
Tier-Based Strictly Local Stringsets:
Perspectives from Model and Automata Theory

Dakotah Lambert
Stony Brook University

Department of Linguistics
dakotah.lambert@stonybrook.edu

James Rogers
Earlham College

Department of Computer Science
jrogers@cs.earlham.edu

Abstract

Defined by Heinz et al. (2011) the Tier-Based
Strictly Local (TSL) class of stringsets has
not previously been characterized by an ab-
stract property that allows one to prove a
stringset’s membership or lack thereof. We
provide here two such characterizations: a gen-
eralization of suffix substitution closure and an
algorithm based on deterministic finite-state
automata (DFAs). We use the former to prove
closure properties of the class. Additionally,
we extend the approximation and constraint-
extraction algorithms of Rogers and Lambert
(2019a) to account for TSL constraints, allow-
ing for free conversion between TSL logical
formulae and DFAs.

1 Tier-Based Strict Locality

The class of Strictly k-Local stringsets (SLk), first
described by McNaughton and Papert (1971), is
well known, with learning algorithms from Garcia
et al. (1990) and a decision algorithm stemming
from Caron (1998) that led to constraint-extraction
algorithms from Rogers and Lambert (2019a). A
superclass of this, defined by the application of
a Strictly k-Local grammar to the output of an
erasing homomorphism (which may be the identity
map) was introduced by Heinz et al. (2011) as the
Tier-Based Strictly k-Local sets of strings.

In this paper, we introduce a purely relational
view of TSL. From this, we derive a generalization
of the abstract characterization of the Strictly k-
Local stringsets for their tier-based cousins, extend
the known approximation and constraint-extraction
algorithms to this class, and introduce a type of
alphabet-agnostic finite-state automaton, and oper-
ations thereon, useful in building representations
of stringsets from logical formulae.

In demonstration of the abstract characterization
of the class, we prove that TSL is not, in general,
closed under any of the Boolean operations. We

demonstrate in contrast that intersection closure
does hold when the tier alphabets are the same.
We then investigate and classify some specific lin-
guistic examples, namely the one-stress constraint,
the liquid dissimilation of Latin, and the backness
harmony of Uyghur.

2 Relational Word Models

We begin by defining a relational word model in
the same way as Rogers and Lambert (2019b). A
relational structure in general is a set of domain
elements, D, augmented with a set of relations of
arbitrary arity, Ri ✓ Dni . Let w be a string over
some alphabet ⌃. Then a word model for w is a
structure:

MRi
⌃ (w) , hDw,�w,ow,nw, Rii�2⌃.

where Dw is isomorphic to an initial segment
h0, 1, . . . , |w| + 1i of the natural numbers and rep-
resents the positions in own, each �w (in addition
to ow and nw) is a unary relation that holds for
all and only those positions at which � (or o or
n, respectively) occurs, and the remaining Ri are
the other salient relations, such as the standard
successor or precedence relations (denoted in this
paper by C and <, respectively). Note that the
set {�w,ow,nw}�2⌃ is a partition of Dw. As a
minor abuse of notation, we allow symbols to refer
to their associated relations, and we allow sets of
relations of the same arity to be read as the disjunc-
tion of their pointwise application. Figure 1 shows
three different word models for the string “abab”,
where each cell represents a domain element, each
cell’s label is the alphabetic unary relation that ele-
ment satisfies, and the edges represent the indicated
relation. The tier-successor relation, C⌧ , will be
defined shortly hereafter.

The class of Strictly k-Local stringsets over a
tier ⌧ ✓ ⌃, TSL⌧

k, was originally described as

330
Proceedings of the Society for Computation in Linguistics (SCiL) 2020, pages 330-337.

New Orleans, Louisiana, January 2-5, 2020

o a b a b n
C

o a b a b n
C{a}

o a b a b n
<

Figure 1: Three word models for the string “abab”, the
first variant under the standard successor relation, the
second under the tier-successor relation on the alphabet
{a}, and the last under the precedence relation.

those characterized by a set of Strictly k-Local con-
straints on the output of an erasing homomorphism
(Heinz et al., 2011). Note that it can be assumed
that the tier alphabet always contains o and n.
Here we suggest an alternative perspective based
on relational word models and define a relation
appropriate for describing this class.

