
Curbing Feature Coding: Strictly Local Feature Assignment

Thomas Graf
Department of Linguistics
Stony Brook University

Stony Brook, NY 11794, USA
mail@thomasgraf.net

Abstract

Graf (2017) warns that every syntactic formal-
ism faces a severe overgeneration problem be-
cause of the hidden power of subcategoriza-
tion. Any constraint definable in monadic
second-order logic can be compiled into the
category system so that it is indirectly enforced
as part of subcategorization. Not only does
this kind of feature coding deprive syntactic
proposals of their empirical bite, it also un-
dermines computational efforts to limit syn-
tactic formalisms via subregular complexity.
This paper presents a subregular solution to
feature coding. Instead of features being a
cheap resource that comes for free, features
must be assigned by a transduction. In par-
ticular, category features must be assigned by
an input strictly local (ISL) tree-to-tree trans-
duction, defined here for the first time. The
restriction to ISL transductions correctly rules
out various deviant category systems.

1 Introduction

Theoretical and computational linguists both
strive to identify limited models of language that
furnish sufficient power without allowing for ex-
cessive overgeneration. Recently, Graf (2017)
noted that the findings of Graf (2011) and Kobele
(2011) point towards a major loop hole in all cur-
rent theories of syntax. The category system can
be abused to encode additional information about
the syntactic tree, and the usual subcategorization
requirements can then be used to enforce a certain
kind of synchronization between parts of the tree.
For instance, the category DP may be split into
DP[+NPI] and DP[�NPI] depending on whether
the DP is an NPI, and the category X of each se-
lecting head becomes X[+NPI] if the argument it
selects contains an unlicensed NPI. This simple
strategy has been known for a long time but did
not raise serious concerns as it is widely accepted

that all grammar formalisms “leak” in the sense
that they also allow for some unnatural patterns.

But the extent of the problem for linguistic the-
ory has not been fully appreciated. Graf (2017)
shows how this strategy can be generalized to flout
all island constraints, enforce constraints that lack
any notion of locality, and even add highly unnat-
ural counting requirements to the grammar. Every
constraint that can be defined in monadic second-
order logic is expressible through category refine-
ment. This allows for very unnatural constraints,
e.g. enforcing verb-second word order iff the sen-
tence contains exactly three relative clauses or
both a Principle A violation and a word in which
unbounded tone plateauing is not obeyed. The
only way to preclude this is to restrict the shape
of category systems, but Graf (2017) argues that
the usual linguistic requirements on syntactic cat-
egories are insufficient. Hence every syntactic for-
malism lacks a key mechanism to distinguish natu-
ral patterns from unnatural ones, resulting in mas-
sive overgeneration.

This paper proposes a computational solution to
this problem, drawing from recent work on sub-
regular complexity. Features no longer come part
and parcel with lexical items, but must be assigned
to tree structures by a transduction. An unnatural
feature system that keeps track of, say, a counting
dependency, requires a very powerful transduc-
tion. The category systems of natural languages,
on the other hand, can be handled by much simpler
means. I argue that these category systems only
require inspection of a lexical item’s local con-
text. This intuition is formalized by generalizing
the input-strictly local (ISL) string-to-string map-
pings of Chandlee (2014) to ISL tree-to-tree trans-
ductions. To the best of my knowledge, this is the
first time a subregular tranduction class is defined
for trees, and I hope it will be a fertile vantage
point for mathematical and empirical work alike.

362
Proceedings of the Society for Computation in Linguistics (SCiL) 2020, pages 362-371.

New Orleans, Louisiana, January 2-5, 2020

The paper deviates slightly from the usual struc-
ture. Since the problem is also of interest to theo-
retical linguists and the proposed solution is fairly
intuitive, the first half focuses on the big picture
and keeps formal concepts to a minimum (§2).
The mathematical aspects are then worked out in
§3, the most important of which is the formal def-
inition of ISL tree transductions (§3.2).

2 Problem and Solution: Informal
Sketch

The power of category systems and subcategoriza-
tion is best illustrated with an example (§2.1). This
makes it clear what unnatural category systems
may look like, and in what respects they clearly
differ from natural ones (§2.2). The problem of
category abuse in syntax is actually an instance of
the more general phenomenon of feature coding,
which also appears in the domain of subregular
complexity (§2.3). But subregular complexity also
provides a way of measuring the complexity of
feature systems via transductions. With strict lim-
its on the power of these transductions, many of
the unnatural category systems are correctly ruled
out (§2.4) while it becomes possible to formulate
new syntactic universals (§2.5).

2.1 A Grammar with Odd/Even Counting

Let us start with a toy example from Minimal-
ist grammars (MGs; Stabler, 1997, 2011) that il-
lustrates the power of syntactic categories. MGs
are closely modeled after Minimalist syntax, and
subcategorization is encoded via category and se-
lector features that drive the operation Merge. A
head with selector feature X+ can only be merged
with a phrase whose head has category feature
X�. This matching of features is called feature
checking. The category feature of a lexical item l
can only be checked once all selector features of
l have been checked. While exceedingly simple,
this system is already too powerful as a model of
subcategorization in natural languages.

