
Unsupervised Formal Grammar Induction with Confidence

Jacob Collard
Cornell University

jacob@thorsonlinguistics.com

Abstract

I present a novel algorithm for minimally su-
pervised formal grammar induction using a
linguistically-motivated grammar formalism.
This algorithm, called the Missing Link algo-
rithm (ML), is built off of classic chart parsing
methods, but makes use of a probabilistic con-
fidence measure to keep track of potentially
ambiguous lexical items. Because ML uses
a structured grammar formalism, each step of
the algorithm can be easily understood by lin-
guists, making it ideal for studying the learn-
ability of different linguistic phenomena. The
algorithm requires minimal annotation in its
training data, but is capable of learning nu-
anced data from relatively small training sets
and can be applied to a variety of grammar for-
malisms. Though evaluating an unsupervised
syntactic model is difficult, I present an eval-
uation using the Corpus of Linguistic Accept-
ability and show state-of-the-art performance.1

1 Introduction

Most research on learning algorithms for natural
language syntax has focused on supervised pars-
ing, in which the parser learns from sentences in
the target language paired with a corresponding,
hand-constructed parse tree. Major natural lan-
guage corpora, such as the Penn Treebank (Mar-
cus et al., 1994) and the Universal Dependencies
framework (Nivre et al., 2016) exemplify this ten-
dency. This has allowed for highly performant
models for dependency parsing such as ClearNLP
(Choi and McCallum, 2013), CoreNLP (Manning
et al., 2014), Mate (Bohnet, 2010), and Turbo
(Martins et al., 2013), all of which have achieved
an accuracy of over 89% on standard evaluation
tasks (Choi et al., 2015).

1In the interest of reproducibility, the code used to gen-
erate these results is provided at https://github.com/
thorsonlinguistics/scil2020

Unsupervised learning for natural language pro-
cessing is a much more difficult task, as the algo-
rithm must explore the entire search space with
minimal confirmation of its hypotheses. Never-
theless, a number of algorithms have attempted to
solve the problem of unsupervised parsing. Most
of these rely on gold standard part of speech
tags (Headden III et al., 2009; Spitkovsky et al.,
2010), though there are some exceptions, such as
Spitkovsky (2011). Almost all unsupervised al-
gorithms for natural language syntactic process-
ing are based on dependency parsing; most of the
published literature on other grammar formalisms,
such as tree-adjoining grammar (TAG) and com-
binatory categorial grammars (CCG) is either su-
pervised or hand-engineered. Again, there are
some exceptions, such as (Bisk et al., 2015), which
learns CCGs using a small amount of initial part-
of-speech data. Edelman et al. (2003) also present
a model of unsupervised learning which blends
properties of construction grammars with tree-
adjoining grammars; however, their model has
not, as yet, been evaluated empirically.

Other models are only indirectly supervised;
the syntax of the target language is learned with-
out any syntactic annotations, but annotations may
be present representing other facts about the sen-
tence, such as its logical form. Notable examples
of this include work by Kwiatkowski et al. (2010;
2011) and Artzi and Zettlemoyer (2013).

Another recent innovation in unsupervised
learning is the introduction of pre-trained lan-
guage models for deep learning algorithms, such
as BERT (Devlin et al., 2018) and its relatives.
These algorithms can be pre-trained on raw text
in order to produce a language model which can
then be used to bootstrap learning for a wide vari-
ety of additional tasks. Though supervision may
be required by these downstream tasks, the un-
supervised component has been shown to greatly

180
Proceedings of the Society for Computation in Linguistics (SCiL) 2020, pages 180-188.

New Orleans, Louisiana, January 2-5, 2020

improve learning. The representations that these
models produce are somewhat opaque; though
they have been shown to represent syntactic infor-
mation for some tasks (Goldberg, 2019), an exact
description of what the model is representing is
difficult to produce.