The standard successor relation is the transitive
reduction of the precedence relation and is first-
order definable from the latter as follows:

x C y , (x < y) ^
�
8z
�⇥

¬(x z y)
⇤
.

With minor modification, we can instead use the re-
striction of the precedence relation to the intended
tier-alphabet and derive a similar relation:

x C⌧ y , T (x) ^ T (y) ^ (x < y)

^
�
8z
�⇥

¬
�
T (z) ^ (x z y)

�⇤
.

This definition is equivalent to the standard suc-
cessor relation after erasing symbols not in the in-
tended tier alphabet, and through this equivalence
we use this tier-successor relation as our basis for
describing TSL stringsets and constraints. By ex-
tension, this relation should be useful in describing
the yet unexplored Boolean closure of TSL⌧ formu-
lae, which we call Tier-Based k-Locally Testable
analogously to the Locally Testable and Piecewise
Testable classes characterized by McNaughton and
Papert (1971) and Simon (1975), respectively. We
will revisit this in section 8.

In order to avoid doubling sub- and superscripts,
the tier-successor relation over tier ⌧ is written
C[⌧] when it appears in such a position.

3 Windows and Factors

Given a homogeneous relation R of arity a, the set

WR
a (x1) ,

�
x1 . . . xa : hx1, . . . , xai 2 R

is the set of windows of length a (a-windows) that
begin with x1. The set of windows of length n > a

is defined inductively:

WR
i+1(x1) ,

�
x1 . . . xi+1 :

x1 . . . xi 2 WR
i (x1) and

hxi�a+2, . . . , xi+1i 2 R

.

Informally, each n-window is a sequence of po-
sitions that can be formed from a sequence of
overlapping a-windows, the latter being sequences
formed directly from the tuples in R. In order
to discuss windows shorter than the arity of their
defining relation, we say that any of the affixes of
an n-window of length m < n is an m-window
from an appropriate starting point. Let the first po-
sition of a string x be denoted by p0 and the final
one by pf , then define the length of x under the
relation R as the size of the largest window that
can be formed in x:

|x|R , max
n

n :
�
9v
�⇥

vpf 2 WR
n (p0)

⇤o
.

If R is a binary relation for which the transitive
closure is asymmetric, such as the < relation or its
reductions used in this paper, |x|R is finite when-
ever x is itself finite.

Let ⌃̂ = ⌃ [{o,n}. A string s = �̂1�̂2 . . . �̂k

for �̂i 2 ⌃̂ is a k-factor of a string t under the rela-
tion R, s vR t, iff for some position p 2 Dt there
is some k-window w1w2 . . . wk 2 WR

k (p) such
that each �̂i holds for the corresponding wi. For ex-
ample, one can use Figure 1 to see that for both the
C{a} and < relations, it holds that aa v oababn,
but not for C. Additionally, abb v oababn for <
but neither for C nor for C{a}.

Define the set of all k-factors of w as follows:

FR
k (w) ,

�
s : |s| = k and s vR w

.

Additionally, define the set of factors of width at
most k as one would expect:

FR
k (w) ,

[

1ik

�
FR

i (w)
�
.

Note that a window is distinct from a factor in that
the former is a sequence of positions while the
latter describes a string of symbols that occupies
such a sequence of positions.

Following Rogers and Lambert (2019b), we say
a function f : Xn ! X is conservative iff f pre-
serves well-formedness of its inputs and it holds
that for all possible inputs:

FR
k

�
f(x1, . . . , xn)

�
✓
[

1in

�
FR

k (xi)
�
.

331

For strings inserting and deleting symbols other
than end-markers preserves well-formedness. Note
that conservativity of an operation depends on R,
k, and the domain; for example, while inserting
or deleting symbols not in ⌧ is conservative under
C⌧ (since C⌧ ignores them), the insertion is not
conservative under <.

A factor f may be taken as a logical proposition
that f occurs. A word model M(w) satisfies such
a proposition, M(w) |= f , iff f v w. Satisfaction
of a set of factors is considered disjunctively, and
the Boolean connectives hold their usual meaning.

If ' is an arbitrary logical sentence using these
constructions, the models of ' are the structures:

Mod(') ,
�
M : M |= '

,

and one can say that ' represents the stringset:

L(') ,
�
w : M(w) 2 Mod(')

.