Consider the MG G where the only pronounced
lexical items are foo and bar, which may have the
category features E� or O�. By default, the cate-
gory feature is O�. But if the lexical item carries
a selector feature O+ or E+, the category feature
must be the opposite of that selector feature (E�

or O�, respectively). Hence foo and bar may have
the feature strings O�, E+O�, or O+E�. Besides
foo and bar, the MG only has an unpronounced C-

Merge

" :: O+C� Merge

foo :: E+O� Merge

bar :: O+E� Merge

bar :: E+O� Merge

foo :: O+E� bar :: O�

Figure 1: Derivation tree for foo bar bar foo bar

head, which must always be the last lexical item to
be merged. The C-head carries the selector feature
O+. Overall, G consists of the following lexical
items:

(1) MG G with even/odd alternation

" :: O+C� foo :: E+O� foo :: O�

foo :: O+E�

bar :: E+O� bar :: O�

bar :: O+E�

The MG generates any string over foo and bar
whose length is odd. The reasoning for this is
as follows: the derivation must start with either
foo :: O� or bar :: O�. From this point on, se-
lecting heads alternate between E� and O�, but
only a head carrying O� can be selected by the C-
head to end the derivation. The end result is that
the number of pronounced lexical items in the tree
must be odd, as is also illustrated in Fig. 1. The
MG above thus instantiates a simple case of mod-
ulo counting at the string level.

2.2 (Un)Naturalness of the Example MG
The example grammar G in (1) is highly unnatu-
ral in several respects. First of all, string length
does not seem to be a relevant criterion for natural
language syntax. This definitely holds for mod-
ulo counting, which is unheard of. But even ab-
solute size requirements are hard to come by un-
less one abandons the well-motivated competence-
performance distinctions. A potential counterex-
ample is Heavy NP-shift, which is sensitive to
a constituent’s size and thus, possibly, its string
length. But even here processing provides a more
plausible explanation (cf. Liu, 2018). Syntax itself
seems to be completely blind to size, be it string
length or the size of a tree.

Perhaps even more important is the fact that O�

and E� do not convey intrinsic information of the

363

lexical item l that carries them. Instead, these cat-
egories represent properties of the whole subtree.
Hence the category is highly context-dependent. If
one wanted to insert another instance of foo or bar
in the subtree headed by l, one would also have to
change the category of l because of how O� and
E� have to alternate. The change of l’s category
then requires changing the category of l’s selector,
the selector of l’s selector, and so on. This directly
contradicts a basic principle of selection: a lexical
item selects for its argument, not the argument(s)
of its argument. A verb selecting a PP may restrict
the shape of the P-head, but not the DP inside the
PP. And no lexical item can freely select any head
of any category as long as the selected subtree sat-
isfies some other property. Subcategorization en-
forces head-head dependencies, not head-subtree
dependencies, and any category system that allows
the latter to be reduced to the former is missing a
key aspect of natural language.

2.3 The Full Extent of the Problem

As was already mentioned in the introduction, the
example above is but the tip of the iceberg. With-
out restrictions on the category system, any ar-
bitrary constraint can be enforced as long as it
is definable in monadic second-order logic. Graf
(2017, p. 22–24, p. 27f) gives several illustrative
examples of overgeneration and explains in de-
tail why the usual heuristics (e.g. syntactic dis-
tribution, morphological inflection) are not suf-
ficient to distinguish natural from unnatural cat-
egory systems. Beyond modulo counting, this
kind of feature coding also allows for, among
other things, strange constraint interactions (“Sat-
isfy either verb-second or Principle A, but not
both”), symmetric counterparts of existing con-
straints (Reverse Principle A: every reflexive must
c-command a suitable R-expression), and dis-
placement mechanisms that do not use movement
and hence bypass island constraints. All of this be-
comes possible because feature coding abuses cat-
egories as a local buffer for non-local information,
erasing all locality and complexity differences be-
tween constraints.

The potential abuse of syntactic categories is ac-
tually an instance of a more general problem that
has to be carefully avoided in subregular phonol-
ogy. Subregular phonology (see Heinz 2018 and
references therein) has identified very restricted
subclasses of the regular string languages that still

furnish enough power for phonology. Crucially,
though, these claims depend on the choice of fea-
tures because every regular pattern can be made
subregular by introducing additional features. In
formal terms: every recognizable set is a projec-
tion of a local set (cf. Rogers, 1997).

For instance, the regular string language of odd-
length strings over a can be pushed into the ex-
tremely weak subclass of strictly 2-local string
languages if one introduces a feature [±odd]. A
string like a a a a a would then be represented
as a[+odd] a[�odd] a[+odd] a[�odd] a[+odd].
The language with the diacritic [±odd] feature
is strictly 2-local because it can be expressed in
terms of constraints that involve at most two seg-
ments:

(2) Strictly 2-local constraints
a. Every string must start with a[+odd]

and end with a[+odd].

b. a[+odd] must not follow a[+odd].

c. a[�odd] must not follow a[�odd].

