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Abstract

While expressions have traditionally been bi-
narized as compositional and noncomposi-
tional in linguistic theory, Multiword Expres-
sions (MWEs) demonstrate finer-grained dis-
tinctions. Using Association Measures like
Pointwise Mutual Information and Dice’s Co-
efficient, MWEs can be characterized as hav-
ing different degrees of conventionalization
and predictability. Our goal is to investi-
gate how these gradiences could reflect cog-
nitive processes. In this study, fMRI record-
ings of naturalistic narrative comprehension is
used to probe to what extent these computa-
tional measures and the cognitive processes
they could operationalize are observable dur-
ing on-line sentence processing. Our results
show that Dice’s Coefficent, representing lexi-
cal predictability, is a better predictor of neural
activation for processing MWEs. Overall our
experimental approach demonstrates how we
can test the cognitive plausibility of compu-
tational metrics by comparing it against neu-
roimaging data.

1 Introduction

Multiword Expressions (MWEs) are word clus-
ters or expressions formed by more than a single
word. Siyanova-Chanturia (2013) provides exam-
ples of MWEs in English to illustrate the wide va-
riety among these expressions, as seen in Table 1.
While they are a heterogenous family of expres-
sions, what unifies them is a lack of compositional
linguistic analysis and psycholinguistic evidence
has been given for their predictability and conven-
tionalization. Our unique approach is to adapt dif-

⇤Co-first authors contributed equally to this work.

ferent computational metrics to describe the het-
erogeneity within these MWEs and whether it is
observable at the brain level.

MWE comprehension was shown to be distinct
from other kinds of language processing. For in-
stance, it is well-established at the behavioral level
that MWEs are produced and understood faster
than matched control phrases due to their fre-
quency, familiarity, and predictability (Siyanova-
Chanturia and Martinez, 2014), in accordance
with incremental processing from a psycholinguis-
tic perspective (Clark and Wilkes-Gibbs, 1986;
Clark and Marshall, 2002; Hale, 2006; Levy,
2008).This would follow if MWEs were remem-
bered as chunks, in the sense of (Miller, 1956) that
was later formalized by (Laird et al., 1986; Rosen-
bloom and Newell, 1987). In this study we investi-
gate to what extent MWEs are processed as chunks
or built-up compositionally during online sentence
processing. By repurposing metrics which are tra-
ditionally used to identify collocations in corpus
linguistics, we utilize them to investigate the dif-
ferent levels of compositionality within MWEs at
the brain level.

Linguistic phenomena Examples
fixed phrases per se, by and large
noun compounds black coffee, cable car
verb compounds give a presentation, come along
binomials heaven and hell, safe and sound
complex prepositions in spite of
idioms break the ice, spill the beans

Table 1: A wide variety of linguistic phenomena that
are considered to be MWEs.

Earlier neuroimaging work on compositional-
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ity and lexical prediction by Willems et al. (2016)
have addressed this issue in a broader sense using
computational measures of entropy and surprisal.
In natural language processing, MWEs have also
been shown to have graded levels of composition-
ality (Salehi et al., 2015).

From a human language processing perspec-
tive, as Titone and Connine (1999) and Bhat-
tasali et al. (2018) have discussed previously, these
MWEs cannot simply be sorted into bipartite cate-
gories depending on whether they are processed
as chunks or compositionally. Using the spe-
cific case of idioms, the authors in the first pa-
per argue against an exclusively noncompositional
or compositional approach and propose a hybrid
approach to these expressions that ascribes non-
compositional and compositional characteristics
to these expressions. In a similar vein, the authors
in the second paper provide neuroimaging evi-
dence to show that these expressions fall along a
graded spectrum and could be differentiated based
on various aspects. Moreover, MWEs could be
further distinguished based on predictability, mod-
ifiability, conventionalization, semantic opacity,
among other aspects.

In this study, we utilize two Association Mea-
sures, Pointwise Mutual Information and Dice’s
Coefficient to capture respectively the degree
of conventionalization and degree of predictabil-
ity within these expressions. Furthermore, we
probe whether these computational measures and
their hypothesized cognitive instantiations are dis-
cernible at the cerebral level during naturalistic
sentence processing.