Any stringset definable in this way is said to be
locally definable under the relations in question,
as an extension of the notion of locality used by
McNaughton and Papert (1971). A logic further
restricted to ' of the form:

' =
^�

¬fi

�

where each fi is a factor (a conjunction of nega-
tive literals) characterizes those stringsets that are
locally definable in the strict sense.

The Strictly k-Local stringsets and their tier-
based cousins are definable by a set of permitted
k-factors over the appropriate relation G ✓ ⌃̂k.
We call such G a grammar. Since for a finite alpha-
bet there are only finitely many k-factors, we could
equivalently use the complement of G, denoted G.
Then the stringset is locally definable in the strict
sense by taking ' =

V
(¬f 2 G).

Any stringset locally definable in the strict sense
is closed under any operation conservative under
the appropriate relations and factor width, because
if no factor of any input is forbidden and the op-
eration does not introduce new factors, the output
cannot contain a forbidden factor.

4 Substitution of (Preprojective) Suffixes

A property is said to characterize a class iff all
members of the class have the property and all
objects that have the property are members of the
class. For example, the Strictly k-Local stringsets
are characterized by closure under substitution of

suffixes (Rogers and Pullum, 2011). When two
strings in an SLk set share a factor of width k � 1,
the portions following this shared factor in each
may be swapped to obtain new strings in the set. In
order to describe an analogous property for TSL,
first define the projection of w onto ⌧ as follows:

⇡⌧ (w) , F
C[⌧]

|w|C[⌧](w).

In other words, ⇡⌧ (w) is the set of C⌧ factors in
w the same length as the longest such factor. It
can be shown that this is singleton and equivalent
to the standard projection operation. We omit tier
specifications when they are clear from context.
Following mathematical tradition, we abuse nota-
tion and use ⇡⌧ (w) to refer to its single element.

To move freely between strings and projections,
we note the following:

Lemma 1. If a stringset L over some alphabet ⌃
is closed under insertion and deletion of symbols
outside of some ⌧ ✓ ⌃, then w 2 L iff ⇡⌧ (w) 2 L.

Proof. Let L be so closed. If w in L, then by clo-
sure under deletion, ⇡⌧ (w) 2 L. If ⇡⌧ (w) 2 L,
then by closure under insertion, w 2 L.

Definition 1 (Preprojective Suffix Substitution).
Let ⌃ be an alphabet and ⌧ ✓ ⌃ a tier-alphabet.
Let w1 = u1x1v1 and w2 = u2x2v2 be strings over
⌃⇤ such that ⇡⌧ (x1) = ⇡⌧ (x2). We then say the
substrings x1 and x2 are projectively shared factors
of size k = |x1|C[⌧] and the string w3 = u1x1v2 is
formed by ⌧ -preprojective suffix substitution.

For strings on ⌧⇤, preprojective suffix substitu-
tion is identical to the standard suffix substitution
under which SL stringsets are closed. Further, re-
call that insertion and deletion of symbols outside
of ⌧ is conservative, and so TSL stringsets are
closed under these operations. Preprojective suffix
substitution is equivalent to projecting onto ⌧ , per-
forming suffix substitution on the restricted domain,
then doing an inverse projection by reinserting the
symbols that were removed earlier. Since each step
is conservative, preprojective suffix substitution is
as well, so TSL stringsets are closed thereunder.
More interesting is the following:

Theorem 1. All stringsets closed both under in-
sertion and deletion of symbols outside of some
tier alphabet ⌧ and under ⌧ -preprojective suffix
substitution for some factor size k are TSL⌧ .

Proof. Let L be a stringset so closed. Since L is
closed under ⌧ -preprojective suffix substitution, its

332

projection to ⌧ (⇡⌧ (L)) is closed under suffix sub-
stitution and is thus SLk. Further, for any w 2 ⌃⇤

such that ⇡⌧ (w) is in ⇡⌧ (L), Lemma 1 guarantees
that w is itself in L (and vice versa). Thus by defi-
nition, L is TSL⌧

k.

Since all TSL stringsets are closed under these
operations and all stringsets so closed are TSL, this
combination of closures characterizes TSL.

5 Closure Properties

One constraint that is nearly universal in phonotac-
tics is that one and only one syllable with primary
stress (�́) occurs in a given word (Hyman, 2009).
Despite the fact that this constraint as a whole is
neither Strictly Local nor Strictly Piecewise, it is
TSL

{�́}
2 , as witnessed by the following formula:

¬on ^ ¬�́�́.