The example in §2.1 is a syntactic analog of this
trick, with O� and E� filling the roles of [±odd].
In all these cases, feature coding obfuscates sub-
regular complexity by precompiling complex de-
pendencies into an invisible alphabet of features
and diacritics.

The feature coding problem is less severe in
subregular phonology thanks to the restriction to
articulatory features, which can usually be re-
placed by the actual segments without changing
anything substantive about the analysis.1 In syn-
tax, features play a much more vital role as two
representations may look exactly the same except
for their feature make-up.

For instance, Fig. 2 gives an MG dependency
tree representation for the gardeners water their
flowers, while adding the movement features top�

to their and top+ to water yields the MG depen-
dency tree representation of the very different top-
icalization sentence their flowers, the gardeners
water. The movement features are an essential
part of the representation. Similarly, category and
selector features can be crucial for head-argument
relations in MG derivation trees. In Fig. 1, switch-
ing the feature strings of the bottom-most foo and

1One notable exception is Baek (2018). She adds a limited
number of structural features to define a subregular class that
lies strictly between the classes TSL (Heinz et al., 2011) and
ITSL (De Santo and Graf, 2019).

364

bar would yield a new string foo bar bar bar
foo. This is because derivation trees encode head-
argument relations only via Merge features, not
via dominance or linear order. It is not surprising,
then, that all the recent work extending the subreg-
ular perspective from phonology to syntax relies
on feature in one way or another (Graf, 2018; Graf
and Shafiei, 2019; Graf and De Santo, 2019; Vu,
2018; Vu et al., 2019).

But even if features could be done away with,
that would be too extreme a step as they can still
be useful. Consider once more the case of topical-
ization movement. This involves three computa-
tional steps: I) identifying the mover and the target
site, II) determining whether topicalization move-
ment is licit, and III) displacing the topicalized
phrase. Without features, the first two steps would
have to be handled by the same computational de-
vice, which first makes a non-deterministic choice
as to what should move where, and then decides
whether this instance of movement obeys all rel-
evant constraints. By making features an integral
part of the representation, we factor out the first
step in order to isolate the complexity of the sec-
ond step. But without a restrictive theory of fea-
tures, there is the risk of factoring out more than
intended. This would lead to misleading claims
about subregular complexity that are merely ar-
tifacts of feature coding. Subregular syntax thus
finds itself in a precarious situation where the very
thing it depends on also threatens to undermine all
its findings.

The original problem of syntactic categories
thus is but a piece of the larger puzzle of how
to avoid feature coding. The brute force solution
of shunning features altogether is not workable
in syntax. Features distinguish otherwise identi-
cal representations; theoretical and computational
linguists alike are too accustomed to thinking in
terms of features; and features do allow for in-
sightful factorizations of complexity. The problem
is not features as such, it is the lack of a measur-
ing rod for how much complexity has been shifted
into the feature system.

2.4 Solution: Strictly Local Feature
Assignment

Features come for free under current models of
complexity because they are representational de-
vices. Subregular complexity takes the representa-
tions for granted and then investigates how hard a

water :: D+D+V�

the :: N+D�

gardeners :: N�

their :: N+D�

flowers :: D�

water

the

gardeners

their

flowers
removal

ISL assignment

Figure 2: Feature assignment as a transduction problem
between a feature-annotated MG dependency tree (left)
and its feature-free counterpart (right)

given dependency would be to enforce over these
representations. In order to assess the complex-
ity of feature systems, we have to decouple them
from the representations. Intuitively speaking, we
want to measure the complexity of constructing a
feature-annotated representation from its feature-
free counterpart.

Formally, this takes the shape of a transduction
problem. For strings, transductions are a formal
counterpart of rewrite rules, and for trees they are
similar to syntactic transformations in the sense of
Chomsky (1965). Chandlee (2014) defines a par-
ticularly weak kind of string transductions known
as input strictly local (ISL). An ISL transduction
considers only the local context of a symbol when
deciding how it should be rewritten. Word-final
devoicing and intervocalic voicing are examples
of ISL transductions in phonology, whereas long-
distance sibilant harmony would not be ISL be-
cause the rewriting of a sibilant can depend on
other segments that are arbitrarily far away. ISL
can be lifted from strings to trees: a node in a tree
may be rewritten in various ways depending on its
local context in the tree. A transduction is ISL-k
iff all local contexts can be limited to at most k lev-
els (a mother-daughter configuration, for example,
involves two levels).

Figure 2 illustrates the approach with a feature-
annotated MG dependency tree for the garden-
ers water their flowers. The question at hand is
whether the familiar categories D, N, and V can
be assigned by an ISL transduction. We take a
feature-annotated representation like the one of
the left and remove all category and selector fea-
tures. Then we have to define an ISL transduction
that takes us back to the original representation. If
this can be done with any well-formed tree, then
the whole feature system is ISL recoverable.