2 Background

2.1 MWEs: A Gradient Approach

While Association Measures are commonly used
in computational linguistics to identify MWEs
since ngrams with higher scores are likely to
be MWEs (Evert, 2008), in this study they are
adapted as a gradient predictor to describe the
MWEs within the text.

Krenn (2000) suggests that PMI and Dice are
better-suited to identify high-frequency colloca-
tions whereas other association measures such as
log-likelihood are better at detecting medium to
low frequency collocations. Since MWEs are
inherently high-frequency collocations (i.e., the
words in an MWE tend to co-occur frequently with
each other), these two association measures were

chosen to describe the strength of association be-
tween the identified word clusters (cf. identifica-
tion method in Al Saied et al. (2017)).

2.1.1 Pointwise Mutual Information

The first measure we use is Pointwise Mutual In-
formation (PMI) (Church and Hanks, 1990). Intu-
itively, its value is high when the word sequence
under consideration occurs more often together
than one would have expected, based on the fre-
quencies of the individual words (Manning et al.,
1999). MWEs that receive a higher PMI score
are seen as more conventionalized (Ramisch et al.,
2010). Formally, PMI is a log-ratio of observed
and expected counts:

PMI = log2
c(w1

n)

E(w1
n)

(1)

2.1.2 Dice’s Coefficient

The second measure used in this study is Dice’s
Coefficient (Dice, 1945; Sørensen, 1948). Dice’s
coefficient is used to identify rigid MWEs with
strong association (Evert, 2008; Smadja et al.,
1996). It is the ratio of the frequency of the se-
quence over the sum of the unigram frequency of
the words in the sequence. E.g., for a bigram the
two ratios are averaged by calculating their har-
monic mean. The harmonic mean only assumes a
value close to 1 (the largest possible Dice score)
if there is a strong prediction in both directions,
from w1 to w2 and vice versa. The association
score will be much lower if the relation between
the two words is asymmetrical.

This measure takes into account the length of
the MWEs and the value ranges between 0 and 1:

Dice =
n ⇥ c(w1

n)

⌃n
i=1c(wi)

(2)

A higher value for the Dice Coefficient indi-
cates that the two tokens do not occur together by
chance. While PMI is systematically higher at the
end of a word cluster Dice is not. Since Dice co-
efficient focuses on cases of very strong associa-
tion rather than the comparison with independence
as PMI does, it can be interpreted as a measure
of predictability (Evert, 2008). Moreover, com-
pared to PMI, Dice coefficient captures words co-
occurrence in a certain order.
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2.2 Association Measures as a Cognitively
Plausible Metric

While earlier work has focused on individual types
of MWEs, this study investigates the cognitive
processes underlying the comprehension of het-
erogeneous MWEs differing along the lexical as-
sociation of the words that compose them. Specif-
ically, it is hypothesized that different association
measures would map onto different cognitive as-
pects of MWEs, such as how predictable they are,
how cohesive they are, how conventionalized they
are, how frozen they are etc.

MWE PMI Dice

boa constrictor 7.935 10
fairy tale 6.165 6.422
coloured pencil 6.545 1.926
heart skipped a beat 10 0.001
gesture of weariness 5.125 0.001
object of curiosity 5.096 0.001
a dirty trick 5.603 0.001
united states 1.859 0.005
against all odds 6.012 0.013
sense of urgency 6.255 0.004
christmas tree 4.485 1.233
good morning 3.783 1.433
find out 3.479 1.240
come into 3.067 0.683

Table 2: Example of MWEs with two Association Mea-
sures: Pointwise Mutual Information and Dice’s Coef-
fecient. Values highlighted in dark green indicate high
scores while values highlighted in light green indicate
low scores.

Thus, these association measures are used and
adapted to describe different facets of MWEs. As
presented above, PMI is taken to quantify the de-
gree of conventionalization within these MWEs
(Ramisch et al., 2010). Dice is taken to repre-
sent the degree of predictability of these MWEs
(Evert, 2008). In Table 2, we can compare these
measures on a set of identified word clusters. For
example, expressions like object of curiosity, ges-
ture of weariness, and heart skipped a beat would
be considered highly conventionalized given their
high PMI score but less predictable, given their
low Dice score. As per these metrics, both boa

constrictor and fairy tales are highly convention-
alized and highly predictable whereas expressions
like united states and come into are neither highly
conventionalized nor highly predictable.