While similar formulae show that TSL⌧
n+1 can

require that n instances of arbitrary elements from
⌧ occur, we can prove, for example, that no TSL
stringset can recognize exactly the set of strings
containing both ‘a’ and ‘b’. Since TSL is closed
under deletion of non-tier symbols and “ab” is in L
but neither “a” nor “b” is itself in L, it is necessarily
the case that both symbols would have to be on the
tier alphabet for any TSL grammar that recognizes
L. Using strings formed from these symbols alone,
we can demonstrate failure of preprojective suffix
substitution closure for TSL3:

w1 = o aa bn 2 oLn
w2 = ob aa n 2 oLn
w3 = o aa n 62 oLn.

In fact, by making the shared ‘a’ factor be of width
k � 1 rather than 2, it can be shown that no TSLk

grammar can describe exactly the set of strings
containing both ‘a’ and ‘b’. This is despite the
fact that each can be required individually by a
TSL2 grammar over an appropriate tier. In other
words, TSL is not closed under intersection when
the tier alphabets may differ. Interestingly, the set
of strings containing exactly one instance of both
‘a’ and ‘b’ is recognized by a TSL3 grammar since
its projection to the {a, b} tier is finite and thus SL:
^

{¬on, ¬oan, ¬obn, ¬aa, ¬bb, ¬aba, ¬bab}.

Although TSL is not in general closed under
intersection, the following holds:

Theorem 2. If L1 2 TSL⌧
k1

and L2 2 TSL⌧
k2

,
then the intersection L1 \ L2 2 TSL⌧

max (k1,k2).

Proof. Let L1 and L2 be as stated, and further let
L = L1 \ L2 and k = max (k1, k2). Then L is
closed under insertion and deletion of symbols out-
side of ⌧ because for any w 2 L, by definition
w 2 L1 and w 2 L2, and both of these sets are so
closed. L is closed under substitution of prepro-
jective suffixes by the same reasoning. Then by
Theorem 1, L is TSL⌧

k.

This theorem fails to hold for intersections of
TSL stringsets over different tiers because the clo-
sure properties do not hold on both operands.

We can also show that TSL is not closed under
union by demonstrating that the set of strings where
all instances of ‘a’ precede all those of ‘b’ is TSL
(¬ba), and that where all instances of ‘b’ precede
all those of ‘a’ is TSL (¬ab), but their union is not:

ob ak�1 n

o ak�1 bn

ob ak�1 bn.

In general, to prove that a stringset is TSL one
needs only provide the grammar. To show that a
stringset cannot be TSL, one can use insertion or
deletion closure to determine some symbols that
must be on the tier alphabet and then use strings
formed from only those symbols to demonstrate a
failure of closure under substitution of preprojec-
tive suffixes. We leave as an exercise for the reader
to show that TSL is not closed under complement,
nor (since ⌃⇤ is TSL) under relative complement.

6 Linguistic Examples

There are several TSL linguistic phenomena. Any
Strictly k-Local pattern over an alphabet ⌃ can
be described by a TSL⌃

k grammar as well. Of
course, this is uninteresting as we generally want
to describe these phenomena with a lowest measure
of complexity. The TSL class is motivated by the
set of patterns that it can capture that SL does not.

One such pattern is the one-stress constraint de-
scribed at the beginning of the previous section.
The two sub-constraints that comprise it, namely
that some syllable with primary stress occurs and
that no more than one such syllable occurs, are
coSL1 (coSP1) and LTT1,2 (SP2), respectively,
under standard adjacency and precedence accounts.

333

Though this constraint is neither purely SP nor
purely SL, it can be described using TSL alone.

This particular kind of TSL constraint demon-
strates applicability when long-distance dependen-
cies are in effect. As another example, let us con-
sider the simple SL2 constraint that is alternation:

^
{¬ll, ¬rr}.

If this constraint is applied on the tier of liquids
(here only “l” and “r”), then the result is a dissimi-
lation constraint like that of Latin as described by
Cser (2010). The pattern described by Cser is a bit
more involved, though: the dissimilation is blocked
by non-coronal consonants. A TSL description ac-
counts for these blockers: in addition to the liquids,
the non-coronal consonants are on the tier as well.

