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Abstract
This paper models phonetic and phonologi-
cal learning as a dependency between random
space and generated speech data in the Gener-
ative Adversarial Neural network architecture
and proposes a methodology to uncover the
network’s internal representation that corre-
sponds to phonetic and phonological features.
A Generative Adversarial Network (Goodfel-
low et al. 2014; implemented as WaveGAN
for acoustic data by Donahue et al. 2019) was
trained on an allophonic distribution in En-
glish, where voiceless stops surface as aspi-
rated word-initially before stressed vowels ex-
cept if preceded by a sibilant [s]. The net-
work successfully learns the allophonic alter-
nation: the network’s generated speech signal
contains the conditional distribution of aspira-
tion duration. Additionally, the network gener-
ates innovative outputs for which no evidence
is available in the training data, suggesting that
the network segments continuous speech sig-
nal into units that can be productively recom-
bined. The paper also proposes a technique for
establishing the network’s internal representa-
tions. We identify latent variables that directly
correspond to presence of [s] in the output. By
manipulating these variables, we actively con-
trol the presence of [s], its frication amplitude,
and spectral shape of the frication noise in the
generated outputs.

1 Introduction

Modeling phonetic and phonological data with
neural networks has seen a rapid increase in the
past few years (Alderete et al. 2013; Avcu et al.
2017; Alderete and Tupper 2018; Mahalunkar and
Kelleher 2018; Weber et al. 2018; Dupoux 2018;
Prickett et al. 2019; Pater 2019, for cautionary
notes, see Rawski and Heinz 2019). The major-
ity of existing computational models in phonol-
ogy, however, model learning as symbol manipu-
lation and operate with discrete units—either with

completely abstract made-up units or with discrete
units that feature some phonetic properties that
can be approximated as phonemes. This means
that either the phonetic and phonological learn-
ing are modeled separately or one is assumed to
have already been completed with a pre-assumed
level of abstraction (Martin et al., 2013; Dupoux,
2018). This is true for both proposals that model
phonological distributions or derivations (Alderete
et al., 2013; Prickett et al., 2019) and featural or-
ganizations (Faruqui et al., 2016; Silfverberg et al.,
2018).

Most models in the subset of the proposals that
operate with continuous phonetic data assume at
least some level of abstraction and operate with
already extracted features (e.g. formant values)
on limited “toy” data (e.g. Pierrehumbert 2001;
Kirby and Sonderegger 2015 for a discussion, see
Dupoux 2018). Guenther and Vladusich (2012),
Guenther (2016) and Oudeyer (2001, 2002, 2005,
2006), for example, propose models that use sim-
ple neural maps that are based on actual corre-
lates of neurons involved in speech production in
the human brain (based on various brain imaging
techniques). Their models, however, do not oper-
ate with raw acoustic data (or require extraction of
features in a highly abstract model of articulators;
Oudeyer 2005, 2006), require a level of abstrac-
tion in the input to the model, and do not model
phonological processes — i.e. allophonic distri-
butions. Phonological learning in most of these
proposals is thus modeled as if phonetic learning
(or at least a subset of phonetic learning) had al-
ready taken place: the initial state already includes
phonemic inventories, phonemes as discrete units,
feature matrices that had already been learned, or
extracted phonetic values.

Prominent among the few models that operate
with raw phonetic data are Gaussian mixture mod-
els for category-learning or phoneme extraction
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(Schatz et al., 2019; Lee and Glass, 2012). Schatz
et al. (2019) propose a Dirichlet process Gaus-
sian mixture model that learns categories from
raw acoustic input in an unsupervised learning
task. The primary purpose of the proposal in
Schatz et al. (2019) is modeling perception and
categorization: they model how a learner is able
to categorize raw acoustic data into sets of dis-
crete categorical units that have phonetic values
(i.e. phonemes). No phonological processes are
modeled in the proposal.

Recently, neural network models for unsuper-
vised feature extraction have seen success in mod-
eling acquisition of phonetic features from raw
acoustic data (Kamper et al., 2015). The model
in Shain and Elsner (2019), for example, is an au-
toencoder neural network that is trained on pre-
segmented acoustic data. The model takes as an
input segmented acoustic data and outputs values
that can be correlated to phonological features.
Learning is, however, not completely unsuper-
vised as the network is trained on pre-segmented
phones. Thiollière et al. (2015) similarly propose
an architecture that extracts units from unsuper-
vised speech data. These proposals, however, do
not model learning of phonological distributions,
but only of feature representations, and crucially
are not generative, meaning that the models do not
output innovative data, but try to replicate the in-
put as closely as possible (e.g. in the autoencoder
architecture).