If we visually compare these scores for all 669
unique MWEs, as in Figure 1 below, we can also
notice an interesting pattern. The values for PMI
are spread across the axis and thus, the expres-
sions are along a graded spectrum of convention-
alized and have more fine-grained distinctions. On
the other hand, since Dice is used to identify rigid
MWEs, it tends to cluster the expressions around
each end of the spectrum. We interpret these two
different distributions of variance as enabling us to
model different cerebral activation patterns of lex-
ical association in MWEs processing at the brain
level. Thus we repurpose Dice and PMI to repre-
sent different ongoing lexical processes.

Wiechmann (2008) also gave a cognitive di-
mension to the idea of association measures in or-
der to investigate the association between a verb
and its syntactic frames. He evaluated the mea-
sures against how well it could predict human
reading behavior in an eye-tracking study. Our
approach is similar to Wiechmann’s cognitive-
oriented approach since we also compare differ-
ent association measures and test it against neu-
ral data, instead of behavioral data. An earlier
study by Bhattasali et al. (2018) has illustrated
how PMI specifically can be used to show not only
the graded spectrum of compositionality within
MWEs, but also how the more cohesive expres-
sions implicate memory-related areas whereas the
less cohesive expressions implicate well-known
syntactic structure-building areas.

3 fMRI Study

3.1 Method

Participants hear the story over headphones while
they are in the scanner. The sequence of neuroim-
ages collected during their session becomes the
dependent variable in a regression against word-
by-word predictors, derived from the text of the
story (cf. Table 3).

3.2 Stimuli & MWE Identification

The English audio stimulus was Antoine de Saint-
Exupéry’s The Little Prince, translated by David
Wilkinson and read by Nadine Eckert-Boulet. It
constitutes a fairly lengthy exposure to naturalis-
tic language, comprising 19,171 tokens; 15,388
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Figure 1: Comparing Pointwise Mutual Information (in blue) with Dice’s Coefficient (in red); the former illustrates
more fine-grained gradience; scaled up for visual purposes

words and 1,388 sentences, and lasting over an
hour and a half.

Within this text, 669 MWEs were identified us-
ing a transition-based MWE analyzer (Al Saied
et al., 2017). Al Saied et al. use unigram and
bigram features, word forms, POS tags and lem-
mas, in addition to features such as transition his-
tory and report an average F-score 0.524 for this
analyzer across 18 different languages which re-
flects robust cross-linguistic performance. The
analyzer was trained on examples from the Chil-
dren’s Book Test (CBT) from the Facebook bAbI
project (Hill et al., 2015) to keep the genre consis-
tent with our literary stimulus. This corpus con-
sists of text passages that are drawn from the Chil-
dren’s section of Project Gutenberg, a free online
text repository. External lexicons were also used
to supplement the MWEs found with the analyzer.
The external lexicons included the Unitex lexicon
(Paumier et al., 2009), the SAID corpus (Kuiper
et al., 2003), the Cambridge International Dictio-
nary of Idioms (White, 1998), and the Dictionary
of American Idioms (Makkai et al., 1995).

3.3 Participants

56 participants were scanned and 5 of them were
excluded since they had incomplete scanning ses-
sions. Participants included were fifty-one volun-
teers (32 women and 19 men, 18-37 years old)

with no history of psychiatric, neurological, or
other medical illness or history of drug or alco-
hol abuse that might compromise cognitive func-
tions. All strictly qualified as right-handed on the
Edinburgh handedness inventory (Oldfield, 1971).
They self-identified as native English speakers and
gave their written informed consent prior to par-
ticipation, in accordance with Cornell University
IRB guidelines.