Though most of the above systems do not rely
on a strict notion of grammar formalism, in this
paper, I will argue that a well-defined grammar
formalism can produce strong results when used as
the basis for an unsupervised learning algorithm.
Dependence on a grammar formalism has a num-
ber of benefits. First, it means that each step of
the algorithm can be (relatively) easily understood
by humans. Each processing step either produces
a novel derivation for a sentence or reinforces an
old one, and each derivation conforms to the rules
of the given formalism. Thus, as long as the rules
of the formalism are understood, the meaning be-
hind each processing step can also be understood.
Second, using a grammar formalism ensures that
certain facts about the resulting grammar will al-
ways hold. For example, using CCG or TAG will
guarantee that the resulting grammar is in the class
of mildly context-sensitive languages. Third, us-
ing a grammar formalism means that the proper-
ties of the grammar formalism can be studied as
well. Though formalisms such as CCG and TAG
are weakly equivalent (Joshi et al., 1990), there
may be differences between the two formalisms
with respect to learning. Similarly, different vari-
ants of a particular formalism can be studied as
well. For example, different combinators can be
added or removed from CCG to produce different
learning results. By using the grammar formal-
ism as a core parameter in learning, the formalism
becomes an independent variable that can be ex-
plored.

In this paper I introduce an algorithm, called the
Missing Link algorithm (ML), which has several
interesting properties which, I argue, are beneficial
to the study of linguistics, grammar formalisms,
and natural language processing. These properties
include:

• Minimal supervision. The Missing Link al-
gorithm learns from raw, tokenized text. The
only annotation required is assurance of the
sentencial category, which is trivial for most
training sets and grammar formalisms.

• Formalism Dependence. The grammar for-
malism is the core motivator for learning and

parsing in Missing Link. This means that
the formalism can easily be replaced with an-
other and that the formalism can be studied
as a parameter.

• Interpretability. Due partly to formalism
dependence, the Missing Link algorithm is
highly interpretable. Each step of the algo-
rithm can be viewed as a derivation using the
input formalism.

• Performance. The Missing Link algorithm
performs well on an evaluation using linguis-
tic acceptability judgments. The results of
the evaluation are competitive with super-
vised algorithms such as BERT for the spe-
cific task used. Missing Link supplements
the input formalism with a model of confi-
dence for lexical entries that allows it to ro-
bustly handle potential ambiguity.

1.1 Related Work

The Missing Link algorithm builds off of rela-
tively simple models for grammar induction and
parsing. Parsing is done via a simple bottom-
up chart-based method (Younger, 1967; Kasami,
1965). Learning is done in a top-down fashion
using the same chart, with some extensions de-
scribed in Section 2.2.

The Missing Link algorithm is closely related to
the Unification-Based Learning (UBL) algorithm
described in Kwiatkowski et al. (2010). UBL
is an algorithm for semantic parsing, but the de-
composition operations used in Missing Link are
essentially the same as the higher-order unifica-
tion used in UBL, albeit applied directly to syn-
tactic categories instead of logical forms. Unlike
UBL, Missing Link ensures that every stop of pro-
cessing is interpretable; the probabilistic grammar
used in UBL can potentially obscure why individ-
ual parses are excluded.

2 The Missing Link Algorithm

There are two main stages to the Missing Link
algorithm: parsing and learning, which are per-
formed in order for every sentence in the training
set. As the algorithm processes more sentences, it
updates a lexicon, mapping words to their syntac-
tic categories and a probability representing how
confident the algorithm is that the given category
is valid in the target grammar.

181

2.1 Inputs

The core inputs to the Missing Link algorithm are:

• A grammar formalism, which defines a (pos-
sibly infinite) set of grammatical units E and
two functions: COMPOSE : E⇥E ! E⇤ and
DECOMPOSE : E ⇥ E ⇥ E ! (E ⇥ E)⇤. E
always contains a special null element 0 in-
dicating that the grammatical category is not
known.

• A collection of training examples. Each
training example consists of a tokenized sen-
tence and an annotation describing the possi-
ble grammatical categories of the sentence.

