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Abstract

Human communication often involves the use
of verbal irony or sarcasm, where the speakers
usually mean the opposite of what they say.
To better understand how verbal irony is ex-
pressed by the speaker and interpreted by the
hearer we conduct a crowdsourcing task: given
an utterance expressing verbal irony, users are
asked to verbalize their interpretation of the
speaker’s ironic message. We propose a ty-
pology of linguistic strategies for verbal irony
interpretation and link it to various theoreti-
cal linguistic frameworks. We design com-
putational models to capture these strategies
and present empirical studies aimed to answer
three questions: (1) what is the distribution
of linguistic strategies used by hearers to in-
terpret ironic messages?; (2) do hearers adopt
similar strategies for interpreting the speaker’s
ironic intent?; and (3) does the type of seman-
tic incongruity in the ironic message (explicit
vs. implicit) influence the choice of interpreta-
tion strategies by the hearers?

1 Introduction

It is well understood that recognizing whether a
speaker is ironic or sarcastic is essential to under-
standing their actual sentiments and beliefs. For
instance, the utterance “pictures of holding ani-
mal carcasses are so flattering” is an expression
of verbal irony, where the speaker has a nega-
tive sentiment towards “pictures of holding animal
carcasses”, but uses the positive sentiment word
“flattering”. This inherent characteristic of ver-
bal irony is called semantic incongruity — incon-
gruity between the literal evaluation and the con-
text (e.g., between the positive sentiment words
and the negative situation in this example). Most
NLP research on verbal irony or sarcasm has fo-
cused on the task of sarcasm detection treating

⇤Part of the research was carried out while Debanjan was
a Ph.D. candidate at Rutgers University.

it as a binary classification task using either the
utterance in isolation or adding contextual infor-
mation such as conversation context, author con-
text, visual context, or cognitive features (Davi-
dov et al., 2010; Maynard and Greenwood, 2014;
Wallace et al., 2014; Joshi et al., 2015; Bamman
and Smith, 2015; Muresan et al., 2016; Amir et al.,
2016; Mishra et al., 2016; Ghosh and Veale, 2017;
Felbo et al., 2017; Ghosh et al., 2017; Hazarika
et al., 2018; Tay et al., 2018; Ghosh et al., 2018;
Oprea and Magdy, 2019). Such approaches have
focused their analysis on the speakers’ beliefs and
intentions for using irony (Attardo, 2000). How-
ever, sarcasm and verbal irony are types of inter-
actional phenomena with specific perlocutionary
effects on the hearer (Haverkate, 1990). Thus, we
argue that, besides recognizing the speaker’s sar-
castic/ironic intent, it is equally important to un-
derstand how the hearer interprets the speaker’s
sarcastic/ironic message. For the above utterance,
the strength of negative sentiment perceived by
the hearer depends on whether they interpret the
speaker’s actual meaning as “picture . . . are not
flattering” vs. “pictures . . . are so gross” (Table
1). The intensity of negative sentiment is higher in
the latter interpretation than in the former. Kreuz
(2000) noted that most studies in linguistics and
psychology have conducted experiments analyz-
ing reaction times (Gibbs, 1986; Katz et al., 2004)
or situational context (Ivanko and Pexman, 2003),
featuring a setup with in vitro data aimed at testing
the validity of specific theories of irony. Instead,
our study adopts a naturalistic approach to under-
stand hearers’ reception of irony looking at what
linguistic strategies are recurrently used by hear-
ers to interpret the non-literal meaning underlying
ironic utterances.

We leverage the crowdsourcing task introduced
by Ghosh et al. (2015) for their work on detect-
ing whether a word has a literal or sarcastic in-
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terpretation, later adopted by Peled and Reichart
(2017). The task is framed as follows: given
a speaker’s ironic message, five annotators (e.g.,
Turkers on Amazon Mechanical Turk (MTurk))
are asked to verbalize their interpretation of the
speaker’s ironic message (i.e., their understand-
ing of the speaker’s intended meaning) (see Ta-
ble 1; Sim denotes the speaker’s ironic message,
while Hint denotes the hearer’s interpretation of
that ironic message). The crowdsourcing experi-
ments are reported in Section 2.