3.4 Presentation

Participants listened to the entire audiobook for 1
hour and 38 minutes. The story had nine chap-
ters and at the end of each chapter the partici-
pants were presented with a multiple-choice ques-
tionnaire with four questions (36 questions in to-
tal), concerning events and situations described in
the story. These questions served to confirm par-
ticipants’ comprehension. They were viewed via
a mirror attached to the head coil and answered
through a button box. The entire session lasted
around 2.5 hours.

3.5 Data Collection

Imaging was performed using a 3T MRI scan-
ner (Discovery MR750, GE Healthcare, Milwau-
kee, WI) with a 32-channel head coil at the Cor-
nell MRI Facility. Blood Oxygen Level Depen-
dent (BOLD) signals were collected using a T2
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-weighted echo planar imaging (EPI) sequence
(repetition time: 2000 ms, echo time: 27 ms, flip
angle: 77deg, image acceleration: 2X, field of
view: 216 x 216 mm, matrix size 72 x 72, and
44 oblique slices, yielding 3 mm isotropic voxels).
Anatomical images were collected with a high res-
olution T1-weighted (1 x 1 x 1 mm3 voxel) with
a Magnetization-Prepared RApid Gradient-Echo
(MP-RAGE) pulse sequence.

4 Data Analysis

4.1 Preprocessing

fMRI data is acquired with physical, biological
constraints and preprocessing allows us to make
adjustments to improve the signal to noise ratio.
Primary preprocessing steps were carried out in
AFNI version 16 (Cox, 1996) and include motion
correction, coregistration, and normalization to
standard MNI space. After the previous steps were
completed, ME-ICA (Kundu et al., 2012) was used
to further preprocess the data. ME-ICA is a de-
noising method which uses Independent Compo-
nents Analysis to split the T2*-signal into BOLD
and non-BOLD components. Removing the non-
BOLD components mitigates noise due to motion,
physiology, and scanner artifacts (Kundu et al.,
2017).

4.2 Statistical Analysis

The research questions presented above in sec-
tion 2 motivates a statistical analysis that performs
a comparison where fMRI signal is modeled in
two General Linear Models (GLM) : one by Dice
scores tagged on the identified MWEs (Model 2)
versus one where PMI scores are quantifying the
conventionality of each MWE in the Little Prince
(Model 1).

fMRI data were analyzed in the following way:
for each subject, and at each brain location (voxel),
the time course of activation was submitted to a
multiple linear regression that estimated the spe-
cific effect of each predictor (cf. 4.2.1), after
convolution by a standard hemodynamic response
(Poldrack et al., 2011).

The effects of the predictors - the increase in r2

associated to them - were then submitted to sec-
ond level analyses to test for significance at the
group level. Model comparisons using root-means
square (r2) maps was carried out using a Python
pipeline in order to evaluate the goodness of fit of
the two Association Measures with BOLD signal

(cf. 4.2.2).

4.2.1 GLM Analyses: Single-subject statistics
At the single-subject level, the observed time-
course of the brain’s hemodynamic response
(BOLD - Blood Oxygenation Level Dependent) in
each voxel was modeled by the predictors in Table
3 including one of the two Association Measures
under analysis calculated as illustrated in formulas
given in 2.1), and time-locked at the offset of each
word or MWE in the audio-book⇤.

The predictors shown in Table 3 were convolved
using SPM’s canonical HRF (Hemodynamic Re-
sponse Function, Friston et al. (2007)). The two
neuroimaging models (i.e. with PMI or with Dice)
also included four control variables (confounds) as
shown in Table 3.

Model 1: with PMI We regressed the word-
by-word predictors described below against
fMRI timecourses recorded during passive story-
listening in a whole-brain analysis. For each of the
15,388 words in the story, their timestamps were
estimated using Praat TextGrids (Boersma, 2002).
MWEs were identified, as described in §3.2 and
all 669 unique MWEs were annotated with their
PMI score. This score is based on corpus fre-
quency counts from the Corpus of Contemporary
English (Davies, 2008), and were calculated using
mwetoolkit (Ramisch et al., 2010; Ramisch,
2012) and the formula given above in 2.1. COCA
is a large, genre-balanced corpus of American En-
glish and contains contains more than 560 mil-
lion words of text, equally divided among spoken,
fiction, popular magazines, newspapers, and aca-
demic texts.