As argued below, the model based on a Genera-
tive Adversarial network learns not only to gen-
erate innovative data that closely resemble hu-
man speech, but also learns internal representa-
tions that resemble phonological features simulta-
neously with unsupervised phonetic learning from
raw acoustic data. Additionally, the model is gen-
erative and outputs both the conditional allophonic
distributions in the data and innovative data that
can be compared to productive outputs in human
speech acquisition.

1.1 A Generative Adversarial model of
phonology

The advantage of the GAN architecture (Good-
fellow et al., 2014; Radford et al., 2015; Don-
ahue et al., 2019) is that learning is completely
unsupervised and that phonetic learning is simul-
taneous with phonological learning in its broadest
sense. A network that models learning of phonet-

ics from raw data and shows signs of learning dis-
crete phonological units at the same time is likely
one step closer to reality than models that oper-
ate with symbolic computation and assume pho-
netic learning had already taken place and is inde-
pendent of phonology and vice versa. The Gen-
erator’s outputs can be approximated as the basis
for articulatory targets in human speech that are
sent to articulators for execution. The latent vari-
ables in the input of the Generator can be mod-
eled as featural representation that the Generator
learns to output into a speech signal by attempting
to maximize the error rate of a Discriminator net-
work that distinguishes between real data and gen-
erated outputs. The Discriminator network thus
has a parallel in human speech perception, pro-
duction, and acquisition: the imitation principle
(Nguyen and Delvaux, 2015). The Discriminator’s
function is to enforce that the Generator’s outputs
resemble (but not replicate) the inputs as closely
as possible. The GAN network thus incorporates
both the pre-articulatory production elements (the
Generator) as well as the perceptual element (the
Discriminator) in speech acquisition. While other
neural network architectures might be appropriate
for modeling phonetic and phonological learning,
GAN is unique in that it is a generative model with
the production-perception loop parallel and that,
unlike for example autoencoders, generates inno-
vative data rather than data that resembles the in-
put as closely as possible. To our knowledge, this
is the first proposal that tests whether neural net-
works are able to learn an allophonic distribution
based on raw acoustic data.

We train a Generative Adversarial Network ar-
chitecture implemented for audio files in Donahue
et al. (2019) (WaveGAN; which is based on DC-
GAN; Radford et al. 2015) on continuous raw
speech data that contains information for an al-
lophonic distribution: word-initial pre-vocalic as-
piration of voiceless stops (["phIt] ⇠ ["spIt]). The
data is curated in order to control for non-desired
effects, which is why only sequences of the shape
#TV and #sTV (T = stop, V = vowel) are fed to
the model. This allophonic distribution is uniquely
appropriate for testing learnability in a GAN set-
ting, because the dependency between the pres-
ence of [s] and duration of VOT is not strictly lo-
cal. To be sure, the dependency is local in phono-
logical terms, as [s] and T are two segments and
immediate neighbors, but in phonetic terms, a pe-
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riod of closure intervenes between the aspiration
and the period (or absence thereof) of frication
noise of [s].

The hypothesis of the computational experi-
ment presented in Section 3 is the following: if
VOT duration is conditioned on the presence of [s]
in output data generated from noise by the Gener-
ator network, it means that the Generator network
has successfully learned a phonetically non-local
allophonic distribution. Because the allophonic
distribution is not strictly local and not automatic,
but has to be learned and actively controlled by
speakers, evidence for this type of learning is
considered phonological learning in the broadest
sense. Conditioning the presence of a phonetic
feature based on the presence or absence of a
phoneme that is not automatic is, in most mod-
els, considered part of phonology and is derived
with phonological computation. That the tested
distribution is non-automatic and has to be ac-
tively controlled by the speakers is evident from
L1 acquisition: failure to learn the distribution
results in longer VOT durations in the sT condi-
tion documented in L1 acquisition (McLeod et al.,
1996; Bond, 1981). Additional evidence that the
GAN’s learning resembles phonemic representa-
tions (such as presence of [s]) is obtained from
recovering the networks’ internal representations
(see below and Section 3.2).