Let us look now at an attested non-TSL pattern.
In the previous section we described a method to
prove that a given stringset is not TSL, and we will
apply that here to the backness harmony in Uyghur
as described by Mayer and Major (2018). The
cited paper contains a full description of the pat-
tern, but a simplification is as follows. Vowels and
consonants both have harmonizing and transparent
instances. Here we consider only the front/back
vowel pair “y” and “u” and the back consonant “q”.
A suffix harmonizes to the rightmost harmonizing
vowel if there is one, else with the rightmost har-
monizing consonant if there is one, else the result
is unspecified. We will ignore the final clause here.

We can prove that each of “y”, “u”, and “q” must
be on the tier by constructing a stem of transparent
segments and an affix that contains a harmonizing
vowel. Inserting a harmonizing segment of mis-
matched backness into the stem causes an other-
wise acceptable word to be rejected, and thus each
of these three segment types must be on the tier.
The following demonstrates a failure of closure
under substitution of preprojective suffixes:

oy qk yn

ou qk un

oy qk un

It then follows that this pattern is not TSL for any
choice of parameters.

In this section, we have again shown that the one-
stress constraint and Latin liquid dissimilation are
TSL by providing grammars with appropriate pa-
rameters, and we have used the methodology of the

previous section to prove that backness harmony in
Uyghur is not TSL for any parameters.

7 Multiple Relations, Additional Tiers

We proved earlier that TSL⌧ is closed under inter-
section, but TSL in general is not. In this section,
we discuss the intersection of TSL stringsets of
incompatible relations (i.e. unequal tier alphabets).
This is the complexity class inhabited by those
stringsets that can be described by a coöccurrence
of several TSL constraints operating over tier al-
phabets that are not necessarily equal.

The intersection of TSL⌧i stringsets (1 i n)
is locally definable in the strict sense when each
forbidden factor is considered with respect to its
own relation. Operationally this would be equiva-
lent to using n distinct projective tiers, a concept
explored by De Santo and Graf (2019) and referred
to as MTSL. For T =

S
1in(⌧i), it is clear

that insertion and deletion of symbols outside of
T remains conservative. Yet T -preprojective suffix
substitution no longer is; a slight modification is
required in order to obtain this property:

Definition 2 (Generalized Preprojective Suffix Sub-
stitution). For two strings w1 = u1x1v1 and
w2 = u2x2v2 where:

�
8i
�⇥

(|x1|C[⌧i] � k � 1

_ ⇡⌧i(x1) = ⇡⌧i(w1))

^ (|x2|C[⌧i] � k � 1

_ ⇡⌧i(x2) = ⇡⌧i(w2))

^ ⇡⌧i(x1) = ⇡⌧i(x2)
⇤
,

the string w3 = u1x1v2 is formed by the more
general {⌧i}-preprojective suffix substitution.

In words, on each tier, x1 and x2 have equal pro-
jections, which are either of length at least k � 1
or equal to the projection of each word. This gen-
eralized operation is conservative, as the shared
x substrings are guaranteed to have sufficiently
many tier-symbols to allow for suffix-substitution
on each projected tier. Therefore closure under
this operation, and under insertion and deletion of
symbols outside of the union of the tier alphabets,
is necessary for a stringset to be in MTSL. Like
the pumping lemma for Regular stringsets, lack of
these closures can then be used to disprove class
membership. It is provably not a characterization,
which, like the Myhill-Nerode theorem, would al-
low the closures to constitute proof of membership.

334

1 2 3
x y

y, ? x, ? x, y, ?

<

1 2 3
x y

C

Figure 2: The factor oxyn under multiple relations.

8 Logical Formulae and Automata

In this section, we briefly discuss the construc-
tion of finite-state automata for locally definable
stringsets under each of the C, <, and C⌧ rela-
tions (defining Local, Piecewise, and Tier-Local
classes, respectively). In building automata that
represent arbitrary logical formulae, one could ei-
ther determine an appropriate alphabet beforehand
or construct automata in such a way that only nec-
essary symbols are considered. Here we use the
latter approach, introducing a placeholder ? for
potential other symbols. We define a DFA by a five-
tuple A = h⌃, Q, �, qo, F i where ⌃ is an alphabet,
Q a set of states, � a (partial) transition function,
qo an initial state, and F a set of final states.