Additionally, we entered four regressors of non-
interest into the regression analysis: word offset,
word frequency (Brysbaert and New, 2009), pitch,
intensity which serve to improve the sensitivity,
specificity and validity of activation maps (Bull-
more et al., 1999; Lund et al., 2006). These predic-
tors were added to ensure that conclusions about
MWE processing would be specific to the cogni-
tive processes they were taken to instantiate, as
opposed to more general aspects of speech per-
ception. Specifically, lexical frequency of each
word was added as a covariate of non-interest,
to statistically factor out effects of general word
frequency, that may correlate with other types of

⇤For more details about the hemodynamic response,
please see chapter 2 of Kemmerer (2014).
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Predictors Description
Association Measure PMI or DICE Word-by-word on MWEs (§2.1)
Word rate Tags the offset of each spoken word in time
Word frequency Word-by-word log-frequency in movie subtitles
F0 Fundamental frequency of the narrator’s voice, which reflects pitch

RMS amplitude
Root Mean Square Amplitude of the narrators voice, which reflects
intensity, an acoustic correlate of volume

Table 3: Predictors used in the fMRI Analysis.

expectations. To control for sentence-level and
phrase-level compositional processes, we included
a regressor formalizing syntactic structure build-
ing based on a bottom-up parsing algorithm (Hale,
2014), as determined by the Stanford parser (Klein
and Manning, 2003). Controlling for structural
composition allows us to isolate and focus our in-
vestigation on noncompositional processing, as in
MWEs. These regressors were not orthogonal-
ized.

Model 2: with Dice Model 2 is similar to Model
1 and uses the same predictors. However, in-
stead of PMI scores, the MWEs were annotated
with their corresponding Dice’s coefficient scores.
These were also calculated using corpus frequency
counts from COCA and the mwetoolkit.

4.2.2 r2 Model comparison

The research questions presented above in section
2 motivates a statistical analysis that performs a
comparison where fMRI signal on MWEs is mod-
eled in the above presented GLMs by PMI versus
Dice measures.

r2 model comparison For every subject, we
compute how much the inclusion of each variable
of interest (i.e. Dice and PMI) increases the cross-
validated r2. Hence, the r2 scores represent the
variance explained in each voxel by the variable
instantiating the MWE processing Dice or PMI re-
spectively provide.

Group-level statistics To compare the impact
of the two variables on fMRI signal explanation
(i.e. r2 increase of each variable), we performed
a paired t-test on each individual r2 brain map,
and obtained the map in Figure 2 showing where
one of the variables explains significantly better
the signal than the other (see clusters on Table 4).

5 Results - Fit with fMRI signal

We performed an r2 comparison to test which As-
sociation Measure on MWEs provided the better
fit to the fMRI signal recorded during The Little
Prince.

Dice vs. PMI The two different Association
Measure were tested (Dice and PMI), and Dice,
taken to represent the degree of predictability, was
shown to be the best fitting the BOLD signal of
these two models. Figure 2 (clusters coordinates
and statistics, cf. Table 4), shows the signifi-
cance (z-scores after Bonferroni correction with p
< 0.05) of the difference in r2 scores with a cluster
threshold of 10 voxels.

Of the two Association Measures , the Dice
measure (i.e. degree of predictability) had a sig-
nificant predictive value in well-known language
areas such as temporal regions, although mainly
right-lateralized.

6 Discussion

The present neuroimaging study offers a first ex-
perimental grounding to the fact that a computa-
tional measure instantiating lexical prediction has
a better fit with brain activity elicited by process-
ing MWEs in certain regions of the language net-
work. In both anterior and posterior portions of
language network - and specifically in temporal
areas - this lexical knowledge based process has
a significant predictive value.

This result is in line with earlier work on lex-
ical prediction with computational measures like
entropy and surprisal by Willems et al. (2016)
where temporal regions were identified together
with right lateralized frontal ones.