This paper also proposes a technique for es-
tablishing the Generator’s internal representations.
What neural networks actually learn is a challeng-
ing question with no easy solutions. The inabil-
ity to uncover networks’ representations has been
used as an argument against neural network ap-
proaches to linguistic data (Rawski and Heinz,
2019). We argue that internal representation of
a network can be, at least partially, uncovered.
By regressing annotated dependencies between
the Generator’s latent space and output data, we
identify values in the latent space that correspond
to linguistically meaningful features in generated
outputs. This paper demonstrates that manipu-
lating the chosen values in the latent space have
phonetic and phonological effects in the generated
outputs, such as the presence of [s] and the ampli-
tude of its frication. In other words, the GAN net-
work learns to use random noise as an approxima-
tion of phonetic and phonological features. This
paper proposes that dependencies, learned during
training in a latent space that is limited by some

interval, extend beyond that interval. This crucial
step allows for the discovery of several phonetic
properties.

2 Materials

2.1 The model: Donahue et al. (2019) based
on Radford et al. (2015)

Generative Adversarial Networks, proposed by
Goodfellow et al. (2014), have seen a rapid ex-
pansion in a variety of tasks, including but not
limited to computer vision and image generation
(Radford et al., 2015). The main characteristic
of GANs is the architecture that involves two net-
works: the Generator network and the Discrimina-
tor network (Goodfellow et al., 2014). The Gener-
ator network is trained to generate data from ran-
dom noise, while the Discriminator is trained to
distinguish real data from the outputs of the Gener-
ator network (Figure 1). The Generator is trained
to generate data that maximizes the error rate of
the Discriminator network. The training results in
a Generator (G) network that takes random noise
as its input (e.g. multiple variables with uniform
distributions) and outputs data such that the Dis-
criminator is inaccurate in distinguishing the gen-
erated from the real data.

Applying the GAN architecture on time-series
data such as a continuous speech stream faces sev-
eral challenges. Recently, Donahue et al. (2019)
proposed an implementation of a Deep Convolu-
tional Generative Adversarial Network proposed
by Radford et al. (2015) for audio data (Wave-
GAN); the model along with the code in Donahue
et al. (2019) was used for training in this paper.
The model takes one-second long raw audio files
as inputs, sampled at 16 kHz with 16-bit quanti-
zation. The audio files are converted into a vector
and fed to the Discriminator network as real data.
Instead of the two-dimensional 5 ⇥ 5 filters, the
WaveGAN model uses one-dimensional 1⇥25 fil-
ters and larger upsampling (Donahue et al., 2019).
The main architecture is preserved as in DCGAN,
except that an additional layer is introduced in or-
der to generate longer samples. The Generator net-
work takes as input z, a vector of one hundred uni-
formly distributed variables (z ⇠ U (�1,1)) and
outputs 16,384 data points, which constitutes the
output audio signal. The network has five 1D
convolutional layers (Donahue et al., 2019). The
Discriminator network takes 16,384 data points
(raw audio files) as its input and outputs a sin-
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Figure 1: A diagram showing the Generative Adversar-
ial architecture as proposed in Goodfellow et al. (2014);
Donahue et al. (2019) and trained on data from the
TIMIT database in this paper.

gle logit. The initial GAN design as proposed
by Goodfellow et al. (2014) trained the Discrim-
inator network to distinguish real from generated
data. Training such models, however, faced sub-
stantial challenges (Donahue et al., 2019). Don-
ahue et al. (2019) implement the WGAN-GP strat-
egy (Arjovsky et al., 2017; Gulrajani et al., 2017),
which means that the Discriminator is trained “as
a function that assists in computing the Wasser-
stein distance” (Donahue et al., 2019). The Wave-
GAN model (Donahue et al., 2019) uses ReLU ac-
tivation in all but the last layer for the Generator
network, and Leaky ReLU in all layers in the Dis-
criminator network (as recommended for DCGAN
in Radford et al. 2015). For exact dimensions of
each layer and other details of the model, see Don-
ahue et al. (2019).