For the specific tree in Fig. 2, we need an ISL-
2 transduction. The feature annotations for the,
their, and gardeners can be recovered without any
further context information just from the phonetic

365

exponents. That is the case because there simply
are no alternative feature annotations for these lex-
ical items in English. With water and flowers, on
the other hand, there is ambiguity as each one of
them could be either a noun or a verb. But in both
cases a minimum amount of context is sufficient
to disambiguate their categories. Since flowers is
selected by the, which can only be a determiner,
flowers must be a noun. Similarly, water must be
a verb because it selects the and their, neither one
of which could be an argument of the noun water.
Inspecting the daughters or the mother of a node
requires a context with two levels, so the transduc-
tion is ISL-2 for this specific example. The com-
plexity of the whole feature system corresponds to
the weakest transduction that works for all well-
formed trees (usually there will be infinitely many
of those; therefore, conclusive complexity results
require proofs rather than examples).

The feature system of the MG G in Sec. 2.1 is
not ISL recoverable. This follows from the fact
that it is not ISL-k recoverable for any k � 1. For
the sake of simplicity, we will once again use a
dependency tree format as in Fig. 2 instead of the
derivation tree format in Fig. 1. Now suppose that
the features for the left tree in Fig. 3 could be cor-
rectly assigned from the middle tree by an ISL-
k transduction. Since the transduction is ISL-k,
the features assigned to foo depend exclusively on
some context with at most k levels. Crucially, foo
will always receive the same features as long as
the context remains the same. But now compare
this to the tree on the right. Here foo has switched
positions with bar below it, inducing a change in
its feature make-up. Yet the locally bounded con-
text for foo has not changed at all — the middle
tree could also be a description for the right tree
depending on the values of m0 � k and n0 � k.
Hence the feature annotation for foo varies despite
identical contexts, which proves that the feature
system is not ISL recoverable. In fact, no ISL
transduction can handle any feature system that in-
volves modulo counting.

2.5 Some Linguistic Implications

ISL recoverability correctly rules out some of the
most egregious patterns and constraints. But we
can try to further limit feature systems based on
the size of contexts. Instead of ISL recoverabil-
ity, the relevant restriction would be ISL-k recov-
erability for some small k.

" :: O+E�

bar :: E+O�

bar :: O+E�

foo :: E+O�

bar :: O+E�

bar :: E+O�

bar :: O+E�

bar :: O�

"

bar

bar

foo

bar

bar

bar

" :: O+E�

bar :: E+O�

bar :: O+E�

bar :: E+O�

foo :: O+E�

bar :: E+O�

bar :: O+E�

bar :: O�

m � k

n � k

m � k
m0 � m

n � k
n0 � n

Figure 3: Modulo systems are not ISL-k recoverable

Note first that the value of k can vary depending
on other assumptions. MG derivation trees like the
one in Fig. 1 display a greater distance between
heads and arguments than MG dependency trees
like the one in Fig. 2, so the latter will minimize
the value for k. This does not mean that the latter
is linguistically preferable, but rather that k cannot
be fixed independently of the choice of representa-
tion. The value of k will also depend greatly on the
shape of the phonetic exponents. Fully inflected
forms can provide crucial clues about a lexical
item’s category that would be missing from the un-
inflected roots postulated in Distributed morphol-
ogy (Halle and Marantz, 1993). It remains to be
seen which set of assumptions and parameters will
prove most insightful.

At this point, though, I put forward a maximally
restrictive conjecture. Based on a preliminary sur-
vey of English data and the linguistic bon mot that
heads do not select for arguments of arguments, I
contend that the category systems of natural lan-
guages are maximally simple:

(3) Complexity of category systems
Given MG dependency trees with unin-
flected roots as exponents (e.g.

p
destroy,p

water), it holds for every natural lan-
guage that all its category and selector fea-
tures are ISL-2 recoverable.

The conjecture in (3) predicts that whenever a lex-
ical item is categorially ambiguous, its category
feature can be determined by inspecting the select-
ing head or the heads of the selected arguments.
Even if ISL-2 recoverability ultimately turns out
to be too strong an assumption, ISL-k recoverabil-
ity still rules out many undesirable feature systems

366

and reins in feature coding while allowing for lim-
ited categorial ambiguity.

ISL recoverability also has some more indirect
consequences. One prediction is that no natural
language can have an arbitrarily long sequence
x1, . . . , xn such that I) each xi is an empty head,
and II) xi selects xi+1 and nothing else (1 i <
n). This prediction follows from the fact that un-
pronounced lexical items provide no overt clues
about their category. If the local context does
not furnish any pronounced material, local cat-
egory inference hinges on structural differences.
Since the configuration above is structurally uni-
form, there is insufficient information to correctly
infer the categories of all empty heads. This case
is interesting because of the proliferation of empty
heads in Minimalist syntax. If there is any clear
counterexample to (3), it is likely to involve empty
heads.