The two functions of the grammar formalism
determine the behavior of the parser and learner.
The COMPOSE function returns a collection of el-
ements in E that can be produced by combining
the two input elements. This typically represents
the basic structure-building operation of the given
formalism. In Minimalism, for example, it corre-
sponds to MERGE; in CCG, it corresponds to the
various combinators; in TAG to substitution and
adjunction, etc.

The DECOMPOSE function is essentially the in-
verse of COMPOSE. It returns the set of pairs of
elements that can be composed to produce a given
input. Though it takes three elements, only the
first, representing the root, is necessary. The sec-
ond arguments are supplied to force one or both
of the elements in the results to take a particular
value. This will become important to avoid ex-
ploring the entirety of the search space; when a
value is already known, the DECOMPOSE function
will maintain that value whenever possible.

Note that the input of Missing Link places some
restrictions on the types of formalisms that can be
used. In particular, the formalism does not carry
any language-specific information outside of the
lexicon – the formalism must be strongly lexical-
ized. Many major formalisms, including CCG and
TAG, adhere to this rule, though some formalisms,
such as standard context-free grammars, cannot be
represented by Missing Link. In addition, the re-
sults of DECOMPOSE and COMPOSE must be fi-
nite sets. Though this seems problematic for for-
malisms like CCG, where there are infinite ways
to compose two arbitrary elements to produce a
third, this can usually be avoided by schematiza-
tion. That is, instead of returning every possible

S ! 1
?

(S/b) ! 0.25
?

(S\a) ! 0.25
(S\a) ! 0.25

a ! 0.125
?

((S\a)/b) ! 0.5
((S\a)/b) ! 0.5

b ! 0.5
b ! 0.5

It might work

Figure 1: A chart showing the parse of the sentence It
might work. Parse values are given at the bottom of
each node, while learn values are given at the top.

result, the results can be summarized using vari-
ables.

2.2 The Chart

The Missing Link algorithm is built around a
CKY-style chart. The chart consists of cells rep-
resenting potential parses for each substring of the
sentence. In Missing Link, each cell stores two
separate analyses: one for the potential bottom-up
parses of the sentence, and one for the potential
top-down decompositions of the sentence, based
on the category assigned to the sentence. These
will be referred to as the “parse value” and the
“learn value” for each cell.

Both the parse value and the learn value are rep-
resented using the same data structure, which is
also used in the lexicon. This data structure maps
potential categories (elements of E according to
the target formalism) to probabilities, which repre-
sent the algorithm’s confidence that the given cate-
gory is valid for the corresponding substring. Note
that the sum of the probabilities for the different
categories is not necessarily 1: in the case where
the algorithm is certain that a substring is ambigu-
ous, the probabilities will sum to at least 2. Miss-
ing Link does not assign probabilities based on
frequency relative to other substrings, sentences,
or categories and makes no distinction between al-
ternative parses other than their probability of be-
ing grammatical.

An example chart is shown in Figure 1.

2.3 Parsing

For each sentence in the training data, the Missing
Link algorithm begins by looking up each word
in the lexicon. The results of the lookup are as-
signed to the parse value for the bottom cells of
the chart, which represent the length-1 substrings.
The algorithm then attempts to parse as much of
the sentence as possible. Initially, it will not be
possible to parse any sentences, as no words have
been introduced to the lexicon. However, as the

182

algorithm sees more sentences in the training set,
the lexicon will expand and the parses will become
more complete.

The parsing step is fairly typical for a proba-
bilistic CKY parser, proceeding in a bottom-up
direction by calling COMPOSE for each pair of
adjacent substrings. The only major difference
does not come from the parsing strategy per se,
but from necessary constraints on the formalisms
compatible with Missing Link.

The confidence values for subsequent cells in
the chart are determined under the assumption that
all assignments are independent. Thus, in most
cases, P (COMPOSE(A, B)) = P (A)P (B). If the
same category is found multiple times, these val-
ues are also treated as independent; thus, P (A) =
P (A1) + P (A2) � P (A1)P (A2), where A1 and
A2 are separate instances of the category A.