2.2 Training data
The model was trained on the allophonic distri-
bution of voiceless stops in English. Voiceless
stops /p, t, k/ surface as aspirated [ph, th, kh] in
English in word-initial position when immediately
followed by a stressed vowel (Lisker, 1984; Iver-
son and Salmons, 1995; Vaux, 2002; Vaux and
Samuels, 2005; Davis and Cho, 2006). If an alve-
olar sibilant [s] precedes the stop, however, the as-
piration is blocked and the stop surfaces as unaspi-
rated [p, t, k] (Lisker, 1984). A minimal pair
illustrating this allophonic distribution is ["phIt]
‘pit’ vs. ["spIt] ‘spit’. The most prominent pho-
netic correlate of this allophonic distribution is the
difference in Voice Onset Time (VOT) duration
(Abramson and Whalen, 2017) between the aspi-
rated and unaspirated voiceless stops.

The model was trained on data from the TIMIT
database (Garofolo et al., 1993).1 The training

1Donahue et al. (2019) trained the model on the SC09 and
TIMIT databases, but the results are not useful for model-
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Figure 2: Waveforms and spectrograms (0–8,000 Hz)
of a typical generated samples of #TV (left) and #sTV
(right) sequences from a Generator trained after 12,255
steps.

data consist of 16-bit .wav files with 16 kHz sam-
pling rate of word initial sequences of voiceless
stops /p, t, k/ (= T) that were followed by a vowel
(#TV) and word initial sequences of /s/ + /p, t, k/,
followed by a vowel (#sTV). The training data in-
cludes 4,930 sequences with the structure #TV and
533 sequences with the structure #sTV (5,463 to-
tal). Both stressed and unstressed vowels are in-
cluded in the training data, as this condition cru-
cially complicates learning and makes the task for
the neural network more challenging.

3 Experiment

3.1 Model: 12,255 steps

The Generator network after 12,255 steps (⇠ 716
epochs) generates an acoustic signal that appears
close to actual speech data. The number of train-
ing steps was chosen manually as a compromise
between output interpretability and the number of
epochs, where we try to approximately maximize
the first and minimize the latter parameter. Fig-
ure 2 illustrates a typical generated sample of #TV
(left) and #sTV (right) structures with a substantial
difference in VOT durations.

To test whether the Generator learns the condi-
tional distribution of VOT duration, the generated
samples were annotated for VOT duration. VOT
duration was measured from the release of closure
to the onset of periodic vibration with clear for-
mant structure. Altogether 96 generated samples
were annotated; 62 in which no period of frica-
tion of [s] preceded and 34 in which [s] precedes
the TV sequence. The generated data were fit to
a linear model with only one predictor: presence
of [s] (STRUCTURE). Place of articulation or fol-

ing phonological learning, because the model is trained on a
continuous speech stream and the generated sample fails to
produce analyzable results for phonological purposes.
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lowing vowel were not added in the model, be-
cause they are often difficult to recover. STRUC-
TURE is a significant predictor of VOT duration:
F(1) = 53.1, p < 0.0001. The estimates for In-
tercept (duration of VOT when no [s] precedes)
are b = 56.2 ms, t = 25.74, p < 0.0001. VOT is
on average 26.8 ms shorter if [s] precedes the TV
sequence and this difference is significant (b =
�26.8 ms, t = �7.29, p < 0.0001).

While VOT duration is significantly shorter if
[s] precedes the #TV sequence in the generated
data, the model shows clear traces that the learning
is incomplete and that the generator network fails
to learn the distribution categorically at 12,255
steps. The three longest VOT durations in the
#sTV condition in the generated data are 68.3
ms, 75.7 ms, and 76.2 ms. In all three cases the
VOT is longer than the longest VOT duration of
any #sTV sequence in the training data (longest
is 65 ms). This generalization holds even in pro-
portional terms (i.e. while controlling for “speech
rate”): the generated data contains the highest ra-
tio between the VOT duration and the frication du-
ration of [s].