The simplest case is the Piecewise formulae, as
anchors do not affect <. For a string �1 . . .�n re-
lated by <, define ⌃ = {�1, . . . ,�n, ? } and con-
struct a set of states {q1, . . . , qn+1} and a transition
function of the form:

�(qi,�) =

(
qi+1 if � = �i

qi otherwise.

For qo = q1 and F = {qn+1}, this reflects our
intention, that the factor �1 . . .�n under < occurs.
Figure 2 shows the automaton constructed for the
factor oxyn.

For factors defined using adjacency instead of
precedence, we begin with fully anchored factors
of the form o�1 . . .�nn. The construction is the
same as for Piecewise factors, except that the tran-
sition function is only defined for (qi,�i). For
factors that are not fully anchored, concatenate ⌃⇤

to the side(s) missing an anchor (and determinize
and minimize as appropriate). Figure 3 shows the
less-anchored versions of oxyn.

In order to transform an adjacency factor into a
tier-adjacency factor, note that the former is sim-
ply the projective image of the latter. Since the
C⌧ relation does not attend to non-tier symbols,
insertion of such a symbol at a given state must
lead to a Nerode-equivalent state. Since the DFAs
we are using here are minimal, it follows that each

1 2 3
x

?

y

y, ? x x, y, ?

xy

1 2 3
x y

x, y, ?

oxy

1

2

3

x

?

y

x

y, ?

y, ?

x

xyn

Figure 3: The factors xy, oxy, and xyn under C.

1 2 3
x y

? ? x, y, ⌧ \ {x, y}, ?

Figure 4: The factor oxy under C⌧ .

state should have a self-loop on all non-tier sym-
bols. Thus we can first replace all instances of ?

by parallel edges on each symbol in ⌧ \ {x, y}, and
then add a self loop on ? to each state to account
for symbols not on the tier. Figure 4 shows this
transformation applied to the factor oxy.

Given these constructions for individual fac-
tors, unary operations such as the complement
or iteration-closure are the standard automata-
theoretic operations. For binary operations, given
automata A1 and A2 whose alphabets are ⌃1 and
⌃2, add transitions on ⌃2 \ ⌃1 to A1 in parallel
to all existing transitions on ? and similarly on
⌃1 \ ⌃2 to A2, then apply the standard automata-
theoretic operation as usual. This use of a distinct
placeholder symbol allows constraints to be defined
by automata of minimal alphabet that expand in a
way that preserves their semantics.

With these constructions, we can create DFAs for
any stringsets definable by Boolean combinations
of SL, SP, and TSL formulae, including among
other things MTSL. Concatenation of automata for
sequences of (Tier-)Local factors yields Piecewise-
(Tier-)Local ones (Rogers and Lambert, 2019b).
Boolean operations on these would yield Multi-
Tier-Based Piecewise-Locally Testable stringsets:
Boolean combinations of factors defined by oc-
currence, in order if not adjacently, of blocks of
symbols on any of a number of projective tiers.

335

9 Deconstructing Automata

Since TSL⌧ stringsets are closed under insertion of
symbols not in ⌧ , any transition on such a symbol
from a given state must lead to a Nerode-equivalent
state. Thus in a minimal DFA, such transitions are
necessarily self-loops. Let A = h⌃, Q, �, qo, F i
be a minimal DFA and define:

⌧ =
n
� :

�
8q
�⇥
�(q,�) = q

⇤o
.

The projection of A to ⌧ (⇡⌧ (A)) is the result
of replacing all transitions on symbols from ⌧ by
transitions on ", and since these transitions are all
self-loops, this is equivalent to simply removing
them. Then A represents a TSL⌧

k stringset iff this
projection represents an SLk one. The algorithms
of Rogers and Lambert (2019a) can then be used to
extract SL constraints from the projection, which
of course are the TSL⌧ constraints of A itself. Use
of these algorithms provides a simple way to test
whether an arbitrary Regular stringset is TSL⌧

k, and
if so, for which parameters k and ⌧ and even which
grammar.

On the other hand, if L(A) was not TSL, then
since the extracted SL constraints describe the
smallest SL superset of L

�
⇡⌧ (A)

�
, it follows that

they then also describe the smallest TSL⌧ superset
of L(A). That said, there may be smaller TSL
supersets over different tiers.