Once as much of the chart has been filled by
the parser as possible, the parse stage ends for that
sentence. The parse values of the cells are retained
when the chart is passed to the learning stage; in-
complete parses are used to inform the learning
stage. Even if the parse was successful, the learn-
ing stage still occurs, in order to update the sys-
tem’s confidence in the values used to produce the
successful parse.

2.4 Learning

The learning stage is similar to the parsing stage,
although it is somewhat more involved as it is able
to take advantage of the results of the parse to min-
imize its search space.

First, the learn value of the root of the chart is
initialized with the annotated category for the sen-
tence. Then, the algorithm proceeds in a top-down
manner calling DECOMPOSE on each cell and two
corresponding substrings. For the most part, this
proceeds in the same manner as the parsing stage,
except in a top-down direction. There are, how-
ever, a few differences.

The base probability for a learned category is
based on the probability of the root and the proba-
bility of any known sub-constituents.

When assigning probabilities in the learning
stage, the learner must contend with the fact that
there are multiple possibilities and no guarantee
that they are all valid. The learner must also con-
tend with the fact that there are multiple possible
tree structures. Since chart parsing deals only with
binary-branching trees, it is possible to calculate

the number of possible trees for a sentence of a
given length. The probability must then also be
modulated by the n � 1st Catalan number, where
n is the length of the substring corresponding to
the current cell.

Thus, the total probability for a given result is
equal to p

Cn�1l where p is the base probability, Cn

is the nth Catalan number, n is the length of the
substring, and l is the number of results produced
by DECOMPOSE.

The results are also dependent on the parse val-
ues of the corresponding sub-constituents. If both
of the sub-constituents have known parse values,
then learning does not necessarily need to occur.
If these sub-constituents can be composed to pro-
duce at least one value in the current cell’s learn
value, then those sub-constituents will be added
to the learn values of their cells, with their origi-
nal probabilities. In other words, if the values are
known and can produce the target value, then no
additional learning needs to occur. If the target
value cannot be produced, then learning occurs as
normal, as if neither value were known.

A similar situation occurs when only one of
the sub-constituents is known. In this case,
DECOMPOSE is applied as normal, with the re-
striction that the known value remains constant.
If DECOMPOSE is successful, then the probabil-
ity remains constant as well. On the other hand, if
DECOMPOSE cannot learn any values, then the de-
composition is attempted again, as though neither
value were known.

2.5 Lexical Update

Once both parsing and learning have occurred for
a given sentence, the algorithm updates the lex-
icon based on the learned values for the length-1
substring cells in the chart. Since values in the lex-
icon are represented the same way as cells in the
chart, this is a fairly straightforward process. If
the category for a word in the current sentence is
the same as a category already in the lexicon, the
probability of the word is updated according to the
assumption that the two probabilities are indepen-
dent, as described above.

3 Implementing Combinatorial
Categorial Grammar

For the purposes of this paper, Combinatory Cat-
egorial Grammar (CCG) will be used as an ex-
ample formalism with Missing Link. CCG is an

183

efficiently parseable grammar formalism in which
all language-specific rules are stored in the lexicon
(Steedman and Baldridge, 2002).

To implement a formalism for Missing Link, it
is only necessary to define the set E, and the func-
tions COMPOSE and DECOMPOSE. In CCG, the set
E will be the set of categories, which is defined as
follows:

• Given a set A of atoms, if a 2 A, then a is a
category.

• If a and b are categories, then (a\b) and (a/b)
are categories. These are referred to as com-
plex or functional categories.

For the purposes of Missing Link, it is also nec-
essary to define one additional type of category:
the variable. In this paper, variables are repre-
sented using lowercase letters while atoms are rep-
resented using capital letters.