Longer VOT duration in the #sTV condition in
the generated data compared to training data is not
the only violation of the training data that the Gen-
erator outputs and that resembles linguistic behav-
ior in humans. Occasionally, the Generator out-
puts a linguistically valid #sV sequence for which
no evidence was available in the training data. The
minimal duration of closure in #sTV sequences
in the training data is 9.2 ms, the minimal dura-
tion of VOT is 9.4 ms. All sequences contain-
ing a [s] from the training data were manually in-
spected, and none of them contain a #sV sequence
without a period of closure and VOT. Homorganic
sequences of [s] followed by an alveolar stop [t]
(#stV) are occasionally acoustically similar to the
sequence without the stop (#sV) because frication
noise from [s] carries onto the homorganic alve-
olar closure which can be very short. However,
there is a clear fall and a second rise of noise am-
plitude after the release of the stop in #stV se-
quences. Figure 3 shows one case of the Gen-
erator network outputting a #sV sequence with-
out any stop-like fall of the amplitude. In other
words, the Generator network outputs a linguis-
tically valid sequence #sV without any evidence
for existence of this sequence in the training data.
Similarly, the Generator occasionally outputs a se-
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Figure 3: Waveforms and spectrograms (0–8000 Hz)
of two innovative generated outputs of the shape #sV
and #TTV. The sample on the left was generated after
16,715 steps.

quence with two stops (two periods of aspiration
noise with intervening short period of closure) and
a vowel (#TTV) (Figure 3).

Measuring overfitting is a substantial problem
for Generative Adversarial Networks with no con-
sensus on the most appropriate quantitative ap-
proach to the problem (Goodfellow et al., 2014;
Radford et al., 2015). The danger with overfit-
ting in a GAN architecture is that the Genera-
tor network would learn to fully replicate the in-
put. Donahue et al. (2019) test overfitting on mod-
els trained with a substantially higher number of
steps (200,000) compared to our model (12,255)
and presents evidence that GAN models trained
on audio data do not overfit even with substan-
tially higher number of training steps. The best ev-
idence against overfitting is precisely the fact that
the Generator network outputs samples that sub-
stantially violate output distributions.

3.2 Establishing internal representations

Establishing internal representations of a neural
network is a challenging task (Lillicrap and Ko-
rding, 2019). Below, we propose a technique for
uncovering dependencies between the network’s
latent space and generated data based on logistic
regression. This method has the potential to shed
light on the network’s internal representations: us-
ing the proposed technique, we can estimate how
the network learns to map latent space into pho-
netically and phonologically meaningful units in
the generated data.

To identify dependencies between the latent
space and generated data, we correlate annota-
tions of the output data with the variables in the
latent space. As a starting point, we choose
to identify correlates of the most prominent fea-
ture in the training data: presence or absence of
[s]. Any number of other phonetic features can
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be correlated with this approach; applying this
technique to other features and other alternations
should yield a better understanding of the net-
work’s learning mechanisms. Focusing on more
than the chosen feature, however, is beyond the
scope of this paper.

We propose a method based on logistic regres-
sion. First, 3,800 outputs from the Generator net-
work trained after 12,255 steps were generated and
manually annotated for presence or absence of [s].
271 outputs (7.13%) were annotated as involving a
segment [s]. Frication that resembled [s]-like aspi-
ration noise after the alveolar stop and before high
vowels was not annotated as including [s]. Innova-
tive outputs such as an #[s] without the following
vowel or #sV sequences were annotated as includ-
ing an [s].

The annotated data together with values of la-
tent variables for each generated sample (z) were
fit to a logistic regression generalized additive
model (using the mgcv package; Wood 2011 in R
Core Team 2018) with the presence or absence of
[s] as the dependent variable (binomial distribu-
tion of successes and failures) and smooth terms
of latent variables (z) as predictors of interest (es-
timated as penalized thin plate regression splines;
Wood 2011). Generalized additive models were
chosen in order to avoid assumptions of linear-
ity: it is possible that latent variables are not lin-
early correlated with features of interest in the
output of the Generator network. The initial full
model (FULL) includes smooths for all 100 vari-
ables in the latent space that are uniformly dis-
tributed within the interval (�1,1) as predictors.

To reduce the number of variables, models with
different shrinkage techniques are refit and com-
pared: the latent variables for further analysis are
then chosen based on combined results of differ-
ent extratory models. We refit the model with
various modifications: with modified smooth-
ing penalty (MODIFIED); with original smoothing
penalty, but with an additional penalty for each
term if all smoothing parameters tend to infinity
(SELECT; Wood 2011); and with manual removal
of non-significant terms by Wald test for each term
(EXCLUDED).

The estimated smooths appear mostly linear.
We also fit the data to a linear logistic regression
model (LINEAR) with all 100 predictors. To re-
duce the number of predictors, another model is
fit (LINEAR EXCLUDED) with those predictors re-

moved that do not improve fit.