It should also be noted that ISL recoverabil-
ity is only expected to hold for category and se-
lector features. Features that participate in long-
distance dependencies like movement cannot be
reliably assigned by an ISL transduction.2 Con-
sider once more our topicalization example from
before. Whether water should receive a top+ fea-
ture to license topicalization depends on whether
there is some head with a matching top� feature
to undergo topicalization. In the case at hand, this
can be made based on the local context alone. But
in general, a mover can be arbitrarily far away
from its target site, as in this author, John thinks
that Bill said that Mary really adores. Correct as-
signment of top+ thus requires a context of un-
bounded size, which is impossible with ISL trans-
ductions.

Many empirical and theoretical issues remain to
be settled. The MG corpus of Torr (2017) may
provide valuable clues about the feasibility of con-
jecture (3), but it must be supplemented by a broad
range of typological data. On the formal side,
studying the recoverability of movement features
will require more powerful extensions of ISL tree
transductions. The next section fully formalizes
ISL transductions to provide a suitable vantage
point for this future work.

2In grammars with adjunction, subcategorization can also
become a long-distance dependency depending on one’s
choice of representation (Graf, 2018). A modified version
of (3) would predict that the uninflected root of each adjunct
still provides enough information to reliably infer category
and selector features. I am much more skeptical that this will
turn out to be true across all languages.

3 Formal Definitions

This section puts the informal discussion of the
preceding section on a formal footing by defining
ISL recoverability in terms of ISL tree relabelings.
But in order to simplify future work on feature re-
coverability, I define the more general class of ISL
tree transductions, which ISL tree relabelings are
a particular simple subtype of. The definition of
ISL tree transductions differs markedly from that
of other tree transductions. Building on Gorn do-
mains and tree contexts (§3.1), I define an ISL tree
transducer as a finite set of triples, each one of
which maps a node n to a tree context based on
the configuration n appears in. The ISL transduc-
tion then combines all these tree contexts to yield
the final output tree (§3.2). Given this formal ap-
paratus, feature recoverability is easy to state in
rigorous terms (§3.3).

3.1 Technical Preliminaries
We define trees as finite, labeled Gorn domains
(Gorn, 1967). First note, though, that we use N to
denote the set of all positive natural numbers, i.e.
{1, 2, 3, . . .} rather than {0, 1, 2, 3, . . .} — this is
non-standard, but will slightly simplify the usage
of indices in the definition of ISL-k transducers.

A Gorn domain D is a set of strings drawn from
N⇤, which are called (Gorn) addresses, or simply
nodes. Every Gorn domain must satisfy two clo-
sure properties: for all u 2 N⇤ and 1 i j
it holds that uj 2 D implies both u 2 D and
ui 2 D. This entails the inclusion of the empty
string ", which denotes the root. Addresses are in-
terpreted such that u immediately dominates each
ui, and each ui is the immediate left sibling of
u(i + 1).

A ⌃-tree is a pair t := hD, `iwhere D is a finite
Gorn domain and ` : D ! ⌃ is a total function
that maps each address to its label, i.e. a member
of the alphabet ⌃. The depth of t is equivalent to
the length of the longest Gorn address.

A (⌃, n)-context is a ⌃-tree whose leaf
nodes may also have labels drawn from the set
{⇤1, . . . ,⇤n} of ports, which must be disjoint
from ⌃. Suppose we are given a (⌃, n)-context
c := hDc, `ci with m n ports labeled ⇤i at ad-
dresses a1, . . . , am, as well as a tree (or context)
s := hDs, `si. Then we use c[⇤i s] to denote
the result of substituting s for each ⇤i in c. This is
a new tree t := hD, `i such that

• D := Dc [{ajd | 1 j m, d 2 Ds}, and

367

• for every b 2 D

`(b) :=

8
><
>:

`s(d) if b = ajd

(1 j m, d 2 Ds)

`c(b) otherwise

The construction also generalizes to multiple si-
multaneous substitutions, as in c[⇤i s,⇤j
t]. If c contains no node labeled ⇤i, then c[⇤i
s,⇤j t] = c[⇤j t] (and c[] = c).

If S is a set, then substitution can apply
in two ways. With synchronous substitution,
t[⇤i S] := {t[⇤i s] | s 2 S}. Asyn-
chronous substitution, denoted t[⇤i (S], yields
{t[⇤i1 s1, . . . ,⇤in sn] | s1, . . . , sn 2 S},
assuming that t contains exactly n occurrences
of ⇤i. Substitution with sets and multiple si-
multaneous substitutions will be crucial for ISL
transductions.

3.2 ISL Transductions

Chandlee (2014) defines ISL string-to-string map-
pings in terms of deterministic, finite-state string-
to-string transducers. Even though the definition
does not provide an explicit look-ahead compo-
nent, ISL mappings can emulate finitely bounded
look-ahead via a delayed-output strategy. Sup-
pose, for instance, that a is rewritten as b before
d, as c before e, and just as a before f . This is em-
ulated by deleting a and rewriting the next symbol
as either bd, ce, or af . Later works define ISL
functions in terms of local contexts (not to be con-
fused with (⌃, n)-contexts), and those definitions
make look-ahead a standard component to sim-
plify practical work (Chandlee and Heinz, 2018;
Graf and Mayer, 2018; De Santo and Graf, 2019).