In this paper, I start with the variant of CCG
defined in Eisner (1996). In this variant, the
COMPOSE operator can be defined fairly straight-
forwardly using two combinators:

(X/Y) X|n · · · |2Z2|1Z1
> Bn

X|nZn · · · |2Z2|1Z1

X|n · · · |2Z2|1Z1 (X\Y)
< Bn

X|nZn · · · |2Z2|1Z1

These combinators, generalized forward com-
position and generalized backward composition,
respectively, result in a TAG-equivalent formal-
ism. I use Steedman’s result-first notation for
CCG categories and assume left-associativity un-
less disambiguated by parentheses.

The COMPOSE function for CCG can be defined
as simply taking two categories and returning the
results of either of these combinators. The excep-
tion is when one of the categories contains a vari-
able; in this case, if the variable can be assigned
to a value in the other category to produce a valid
combination, then it will be. For more details on
variables, see Section 3.2.

The DECOMPOSE, as the inverse of COMPOSE,
can be derived from the same combinators. In ef-
fect, the algorithm attempts to match as much of
the pattern as is available in order to construct the
rest of the proof. Any values which cannot be de-
termined concretely are replaced with variables.
For example, given the root X , this matches both
combinators where n = 0, allowing the function
to select ((X/a), a) and (b, (X\b)) as potential re-
sults.

3.1 Modalities

As written above, this formalism is performs
poorly with Missing Link. Though COMPOSE

and DECOMPOSE always produce finite results,
the generalized combinators prove problematic for
learning. This is because crossed composition
in CCG can result in permutation, which makes
it impossible for Missing Link to distinguish be-
tween certain alternatives involving functional cat-
egories.

For example, consider the first learning instance
involving a two-word sentence with no words
known. This will produce a derivation such as
the following, where multiple categories on a node
correspond to alternative hypotheses proposed by
Missing Link.

S

(S/a)
b

a
(S\b)

If the algorithm then attempts to parse this same
sentence (or any similar one), it will run into a
problem. Since the algorithm cannot tell which
hypothesis for the left node was originally paired
with which hypothesis for the right node, it is
forced to try all possibilities during composition.
This will result in the algorithm attempting to
compose (S/a) and (S\b). If a = S, then this can
compose according to the generalized composition
rules above, resulting in (S\b). However, the al-
gorithm has made a crucial mistake in assigning S
to the input type b. In fact, because these situa-
tions crop up whenever an atom or variable is de-
composed, this sort of assignment is exceedingly
common. In addition, because S is usually the
only concrete atomic category (other atoms must
be represented by clusters of variables, since Miss-
ing Link is unsupervised!), eventually all variables
tend to converge to S. This results in an incompre-
hensible grammar in which the only atom is S.

One possible solution would be to prevent hy-
potheses from composing with competing alterna-
tives (i.e., alternatives generated at the same time).
However, this solution would not be sufficient,
as the same situation could still occur with other
words – the pattern that created the first set of hy-
potheses will apply to other words as well. Thus,
convergence to S will still occur in these situa-
tions.

The solution that I used was to take advantage of

184

the slash modalities used in many CCG variants,
such as Baldridge (2002). These variants place
modalities on the slash categories that restrict their
application to certain combinators. I use four basic
modalities, taken from Steedman and Baldridge
(2002).

• Star (⇤): Categories with this slash can only
apply in simple applicative contexts (function
composition of all types is forbidden).

• Diamond (⇧): Categories with this slash can
compose only with categories of the same
slash direction.

• Cross (⇥): Categories with this slash can
compose only with categories of the opposite
slash direction.

• Dot (·): Categories with this slash can com-
pose with any other category.

Using these modalities restricts the cases where
certain compositions may occur. During learning,
the most restrictive category that applies to the
given decomposition is always used. For example,
the decomposition of S results in ((S/⇤a), a) and
(b, (S\⇤b)). Due to the restrictions on the modali-
ties, it is no longer possible to compose the results
using crossed composition: (S/⇤a) and (S\⇤b) are
incompatible! The problem of convergence to S
no longer exists, and the computational properties
of the formalism are maintained: crossed compo-
sition can still occur as a last resort, in cases where
it is clear that it can be derived.