Assuming Dice operationalizes some predictive
processes within complex lexical items, these pre-
dictive processes are plausibly linked to higher de-
mands in semantic combinatorial operations, as
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Regions for Dice >PMI Cluster size MNI Coordinates z-scores
(in voxels) x y z

R Superior Temporal Gyrus (BA 38) 47 48 10 -26 5.80
R Middle Temporal Gyrus 84 54 -18 -10 6.09
R Middle Temporal Gyrus (BA 22) 98 48 -36 2 5.85
R Superior Temporal Gyrus (BA 22) 70 48 -12 2 5.83
R Middle Temporal Gyrus (BA 22) 16 58 -46 2 5.14
L Superior Temporal Gyrus 13 -62 -18 6 5.64
R Superior Frontal Gyrus 10 20 56 12 5.53
R Inferior Frontal Gyrus (BA 45) 10 48 20 14 5.64
L Supramarginal Gyrus 22 -56 -56 22 5.37
R Inferior Parietal Lobule/
Superior Temporal Gyrus (BA 40)

10 62 -46 22 5.44

R Inferior Parietal Lobule/
Superior Temporal Gyrus (BA 40)

16 54 -46 22 5.45

R Superior Frontal Gyrus 35 20 42 34 5.69
R Cingulate Gyrus 17 2 -34 34 5.85
R Precenus 22 32 -72 36 5.76
L Inferior Parietal Lobule 12 -34 -58 46 5.17

Table 4: Significant clusters for Dice’s Coefficient versus Pointwise Mutual Information after Bonferroni correction
with p < 0.05, based on R2 analysis in §4.2.2, and shown in Figure 2

.

Figure 2: Z-map showing regions having a significant effect for Dice’s coefficient versus Pointwise Mutual Infor-
mation after Bonferroni correction with p < 0.05
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reported in previous neuroimaging studies inves-
tigating semantic combinatorial processes through
comparing meaningful and less meaningful word
combinations (Price et al., 2015; Graves et al.,
2010). Crucially, the graded psycholinguistic
measures about lexical combination tested in these
studies elicit similar areas as the regions where
a better fit to the fMRI signal is observed in the
present study.

Based on the formula, Dice helped us to factor
out effects of length in longer MWEs and provided
us with a more abstract measure given its bidirec-
tional association. This could be a reason that it
was a better fit to the BOLD signal, compared to
PMI which is biased based on the length of the ex-
pression.

Lastly, Dice’s Coefficient is a more rigid mea-
sure of lexical association compared to Pointwise
Mutual Information, as seen in Fig. 1. Hence,
Dice clusters highly predictable expressions ver-
sus less predictable ones, giving rise to two main
groups. PMI displays more fine-grained distinc-
tions overall (compared to Dice) and thus, captures
the spectrum of compositional gradience within
these MWEs as shown in a previous neuroimag-
ing study. Bhattasali et al. (2018) showed that in-
creasing values of PMI activates the network of
syntactic building. However, the fact that Dice is
the better fit between the two is interesting since it
suggests that a bimodal distribution of gradience
is cognitively more plausible than a fine-tuned ap-
proach to gradience, specifically in posterior tem-
poral areas. Thus, this paves the way for further in-
vestigations regarding which computational mea-
sures are more cognitively pertinent to grasp a bet-
ter understanding of human cognition and its neu-
ral substrates.

7 Conclusion & Further Work

Overall, this study examines MWEs through the
lens of two different Association Measures, Point-
wise Mutual Information and Dice’s Coefficent.
We investigate to what extent these computa-
tional measures, operationalizing conventionaliza-
tion and predictability, and their underlying cogni-
tive processes are observable during on-line sen-
tence processing. Our results show that Dice’s Co-
efficient, formalizing the degree of predictability,
is a better predictor of cerebral activation for pro-
cessing MWEs and this suggests it is a more cog-
nitively plausible computational metric in tempo-

ral areas where previous neuroimaging literature
identified lexical predictive processes.

Apart from Association Measures, a future ap-
proach would be to investigate different metrics
to capture other nuances between these MWEs.
There are alternate approaches to describes MWEs
such as word space models, based on distribu-
tional semantics, which could also serve as a met-
ric of compositionality for these noncompositional
word clusters. This type of metric would uti-
lize the distributional patterns of words collected
over large text data to represent semantic similar-
ity between words in terms of spatial proximity
(Sahlgren, 2006).
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