With tree transducers, the emulation of finitely
bounded look-ahead is a much more complex af-
fair that depends on various parameters such as di-
rectionality (top-down or bottom-up), totality, and
determinism. For this reason, I explicitly add fi-
nite look-ahead in the subsequent definitions. I
will also allow for non-determinism as future work
may require transductions than can handle option-
ality (e.g. whether a node should receive a move-
ment feature to undergo topicalization).

For the sake of generality and as a starting point
for future work, I first define a version of ISL tree
transductions that allows for non-determinism,
deletion, and copying, and that can run in two dif-
ferent modes of operation (synchronous or asyn-

chronous). This is subsequently limited to the spe-
cial case of ISL relabelings, which are the formal
core of feature recoverability.

Definition 1 (ISL tree transducer). For any k �
1, an ISL-k tree transducer from ⌃-trees to ⌦-
trees is a finite set ⌧ of ISL-k rewrite rules hs, a, ti,
where

• s is a ⌃-tree of depth i < k,

• a is a node (i.e. a Gorn address) of s with
d � 0 daughters,

• and t is an (⌦, d)-context. y

Definition 2 (Synchronous ISL transduction).
The transduction realized by an ISL-k transducer
in synchronous mode is defined in a recursive
fashion. First, a node b in tree u can be targeted
by an ISL-k context hs, a, ti iff there is some
p 2 N⇤ such that

node match b = pa, and

label match for all nodes g of s, `s(g) = `u(pg),

full-width match for all nodes gi of s with g 2
N⇤ and i 2 N , if pgj is a node of u (j > i),
then gj is a node of s.

Now suppose furthermore that n in u has d � 0
daughters. Given an ISL-k tree transducer ⌧ , we
use �⌧ (u, b) to denote the set of all trees t[⇤1 �⌧ (u, b1), . . . ,⇤d �⌧ (u, bd)] such that there is
a rewrite rule hs, a, ti in ⌧ that targets node b in
u. If this set is empty, �⌧ (u, b) is undefined. For
any ⌃-tree t, we may simply write �⌧ (t) instead
of �⌧ (t, "). For any tree language L, the trans-
duction computed by ⌧ in synchronous mode is
 �⌧ (L) := {hi, oi | i 2 L, o 2 �⌧ (i)}. A transduc-
tion is synchronous input strictly k-local (sISL-k)
iff it can be computed by some ISL-k transducer in
synchronous mode. It is synchronous input strictly
local (sISL) iff it is sISL-k for some k � 1. y

The definition of asynchronous input strictly k-
local (aISL-k) transductions is exactly the same,
except that �⌧ is replaced by

(
⌧ such that

(
⌧ (u, b)

denotes the set t[⇤1 (
(
⌧ (u, b1), . . . ,⇤d (

(
⌧ (u, bd)]. ISL is used as a shorthand for sISL or
aISL, ignoring transduction mode.

The definition of ISL transductions differs from
that of other tree transductions in that the input
tree is not altered incrementally to yield the output

368

tree. Instead, each node in the input contributes
a context to the output, or rather, a range of pos-
sible contexts in the case of a non-deterministic
transduction. The transduction then stitches these
contexts together in order to arrive at a single
tree structure. This stitching is accomplished by
the recursive step of mapping ⌧(u, b) to t[⇤1
⌧(u, b1), . . . ,⇤d ⌧(u, bd)]. Each ⌧(u, bi) (1
i d) corresponds to a context produced from the
i-th daughter of the node b in u, and these con-
texts are inserted into the appropriate ports of the
context t produced from n. If n is a leaf node, its
output structure is a tree instead of a context. This
ensures that the recursion step terminates eventu-
ally.

Example. Figure 4 specifies a fragment of an ISL-
3 transducer for translating multiplication trees to
addition trees (assuming no numbers larger than
3). For simplicity, the ISL rewrite rules are writ-
ten in a context-free format with a box around
the node to be rewritten. An underscore is used
to match any arbitrary node label. On the right,
a particular input-output mapping is shown with
the transducer running in asynchronous mode. In
synchronous mode, all ⇤i in the output of rule G
would have to be replaced by the same tree. y

It is easy to see that every ISL-k string trans-
duction is an ISL-k tree transduction over unary
branching trees. This shows that ISL-k tree trans-
ducers are a natural generalization of ISL for
strings. However, the current definition goes far
beyond ISL string mappings in that it allows for
non-determinism and copying.

Definition 3 (Transducer subtypes). An ISL-k
tree transducer ⌧ is

deterministic iff it holds for every ⌃-tree u that
no node of u can be targeted by more than
one context of ⌧ ,

linear/non-deleting iff all contexts hs, a, ti of ⌧
are such that if the node at address a in s has
d � 1 daughters, then t contains every port
⇤i at most once/at least once (1 i d),

structure preserving iff all rewrite rules hs, a, ti
of ⌧ are such that t is of the form
!(⇤1, . . . ,⇤d) (! 2 ⌦).