As an aside, it is no accident that crossed com-
position was the cause of this issue. The permuta-
tions caused by crossed composition also make it
necessary in mildly context-sensitive CCGs to ac-
count for data in languages such as Swiss German
and Dutch. It is interesting, though not surprising,
that this comes with its own difficulties in learn-
ing.

3.2 Variables and State
As described in previous sections, this implemen-
tation of CCG for Missing Link uses variables to
represent categories whose exact value cannot be
determined. Though variables are necessary, they
also introduce additional complexity into the algo-
rithm. There are a few special notes that relate to
the treatment of variables in CCG.

The values of variables are stored in a global
state, which maps variable IDs to their values (if

a value is known). When a variable is evaluated
in parsing or learning, it is first resolved accord-
ing to the state. In most cases, a variable can-
not be resolved completely (the final representa-
tion will still contain one or more variables); this
is expected, as the algorithm is not able to induce
new atomic categories, it must instead make use
of variables that are designated to represent new
categories.

The value of a variable may be a complex cate-
gory, an atomic category, or another variable (the
latter case being used primarily to set two vari-
ables equal to one another). If a variable is set
equal to a complex category, it may be that the
complex category itself contains variables. This
creates the possibility of reference cycles, which
would produce undefined values. To avoid this,
every time an assignment is made, the algorithm
performs an occurs check to ensure that the as-
signment will not produce any reference cycles:
the new value is checked for any instances, direct
or indirect, of the variable. If there are any, the as-
signment cannot be completed and the algorithm
must try another alternative.

Once a variable is assigned a value, it is per-
manent. However, the algorithm is still free to in-
troduce a new variable by re-decomposing cate-
gories in future training samples, according to the
rules given in Section 2. Furthermore, if a vari-
able assignment fails within a combinator (due to
an occurs check), the state is rolled back to the
way it was before the combinator began process-
ing. This prevents known inconsistencies from
filling the state; though the state may still contain
inconsistencies, all values in the state are part of
a potential analysis. Any remaining inconsisten-
cies typically do not achieve high probability dur-
ing learning, as they cannot be used to successfully
parse many sentences.

4 Evaluation

Evaluating an unsupervised learning algorithm is
a difficult prospect. Though many unsupervised
syntactic learning algorithms are evaluated by
comparing the resulting dependency structures to
a gold standard, typically by ensuring that each
predicted dependency is directed in the same way
between the same two lexical units as the gold
standard dependency. However, comparison by
dependency structures is not always a good choice
for unsupervised learning algorithms. In particu-

185

lar, because one of the goals of Missing Link is to
provide a framework for analyzing grammar for-
malisms in an otherwise theory-independent man-
ner, it is undesirable to make use of any theory-
dependent analysis. Though dependencies may
be largely independent of theory, they still make
conventional decisions. For example, the Univer-
sal Dependencies project does not usually allow
functional categories to be heads, while alterna-
tives, such as Stanford Dependencies, do allow
functional heads. If the learning algorithm is free
to choose from the alternatives on its own, then it
cannot be accurately evaluated against such a stan-
dard.

To evaluate Missing Link, I therefore use a
secondary task. Similar to BERT (Devlin et al.,
2018), I use Missing Link as an unsupervised pre-
training algorithm for a downstream task. In this
case, I use linguistic acceptability (grammatical-
ity) judgments as the downstream task. This is an
ideal task for Missing Link, since Missing Link’s
confidence values essentially capture the notion of
probability that a sentence (or substring) is gram-
matical. I use the Corpus of Linguistic Accept-
ability (Warstadt et al., 2018) to provide the gold
standard and training data. The Corpus of Linguis-
tic Acceptability (CoLA) provides a basic classifi-
cation task in which sentences are annotated with
boolean grammaticality judgments – that is, each
sentence is either considered grammatical or not.
Missing Link will provide the pre-trained linguis-
tic model, and a simple logistic regression will use
Missing Link confidence values to classify the test
data.