To identify latent variables with highest corre-
lation with [s] in the output, we extract estimates
for each term from the generalized additive mod-
els and estimates of slopes from the linear model.
Figure 4 plots those values. The plot points to a
substantial difference between the highest seven
predictors and the rest of the latent space. Seven
latent variables are thus identified (z5, z11, z49, z29,
z74, z26, z14) as potentially having the largest ef-
fect on presence or absence of [s] in output. Lasso
regression (Simon et al., 2011) and Random For-
est models (Liaw and Wiener, 2002) give almost
identical results.

To conduct an independent generative test of
whether the chosen values correlate with [s] in
the output data of the Generator network, we set
values of the seven identified predictors (z5, z11,
z49, z29, z74, z26, z14) to the marginal value of 1 or
�1 (depending on whether the correlation is pos-
itive or negative) and generated 100 outputs. Al-
together seven values in the latent space were thus
manipulated, which represents only 7% of the en-
tire latent space. Of the 100 outputs with manip-
ulated values, 73 outputs included a [s] or [s]-like
element, either with the stop closure and vowel or
without them. The rate of outputs that contain [s]
is thus significantly higher when the seven values
are manipulated to the marginal levels compared
to randomly chosen latent space. In the output data
without manipulated values, only 271 out of 3800
generated outputs (or 7.13%) contained an [s].
The difference is significant (c2(1) = 559.0, p <
0.00001).

High proportions of [s] in the output can be
achieved with manipulation of single latent vari-
ables, but the values need to be highly marginal,
i.e. extend well beyond the training space. Setting
the z11 value outside the training interval to �15,
for example, causes the Generator to output [s] in
87 out of 100 generated (87%) sequences, which
is again significantly more than with random input
(c2(1) = 792.7, p < 0.0001). When z11 is �25,
the rate goes up to 96 out of 100, also significantly
different from random inputs (c2(1) = 959.8, p <
0.0001).

While there is a consistent drop in estimates
of the regression models after the seven identified
variables (Figure 4) and while several independent
generation tests confirm that the seven variables
correspond the to presence of [s] in the output,
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predictor space with a clear drop in estimates between the first seven values (z5, z11, z49, z29, z74, z26, z14) and the
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the cutoff point between the seven variables and
the rest of the latent space is still somewhat ar-
bitrary. It is likely that other latent variables di-
rectly or indirectly influence the presence of [s] as
well: the learning at this point is not yet categor-
ical and several dependencies not discovered here
likely affect the results. Nevertheless, further ex-
plorations of the latent space suggest the variables
identified with the logistic regression (and other)
models (Figure 4) are indeed the main variables
involved with the presence or absence of [s] in the
output.

3.3 Interpolation and phonetic features

We further explore whether the mapping between
the uniformly distributed input (z) variables can be
associated with specific phonetic or phonological
features in that output. The crucial step in this
direction is to explore values of the latent space
beyond the training interval, i.e. beyond (�1,1).
Crucially, we observe that the Generator network,
while being trained on latent space limited to the
interval (�1,1), learns representations that ex-
tend this interval. Even if the input latent vari-
ables (z) exceed the training interval, the Gener-
ator network outputs samples that closely resem-
ble human speech. Furthermore, the dependen-
cies learned during training extend outside of the
(�1,1) interval. Exploring phonetic properties at
these marginal values might reveal the actual un-
derlying function of each latent variable.

To explore phonetic correlates of the seven la-
tent variables, we set each of the seven variables
separately to the marginal value �4.5 and interpo-
late to its opposite marginal value 4.5 in 0.5 incre-
ments, while keeping randomly-sampled values of
the other 99 latent variables z constant. The ±4.5
value was chosen based on manual inspection of
generated samples: amplitude rises of [s] gradu-
ally weaken when variables have a value greater
than ±3.5. Seven sets of generated samples are
thus created, one for each of the seven z values
(with the other 99 z-values randomly sampled, but
kept constant for all seven manipulated variables).
Each set contains a subset of 19 generated outputs
that correspond to the interpolated variables from
�4.5 to 4.5 in 0.5 increments. Twenty-nine such
sets containing an [s] in at least one set are ex-
tracted for analysis.