A deterministic, structure preserving ISL-k
transducer is called an ISL-k relabeling. y

A structure preserving ISL transducer never
changes the structure of the input tree. Structure
preservation thus entails linearity, which is why
the latter is not mentioned in the definition of rela-
belings. Linearity in turn removes the distinction
between synchronous and asynchronous mode as
no ⇤i ever has more than one occurrence. Only
this very limited type of ISL transducers is rele-
vant for feature recoverability.

3.3 ISL Feature Recoverability
We are finally in a position to define the notion of
ISL recoverability that was informally discussed
in §2.4. In order to clearly separate features from
other parts of the alphabet, we have to track them
in a separate component. MGs make this split
fully explicit, with a lexical item’s phonetic expo-
nent a member of ⌃ and their feature annotation
a string over an entirely separate set of features.
Other formalisms such as TAG or GPSG can also
be recast along these lines.

Definition 4. Let F be a set of features. An F -
annotated ⌃-tree is a tree whose labels are drawn
from ⌃⇥ F ⇤. y
Definition 5. Let F be a set of features and e a
function that maps each h�, fi 2 ⌃ ⇥ F ⇤ to �.
Then F is ISL-k recoverable with respect to lan-
guage L of F -annotated ⌃-trees iff there is an ISL-
k transducer ⌧ such that ⌧(e(t)) = t for all t 2 L.y

Note that feature recoverability can vary de-
pending on the particulars of the tree languages. A
feature that may not be recoverable with respect to
L may be recoverable with respect to L0. Consider
once more the grammar in §2.1. If foo always had
to carry O�, and bar always had to carry E�, then
those category features would be recoverable even
though they still encode an even/odd alternation.
In this hypothetical scenario, the alternation is tied
to overt exponents, reducing modulo counting to a
strictly 2-local alternation of lexical items. In the
other direction, even the simplest (non-trivial) cat-
egory system cannot be recovered from a language
where all lexical items are unpronounced. And as
a reviewer correctly points out, if one puts no re-
strictions on the use of empty heads, features can
be encoded in terms of specific structural config-
urations with empty heads. Feature recoverabil-
ity thus is a fluid notion that depends equally on
the nature of ⌃, the syntactic assumptions about
structure and phonetic exponents, and the overall
complexity of the tree language.

369

A) ⇥/+

_

) ⇤1 E) ⇥

•

_ 1

) ⇤1

B) +

•

_ _

) +

⇤1 ⇤1

F) ⇥

•

_ 2

) +

⇤1 ⇤1

C) ⇥

•

1 2

) 2 G) ⇥

•

_ 3

) +

⇤1 +

⇤1 ⇤1

D) 1) 1 H) 2) 2

I) 3) 3

Input

⇥

•

⇥

•

1 2

3

Workspace

⇤1

+

⇤1 +

⇤1

⇤1

2 +

⇤1 ⇤1

1

⇤1

Output

+

2 +

2 +

1 1

2 3

A

A

G

C
F

D
H

I

Figure 4: A non-deterministic ISL-3 tree transducer (left) for converting a tree with addition and multiplication
to addition only (right). The workspace depicts I) how each node is rewritten as one or more contexts, and II) all
possible options for combining these contexts into a particular output tree via substitution steps that are based on
the structure of the input tree. Dashed arrows are annotated with the corresponding rewrite rules. The transducer
is assumed to operate in asynchronous mode. The output displays one out of 23 = 8 options that differ in when
and where rewrite rules C and F are used. In synchronous mode, there would be only two distinct outputs.

4 Conclusion

ISL tree transductions — or more precisely, ISL
tree relabelings — offer a reasonable approxima-
tion of the limits of category systems in natural
languages. I conjecture that all natural languages
are such that the category of a lexical item can be
inferred from its local context in a tree without any
feature annotations. In combination with standard
assumptions about linguistic structure, feature re-
coverability is a powerful restriction that elimi-
nates many of the undesirable cases of feature cod-
ing identified in Graf (2017). It also makes strong
empirical predictions that merit further investiga-
tion by linguists.

Many questions had to remain open. On
the formal side, this includes abstract character-
izations as well as core properties of ISL tree
transductions, e.g. (non-)closure under intersec-
tion, union, and composition. The relations to
other transduction classes are largely unknown.
I conjecture that (deterministic) synchronous/
asynchronous ISL transductions are subsumed by
(deterministic) bottom-up/top-down transductions
with finite look-ahead. Linear ISL transductions
should be subsumed by both. The movement fea-
tures of MGs will require a more powerful kind

of transduction, possibly based on the string class
TSL (Heinz et al., 2011). There also seems to
be a deep connection between feature recoverabil-
ity and the notion of inessential features (Kracht,
1997; Tiede, 2008).

From a linguistic perspective, one pressing
question is to what extent feature recoverability
depends on whether syntax uses fully inflected
lexical forms or underspecified roots. If fully in-
flected lexical items do not reduce the complex-
ity of the ISL transduction, or allows for unnat-
ural constraints that would not be possible other-
wise, that would be a powerful argument that syn-
tax indeed has no need for anything beyond simple
roots.