4.1 Pre-Training

Before training the model, Missing Link is used
to pre-train a linguistic model of the target lan-
guage, in this case English. In order to keep the
conditions between the training set and the testing
set as close as possible, it is necessary to pre-train
Missing Link on a different dataset than the an-
notated linguistic acceptability data. In addition,
the corpus of linguistic acceptability is relatively
small. To this end, I pre-train Missing Link us-
ing the much larger Billion Words corpus (Chelba
et al., 2013).

For pre-training, I sorted the sentences of the
Billion Words corpus (BWB) in ascending order
by length. Missing Link is able to assign higher
confidence to words in shorter sentences. This al-

lows it to have a relatively small set of hypothe-
ses for many words that occur in shorter sentences,
which it can then use to better learn nearby words
in longer sentences. Sentences of length less than
3 were excluded, since most short sentences in
BWB are simple noun phrases or noisy punctu-
ation, which can confuse Missing Link. Sen-
tences of length greater than 10 were excluded as
well, since they tend to contribute little to Missing
Link’s confidence.

For practical reasons, I also restricted the num-
ber of categories learned for each cell in the chart
and lexical entry to 50, to improve efficiency while
still allowing for multiple simultaneous hypothe-
ses.

4.2 Training and Testing

Once the linguistic model is pre-trained, then it
can be used to train a logistic regression. To train
the logistic regression, Missing Link processes
each sentence in the CoLA training set, produc-
ing a confidence value for each potential senten-
tial category. If no parse is produced, or if S is
not in the results, then Missing Link is allowed to
learn from the sentence. By learning from sen-
tences where no valid parse was produced, Miss-
ing Link becomes robust to sentences where some
words were not in the original pre-training set. Af-
ter learning, Missing Link attempts to parse the
sentence again.

The confidence of the category S is used as one
independent variable for training the logistic re-
gression. The other independent variables are the
length of the sentence, whether the category S was
found (including after re-training), and whether re-
training was required. Longer sentences are in-
herently associated with lower probabilities due to
the independence assumptions used in composi-
tion. Sentences where the category S was never
found are also distinguished from sentences where
the probability of S was negligible; although both
are likely to indicate an ungrammatical sentence,
for long sentences, the distinction may be neces-
sary. Lastly, whether retraining was necessary is
a plausible predictor as well, since retraining indi-
cates that either some words are out of vocabulary
or the sentence could not be parsed with the previ-
ously learned categories.

Once the logistic regression has been fit to the
training data, the same process is applied to the
testing data in order to predict whether each sen-

186

Model MCC
MT-DNN 68.4
RoBERTa 67.8
XLNet-Large 67.8
GLUE Human Baseline 66.4
Missing Link 63.0
XLM 62.9
BERT-24 60.5

Table 1: CoLA Benchmark2

tence is grammatical or not.

5 Results and Conclusion

The Corpus of Linguistic Acceptability is eval-
uated using Matthews Correlation Coefficients,
since there are far more grammatical sentences in
the data than ungrammatical ones. A number of
other systems have been tested against CoLA and
can be used as benchmarks for Missing Link, since
the same training-testing split is used by all sys-
tems.

The results of the evaluation of Missing Link
as well as some of the top performing competi-
tors are given in Table 1. With an MCC of 63.0,
Missing Link does not advance the state-of-the-art
compared to deep learning models, but it does per-
form competitively. Given that Missing Link uses
only a basic logistic regression on top of the pre-
trained model, this presents evidence that Missing
Link is producing a reasonable grammar for the
data.