A clear pattern emerges in the generated data:
the latent variables identified as corresponding to
the presence of [s] via regression (Figure 4) have
direct phonetic correlates and cause changes in
amplitude and presence/absence of frication noise
of [s] when each of the seven values in the latent
space are manipulated to the chosen values, in-
cluding values that exceed the training interval. In
other words, by manipulating the identified latent
variables, we control the presence/absence of [s]
in the output as well as the amplitude of its frica-
tion noise.

Figure 5 illustrates this effect. Frication noise of
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Figure 5: Waveforms and two spectrograms (both 0�
8,000 Hz) of generated data with z11 variable manipu-
lated and interpolated. The values on the left of wave-
forms indicate the value of z11. The two spectrograms
represent the highest and the lowest value of z11. A
clear attenuation of the frication noise is visible until
complete disappearance.

[s] gradually decreases by increasing the value of
z11 until it completely disappears. The exact value
of z11 for which the [s] disappears differs across
examples and likely interacts with other features.
It is possible that frication noise in the training has
a higher amplitude in some conditions, which is
why such cases require a higher magnitude of ma-
nipulation of z11. The figure also shows that as
the frication noise of [s] disappears, aspiration of a
stop in what appears to be a #TV sequences starts
surfacing and replaces the frication noise of [s].
Occasionally, frication noise of [s] gradually trans-
forms into aspiration noise. The exact transforma-
tion is likely dependent on the 99 other z-variables
held constant and their underlying phonetic effect.
Regardless of the underlying phonetic effect of the
other variables in the latent space, we can force [s]
in the output when generating data and manipulat-
ing the chosen variables.

To test the significance of the effects of the
seven identified features on the presence of [s]
and the amplitude of its frication noise, the 29
generated sets of 19 outputs (with z-value from
�4.5 to 4.5) for each of the seven variables were
analyzed. The outputs were manually annotated
for [s] and the following vowel. Outputs gradu-
ally change from #sTV to #TV. Only sequences
containing an [s] were analyzed; as soon as [s]
stops in the output, annotations were stopped and
the outputs were not further analyzed. For each
data point, maximum intensity of the fricative and
the vowel was extracted in Praat (Boersma and
Weenink, 2015; Lennes, 2003) with a 13.3 ms
window length.
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Figure 6: (a) Plots of ratios of maximum intensity be-
tween the frication of [s] and phonation of the vowel in
#sTV sequences across the seven variables and (b) pre-
dicted values with 95% CIs of the ratio based on beta
regression generalized additive model.

To test whether the decreased frication noise is
not part of a general effect of decreased ampli-
tude, we perform significance tests on the ratio
of maximum intensity between the frication noise
of [s] and the following vowel in the #sTV se-
quences. Figure 6 plots the ratio of maximum in-
tensity of the fricative divided by the sum of two
maximum intensities: of the fricative ([s]) and of
the vowel (V). The manipulated z-values are addi-
tionally normalized to the interval [0,1], where 0
represents the most marginal value with [s] (usu-
ally ±4.5; referred to as STRONG henceforth) and
1 represents the last value before [s] disappears
(WEAK). Note that the point at which [s] is not
present in the output anymore, but the vowel still
surfaces (which would yield the ratio at 0) is not
included in the model.

The data were fit to a beta regression general-
ized additive mixed model (Wood 2011) with ran-
dom smooths for (i) trajectory and for (ii) value of
other variables in the latent space of the Genera-
tor network, see Figure 6. All smooths (except for
z74) are significantly different from 0 and the plots
show a clear negative trajectory.

The seven variables thus strongly correspond to
the presence or absence of [s] in the output; by
manipulating the chosen variables to the identified
values we can attenuate frication noise of [s] and
cause its presence or complete disappearance in
the generated data. Again, the discovery of these

145



features is possible because we extend the initial
training interval and test predictions on marginal
values.

Interpolation of latent variables reveals that the
presence of [s] is not controlled by a single latent
variable, but by at least seven of them. The dif-
ferent latent variables that correspond to the pres-
ence of [s], however, are not phonetically vacu-
ous: individually, they have distinct phonetic cor-
respondences. The generated samples reveal that
the variables’ secondary effect (besides outputting
[s] and controlling its intensity) is likely reflected
in spectral properties of the frication noise. The
seven variables are thus similar in the sense that
manipulation of their values results in the presence
of [s] by controlling its frication noise. They cru-
cially differ, however, in the effects on the spectral
properties of the outputs.