Acknowledgments

The work reported in this paper was supported
by the National Science Foundation under Grant
No. BCS-1845344. This paper benefited greatly
from the feedback of Jeffrey Heinz, Dakotah Lam-
bert, and three anonymous reviewers. I am in-
debted to the participants of the University of
Tromsø’s workshop Thirty Million Theories of
Syntactic Features, which lit the initial spark that
grew into the ideas reported here.

370

References
Hyunah Baek. 2018. Computational representation of

unbounded stress: Tiers with structural features. In
Proceedings of CLS 53, pages 13–24.

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, University of Delaware.

Jane Chandlee and Jeffrey Heinz. 2018. Strict locality
and phonological maps. Linguistic Inquiry, 49:23–
60.

Noam Chomsky. 1965. Aspects of the Theory of Syn-
tax. MIT Press, Cambridge, MA.

Aniello De Santo and Thomas Graf. 2019. Struc-
ture sensitive tier projection: Applications and for-
mal properties. In Formal Grammar, pages 35–50,
Berlin, Heidelberg. Springer.

Saul Gorn. 1967. Explicit definitions and linguis-
tic dominoes. In Systems and Computer Science,
Proceedings of the Conference held at University
of Western Ontario, 1965, Toronto. University of
Toronto Press.

Thomas Graf. 2011. Closure properties of Minimal-
ist derivation tree languages. In LACL 2011, vol-
ume 6736 of Lecture Notes in Artificial Intelligence,
pages 96–111, Heidelberg. Springer.

Thomas Graf. 2017. A computational guide to the di-
chotomy of features and constraints. Glossa, 2:1–
36.

Thomas Graf. 2018. Why movement comes for free
once you have adjunction. In Proceedings of CLS
53, pages 117–136.

Thomas Graf and Aniello De Santo. 2019. Sensing tree
automata as a model of syntactic dependencies. In
Proceedings of the 16th Meeting on the Mathematics
of Language, pages 12–26, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Thomas Graf and Connor Mayer. 2018. Sanskrit n-
retroflexion is input-output tier-based strictly local.
In Proceedings of SIGMORPHON 2018, pages 151–
160.

Thomas Graf and Nazila Shafiei. 2019. C-command
dependencies as TSL string constraints. In Proceed-
ings of the Society for Computation in Linguistics
(SCiL) 2019, pages 205–215.

Morris Halle and Alec Marantz. 1993. Distributed
morphology and the pieces of inflection. In Ken
Hale and Samuel J. Keyser, editors, The view from
building 20, pages 111–176. MIT Press, Cambridge,
MA.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frank Plank, editors, Phonological Typology, Pho-
netics and Phonology, chapter 5, pages 126–195.
Mouton De Gruyter.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints in phonol-
ogy. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics,
pages 58–64.

Gregory M. Kobele. 2011. Minimalist tree languages
are closed under intersection with recognizable tree
languages. In LACL 2011, volume 6736 of Lecture
Notes in Artificial Intelligence, pages 129–144.

Marcus Kracht. 1997. Inessential features. In Alain
Lecomte, F. Lamarche, and G. Perrier, editors, Logi-
cal Aspects of Computational Linguistics, pages 43–
62. Springer, Berlin.

Lei Liu. 2018. Minimalist parsing of heavy NP shift.
In Proceedings of the 32nd Pacific Asia Confer-
ence on Language, Information and Computation
(PACLIC 32). Association for Computational Lin-
guistics.

James Rogers. 1997. Strict LT2 : Regular :: Local :
Recognizable. In Logical Aspects of Computational
Linguistics: First International Conference, LACL
’96 (Selected Papers), volume 1328 of Lectures
Notes in Computer Science/Lectures Notes in Arti-
ficial Intelligence, pages 366–385. Springer.

Edward P. Stabler. 1997. Derivational Minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, volume 1328 of Lecture Notes
in Computer Science, pages 68–95. Springer, Berlin.

Edward P. Stabler. 2011. Computational perspectives
on Minimalism. In Cedric Boeckx, editor, Oxford
Handbook of Linguistic Minimalism, pages 617–
643. Oxford University Press, Oxford.

Hans-Jörg Tiede. 2008. Inessential features, inelim-
inable features, and modal logics for model theoretic
syntax. Journal of Logic, Language and Informa-
tion, 17:217–227.

John Torr. 2017. Autobank: a semi-automatic anno-
tation tool for developing deep Minimalist gram-
mar treebanks. In Proceedings of the Demonstra-
tions at the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 81–86.

Mai Ha Vu. 2018. Towards a formal description of
NPI-licensing patterns. In Proceedings of the Soci-
ety for Computation in Linguistics, volume 1, pages
154–163.

Mai Ha Vu, Nazila Shafiei, and Thomas Graf. 2019.
Case assignment in TSL syntax: A case study. In
Proceedings of the Society for Computation in Lin-
guistics (SCiL) 2019, pages 267–276.

371