Given that Missing Link produces a reasonable
grammar, it can then be used for further study in
the fields of grammar formalisms and theoretical
linguistics. Different grammar formalisms can be
compared using the same core algorithm, allowing
for any variation in performance to be attributed to
properties of the grammar formalism. The algo-
rithm can also be used to explore specific linguis-
tic phenomena from a learning perspective. Given
two alternatives to a linguistic phenomenon, it is
possible to use Missing Link as one potential way
of distinguishing between the two. This presents a
new paradigm in linguistic research as a means of
exploring generative linguistics through a formal,
but nuanced, model of learning and learnability.
Missing Link is not necessarily the only algorithm
that supports this paradigm, but presents evidence

2These baselines are taken from the GLUE leaderboard at
the time of writing (Wang et al., 2019).

that such a paradigm is feasible for linguistic the-
ory.

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Jason Baldridge. 2002. Lexically specified control in
combinatory categorial grammar. Ph.d. disserta-
tion, University of Edinburgh.

Yonatan Bisk, Christos Christodoulopoulos, and Julia
Hockenmaier. 2015. Labeled grammar induction
with minimal supervision. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics, pages 870–876, Beijing, China.
Association for Computational Linguistics.

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Proceed-
ings of COLING.

Ciprian Chelba, Tomas Mikolov, Mike Schuster,
Qi Ge, Thorston Brants, and Phillip Koehn.
2013. One billion word benchmark for measuring
progress in statistical language modeling. CoRR,
abs/1312.3005.

Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with selec-
tional branching. In Proceedings of the 51st annual
meeting of the Association for Computational Lin-
guistics, pages 1052–1062.

Jinho D. Choi, Joel Tetreault, and Amanda Stent. 2015.
It depends: Dependency parser comparison using a
web-based evaluation tool. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics, pages 387–396.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Shimon Edelman, Zach Solan, David Horn, and Ey-
tan Ruppin. 2003. Rich syntax from a raw corpus:
Unsupervised does it. In Syntax, Semantics and
Statstics Workshop at NIPS ’03, Whistler, British
Columbia, Canada.

Jason Eisner. 1996. Efficient normal-form parsing for
combinatory categorial grammar. In Proceedings of
the 34th Annual Meeting of the Association for Com-
putational Linguistics, pages 79–86. Santa Cruz.

Yoav Goldberg. 2019. Assessing BERT’s syntactic
abilities. Unpublished manuscript.

William P. Headden III, Mark Johnson, and David
McClosky. 2009. Improving unsupervised depen-
dency parsing with richer contexts and smoothing.

187

In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, NAACL ’09, pages 101–109, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Aravind K. Joshi, K. Vijay Shankar, and David Weir.
1990. The convergence of mildly context-sensitive
grammar formalisms. Technical Report MS-CIS-
90-01, Department of Computer and Information
Science, University of Pennsylvania.

Tadao Kasami. 1965. An efficient recognition
and syntax-analysis algorithm for context-free lan-
guages. Technical report, AFCRL.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1223–1233, Cambridge, MA.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in CCG grammar induction for semantic pars-
ing. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP
’11, pages 1512–1523, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karne Katz, and Britta Schas-
berger. 1994. The penn treebank: Annotating
predicate argument structure. In Proceedings of
the workshops on Human Language Technology,
pages 114–119. Association for Computational
Linguistics.

André F.T. Martins, Miguel B. Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proceedings of the
ACL.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zema.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of LREC, pages
1659–1666.

Valentin I. Spitkovsky, Hiyan Alshawi, Angel X.
Chang, and Daniel Jurafsky. 2011. Unsupervised
dependency parsing without gold part-of-speech
tags. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing, EMNLP
’11, pages 1281–1290, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010. From baby steps to leapfrog: How
”Less is More” in unsupervised dependency parsing.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, HLT
’10, pages 751–759, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Mark Steedman and Jason Baldridge. 2002. Combina-
tory categorial grammar. In Robert D. Borsley and
Kersti Börjars, editors, Non-Transformational Syn-
tax, pages 181–224. Blackwell.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judg-
ments. CoRR, abs/1805.12471.

Daniel H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10:189–208.

188