To test this prediction, spectral properties of the
output fricatives are analyzed in the same 29 sets
of generated samples. Spectral properties of the
generated fricatives are generally not significantly
different at the value of z right before [s] disap-
pears from the outputs. As values of z increase
toward the marginal levels (in most cases, ±4.5),
however, clear differentiation in spectral proper-
ties emerge between the seven z-variables. The
trajectory for center of gravity, for example, sig-
nificantly differs between z11 and most of the other
six variables. Overall kurtosis is significantly dif-
ferent when z11 is manipulated, compared to, for
example, z26 and z29. Similarly, while z74 does not
significantly attenuate amplitude of [s], it signifi-
cantly differs in skew trajectory of [s]. The main
function of z74 is thus likely in its control of spec-
tral properties of frication of [s] (e.g. skew).

In sum, manipulating the latent variables that
correspond to [s] in the output not only atten-
uates frication noise (when vocalic amplitude is
controlled for) and causes [s] to surface or disap-
pear from the output, but the different z-variables
likely correspond to different phonetic features of
the frication noise. By setting the values to the
marginal levels well beyond the training interval,
however, significant differences emerge both in
overall levels as well as in trajectories of COG,
kurtosis, and skew. It is thus likely that the vari-
ables collectively control the presence or absence
of [s], but that individually, they control vari-
ous phonetic features — spectral properties of the
frication noise.

4 Conclusion

The results of this paper suggest that we can
model phonology not only with rules (Chomsky
and Halle, 1968), finite-state automata (Heinz,
2010; Chandlee, 2014), input-output optimiza-
tion (Prince and Smolensky, 1993/2004), or with
neural network architecture that already assumes
some level of abstraction (see Section 1), but as the
dependency between the latent space and gener-
ated data in Generative Adversarial Networks that
are trained in an unsupervised manner from raw
acoustic data. We train a Generative Adversarial
Network (as implemented in Donahue et al. 2019
based on DCGAN architecture; Radford et al.
2015); the results of the computational experiment
suggest that the network learns the conditional al-
lophonic distribution of VOT duration. To the
author’s knowledge, this is the first paper testing
learning of allophonic distributions in an unsuper-
vised manner from raw acoustic data using neu-
ral networks. This paper also proposes a tech-
nique that identifies variables that correspond to
the presence of [s] in the output and shows that by
manipulating these values, we can generate data
with or without [s] in the output as well as control
its intensity and spectral properties of its frication
noise. While at least seven latent variables con-
trol the presence of [s], each of them has a pho-
netic function that controls spectral properties of
the frication noise. The proposed technique thus
suggests that the Generator network learns to en-
code phonetic and phonological information in its
latent space.

Training GAN networks on further processes
and on languages other than English should yield
more information about learning representations
of phonetic and phonological processes. This pa-
per outlines methodology for establishing inter-
nal representations and testing predictions against
generated data, but represents just a first step in
a broader task of establishing learning representa-
tion of phonetic and phonological data in a Gener-
ative Adversarial framework of phonology.
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Andy Liaw and Matthew Wiener. 2002. Classification
and regression by randomforest. R News, 2(3):18–
22.

Timothy P. Lillicrap and Konrad P. Kording. 2019.
What does it mean to understand a neural network?
arXiv e-prints, page arXiv:1907.06374.

147



Leigh Lisker. 1984. How is the aspiration of english
/p, t, k/ ”predictable”? Language and Speech,
27(4):391–394.

Abhijit Mahalunkar and John D. Kelleher. 2018. Using
regular languages to explore the representational ca-
pacity of recurrent neural architectures. In Artificial
Neural Networks and Machine Learning – ICANN
2018, pages 189–198, Cham. Springer International
Publishing.

Andrew Martin, Sharon Peperkamp, and Emmanuel
Dupoux. 2013. Learning phonemes with a proto-
lexicon. Cognitive Science, 37(1):103–124.

S McLeod, J van Doorn, and V Reed. 1996.
Homonyms and cluster reduction in the normal de-
velopment of children’s speech. In Proceedings
of the Sixth Australian International Conference on
Speech Science & Technology, pages 331–336.
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