluation sets containing more items.
For nouns, we created a secondary evaluation set
with the Universal Dependency RusSynTag cor-
pus6 since it annotates both animacy and gender.
We removed any nouns that did not have a 1-to-1
feature correspondence with the SIGMORPHON
dataset.7 This gave us a new evaluation set of
48,590 wordforms. Similarly, we also built a sec-
ond evaluation set of 25,000 verb forms from Uni-
morph (Kirov et al., 2016). Although verb con-
jugation class is not directly annotated, we ex-
tracted that information from the second person
singular present indicative form. In both cases, we
removed any word form that also occurred in the
training data.

As seen in Table 11, using word embeddings al-
most halved the error rate of e-conjugation verbs.
It is important to note that the citation form sup-
plied often requires less editing to make an i-
conjugation verb than an e-conjugation verb since
the citation form often has the -i theme vowel.
Since the model has a strong preference for repro-
ducing the input, our modification has minimal ef-
fect for i-conjugation verbs.

6 Freely available here: https://
github.com/UniversalDependencies/UD_
Russian-SynTagRus.git.

7 These were generally cases where features were missing
in the Universal Dependency corpus that were present in the
SIGMORPHON corpus.

Verbs Error
count

Total
words

Error
rate

i-conj 163 516 0.3159
e-conj 430 3191 0.1348

With embed-
dings
i-conj 161 0.3120
e-conj 273 0.0856

Table 11: Verb class-specific error reduction rates from
25,000 randomly sampled verb forms from the Uni-
morph Russian dataset.

Noun
class

SG/PL Error
rate

Error
rate+

Total
count

IA SG 0.2487 0.2132 2340
PL 0.4244 0.3839 1555

IB SG 0.0239 0.0427 1170
PL 0.1818 0.1439 396

II SG 0.0542 0.0274 1753
PL 0.1826 0.1366 805

IIIA SG 0.0736 0.0851 611
PL 0.3016 0.1905 126

Table 12: Noun class-specific error reduction rates in
the accusative case from 48,590 randomly sampled
noun forms from the Universal Dependency RusSyn-
Tag dataset. “Error rate+” indicates the error rate after
adding word embeddings to the MED system. IIIB and
IIIC are not included since there are few nouns and no
accusative errors were produced for them by the MED
system.

Table 12 shows the general reduction in errors
caused by adding word embeddings in various
classes of the accusative. We note that errors in ac-
cusative forms increase only in class/number com-
binations that do not exhibit animacy-conditioned
syncretism (i.e. singular of classes IB and IIIA).

7 Discussion

What inflectionally useful information is present
in the word embeddings? As previously stated,
we assume that word embeddings give good clues
for noun animacy, but verbs form is not directly
conditioned by semantic properties, so we have
no a priori reason to assume they will indicate
verb conjugation. To test whether these features
can be derived from the embeddings, we construct
maxent classifiers,8 with only word embeddings as

8We use Daumé III (2004)’s implementation avail-
able here: http://users.umiacs.umd.edu/˜hal/
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features, for two binary classification tasks: ani-
mate vs. inanimate for nouns and i-conjugation
vs. e-conjugation for verbs. Using the same two
datasets described in Section 6 for testing nouns
and verb class error reduction, we extracted the
verb class and animacy annotation along with the
citation form’s word embedding to create a classi-
fication task. With a baseline accuracy rate of 80%
for both tasks (i.e. selecting the majority class),
both classifiers were more than 98% correct.

We were unsurprised that animacy could be de-
tected in this way, since word embeddings are al-
ready used in high-performance models for this
kind of lexical feature (Moore et al., 2013; Ru-
binstein et al., 2015). The model’s success for
verbs is more surprising. One possible explana-
tion is that Russian verb classes are indirectly re-
lated to lexical semantics (Aktionsart). As noted
above, derivational suffixes determine the inflec-
tion class membership of verbs. Some derivational
affixes also create verbs with predictable lexical
aspectual properties (e.g. -nu creates semelfac-
tives) (Isačenko, 1960; Janda, 2007; Dickey and
Janda, 2009), and these semantic properties might
be detectable from word embeddings alone. 9 An-
other possibility is that the predictability of verb
class reflects the historical origins of some Rus-
sian verbs. Subclasses of verbs borrowed from
Church Slavonic tend to have predictable assign-
ments to classes, and also to be more bookish, ab-
stract or metaphorical than native Russian terms
(Townsend, 1975; Cubberley, 2002), which may
render them recognizable to a distributional sys-
tem. In any case, the classifier results validate our
explanation of why our model improves by show-
ing that the word embeddings do contain the infor-
mation which the model needs to accurately pre-
dict semantically-conditioned allomorphs.

At a higher level, this highlights the issue of
semantic conditioning as one which should be
taken seriously in models of inflection and the
PCFP. Current neural models, which take only
word forms but not meanings as input, are insen-

megam/version0_3/.
9Since the data are not tagged for derivational morphol-

ogy or lexical aspect, it is difficult to assess whether this is
a cause of the model’s improvement. Given that certain lexi-
cal aspects align more naturally with one grammatical aspec-
tual value (perfective or imperfective), we examined whether
there is a relationship between verb class and grammatical
aspect. We found no correlation in the training or validation
data, but this does not rule out the possibility of a lexical se-
mantic effect.

sitive to this kind of conditioning. They there-
fore yield overestimates of how difficult it is to ac-
quire and use some morphological systems, such
as Russian.

Although our error analysis methods and model
extension focused on LMU’s 2016 implementa-
tion of MED, more recent systems (Aharoni and
Goldberg, 2017; Kann and Schütze, 2017) are sub-
ject to the same criticisms, since they use the same
input representation. In this paper, we focus on
Russian, as a language with lower-than-average
performance in an inflection task and with a well-
described system of inflection classes and alterna-
tions. However, we believe it is worth looking
for similar effects in less well-studied languages
as well, particularly given the wide range of lan-
guages now represented in Unimorph (Kirov et al.,
2016).

8 Conclusion

Neural networks are a promising technology for
cognitive models of a variety of language process-
ing tasks. Their ability to learn flexible represen-
tations of complex, multidimensional data allows
them to cover a wide range of linguistic phenom-
ena which were difficult to model in more tra-
ditional frameworks. In morphology, this corre-
sponds to adopting an “a-morphous” framework
in which we do not need to commit to the exis-
tence of troublesome constructs like segmentable
morphemes. But the adoption of neural nets as
cognitive models has demanded a new focus on in-
terpretation. It has become increasingly clear that
networks are useful models only to the extent that
we can compare what they are learning to what
humans learn, and that this is a challenging area
of research in its own right.

This work presents a new way to evaluate mor-
phological inflection systems in a linguistically
sensitive manner by repurposing previous work
in edit rule induction to analyze and group error
types. This allows us to attribute errors in inflec-
tion generation to specific, interpretable phenom-
ena. We make our code and our expanded datasets
publicly available for future use.10

We use this new method to discover that
semantically- and lexically-conditioned allomor-
phy are responsible for a shortfall in inflection per-
formance (and thus an overestimate of PCFP com-
plexity) for Russian. Using word embeddings as

10https://github.com/DavidLKing/SCiL-20.
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a proxy for lexical semantics allows us to sup-
plement the model’s input and greatly reduce this
source of error. In the future, we will investigate
which other languages might show semantically-
conditioned allomorphy, potentially even discov-
ering semantic effects in languages where they
were not previously known to exist. We will also
apply our analysis technique to other models and
languages, helping to close the gap between neural
reinflection systems and full-scale cognitive mod-
els of the PCFP.
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