10 Conclusions

The Tier-Based Strictly k-Local (TSLk) class of
stringsets was introduced by Heinz et al. (2011) and
the question of what an abstract characterization
for the class might be has remained open until now.
We introduced here an abstract characterization,
which can be used to provably state whether or not
a given stringset is in the class. We then used this to
prove various closure properties of the class itself.
As TSL is not closed under intersection (but TSL⌧

for fixed ⌧ is), we discussed its intersection closure
(MTSL) and provided a property that is necessary
to be in MTSL. Failure to satisfy this property thus
proves that a stringset is not in this class.

Further, to better integrate the TSL class with
the other Piecewise-Local classes on the Subregular
hierarchy, we introduced a tier-successor relation
and associated logical formulae. We then described
a method to construct deterministic finite-state au-
tomata from such formulae in order to harness
the plentiful library of existing automata-theoretic

tools. Finally, we used our abstract characteriza-
tion to demonstrate a method of factoring a TSL
automaton into individual constraints and a method
of finding the constraints that produce the small-
est TSL superset of a given non-TSL automaton.
This provides a means to determine whether an
arbitrary regular stringset is TSL⌧

k, and if so, for
which parameters.

11 Future Work

We would like to explore linguistic applications of
the Tier-Based extensions to the other classes in the
piecewise-local subregular hierarchy, such as the
Tier-Based Locally Testable stringsets hinted at in
section 2 or the arbitrary formulae from section 8.
For example, it would appear that Uyghur backness
harmony might be MTLT, where the existence
of harmonizing vowels can turn off the constraint
referencing consonants.

Acknowledgments

The authors would like to thank Jeffrey Heinz at
Stony Brook University for his contributions to the
study of piecewise-local subregularity. We would
also like to thank the anonymous reviewers for their
detailed and useful feedback.

References
Pascal Caron. 1998. LANGAGE: A Maple package

for automaton characterization of regular languages.
In Derick Wood and Sheng Yu, editors, Automata
Implementation, volume 1436 of Lecture Notes in
Computer Science, pages 46–55. Springer Berlin /
Heidelberg.

András Cser. 2010. The -alis/-aris allomorphy revis-
ited. In Franz Rainer, Wolfgang Dressler, Dieter
Kastovsky, and Hans Christian Luschützky, editors,
Variation and Change in Morphology: Selected Pa-
pers from the 13th International Morphology Meet-
ing, pages 33–52. John Benjamins Publishing Com-
pany, Vienna, Austria.

Aniello De Santo and Thomas Graf. 2019. Structure
sensitive tier projection: Applications and formal
properties. In Raffaella Bernardi, Greg Kobele, and
Sylvain Pogodalla, editors, Formal Grammar 2019,
volume 11668 of Lecture Notes in Computer Sci-
ence, pages 35–50. Springer Verlag.

Pedro Garcia, Enrique Vidal, and José Oncina. 1990.
Learning locally testable languages in the strict
sense. In Proceedings of the 1st International Work-
shop on Algorithmic Learning Theory, pages 325–
338, Tokyo, Japan.

336

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tan-
ner. 2011. Tier-based strictly local constraints for
phonology. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Short Papers, volume 2, pages 58–64, Portland, Ore-
gon. Association for Computational Linguistics.

Larry M. Hyman. 2009. How (not) to do phonologi-
cal typology: The case of pitch-accent. Language
Sciences, 31(2–3):213–238.

Connor Mayer and Travis Major. 2018. A challenge
for tier-based strict locality from Uyghur backness
harmony. In Annie Foret, Greg Kobele, and Sylvain
Pogodalla, editors, Formal Grammar 2018, volume
10950 of Lecture Notes in Computer Science, pages
62–83.

Robert McNaughton and Seymour A. Papert. 1971.
Counter-Free Automata. MIT Press.

James Rogers and Dakotah Lambert. 2019a. Extract-
ing Subregular constraints from Regular stringsets.
Journal of Language Modelling, 7(2):143–176.

James Rogers and Dakotah Lambert. 2019b. Some
classes of sets of structures definable without quan-
tifiers. In Proceedings of the 16th Meeting on the
Mathematics of Language, pages 63–77, Toronto,
Canada. Association for Computational Linguistics.

James Rogers and Geoffrey K. Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Informa-
tion, 20(3):329–342.

Imre Simon. 1975. Piecewise testable events. In Hel-
mut Brakhage, editor, Automata Theory and For-
mal Languages, volume 33 of Lecture Notes in
Computer Science, pages 214–222. Springer Verlag,
Berlin.

337