The paper makes three contributions. First, we
propose a data-driven typology of linguistic strate-
gies that hearers use to interpret ironic messages
and discuss its relevance in verifying theoretical
frameworks of irony (Section 4). Second, we pro-
pose computational models to capture these strate-
gies (Section 5). Third, we present two studies
that aim to answer two questions: (1) does the
type of semantic incongruity in the ironic mes-
sage (explicit vs. implicit; see Section 3) influ-
ence the choice of interpretation strategies by the
hearers? (Section 6.2); (2) do interpretation strate-
gies of verbal irony vary by hearers? We make all
datasets and code available.1

2 Datasets of Speakers’ Ironic Messages
and Hearers’ Interpretations

To generate a parallel dataset of speakers’ ironic
messages and hearers’ interpretations we conduct
a crowdsourcing experiment. Given a speaker’s
ironic message (Sim), five Turkers (hearers) on
MTurk are asked to verbalize their interpretation
of the speaker’s ironic message (i.e., their un-
derstanding of the speaker’s intended meaning)
(Hint). The design of the MTurk task was first in-
troduced by Ghosh et al. (2015), who use the re-
sulting dataset to identify words that can have both
a literal and a sarcastic sense. Peled and Reichart
(2017) employed similar design to generate a par-
allel dataset to use for generating interpretations of
sarcastic messages using machine translation ap-
proaches. They use skilled annotators in comedy
writing and literature paraphrasing and give them
the option not to rephrase (we refer to Peled and
Reichart (2017)’s dataset as SIGN ). We perform
this new crowdsourcing task and do not rely en-
tirely on the above two datasets for two reasons:
(1) we focus on verbal irony, and (2) we always
require an interpretation from the Turkers. Un-

1https://github.com/debanjanghosh/interpreting verbal irony

like the above two studies, the main goal of our
research is to analyze the linguistics strategies em-
ployed by hearers in interpreting verbal irony.

We collected messages that express verbal irony
from Twitter using the hashtags #irony, #sarcas-
tic, and #sarcasm. We chose Twitter as a source
since the presence of the hashtags allows us to se-
lect sentences where the speaker’s intention was
to be ironic. Furthermore, even though Twitter
users cannot be considered representative of the
entire population, they are unlikely to be skewed
with respect to topics or gender. We manually
checked and kept 1,000 tweets that express verbal
irony. We do not draw any theoretical distinction
between sarcasm and irony since we cannot as-
sume that Twitter users also differentiate between
#irony and #sarcasm, blurred even in scholarly lit-
erature. The Turkers were provided with detailed
instructions and examples of the task including the
standard definition of verbal irony taken from the
Merriam-Webster dictionary (“use of words to ex-
press something other than and especially the op-
posite of the literal meaning”). We decided to
suggest them a guiding definition for two reasons.
First, hearers do not usually focus on literal vs.
non literal meaning, as shown by studies measur-
ing processing times for both types of statements
(Inhoff et al., 1984). Therefore, when asked to
rephrase the speakers’ intended meaning, hearers
would have probably come up with sentences ex-
pressing the speaker’s imagined discursive goals,
rather than disclosing their perceived literal mean-
ing. Second, it is reasonable to assume that Turk-
ers would have looked up the standard meaning of
ironic utterance given by an online dictionary to
ease up their task, possibly coming up with biased
definitions.

The Turkers were instructed to consider the en-
tire message in their verbalization to avoid asym-
metry in length between the Sim and Hint. We
obtained a dataset of 5,000 Sim-Hint pairs where
five Turkers rephrase each Sim. A total of 184
Turkers participated in the rephrasing task. Ta-
ble 1 shows examples of speaker’s ironic messages
(Sim) and their corresponding hearers’ interpreta-
tions (Hi

int). Next, we ran a second MTurk task
to verify whether the generated Hint messages are
plausible interpretations of the ironic messages.
This time we employ three Turkers per task and
only Turkers who were not involved in the con-
tent generation task were allowed to perform this
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Sim H1
int H2

int H3
int

1. Ed Davey is such a pas-
sionate, inspiring speaker

Ed Davey is a boring, unin-
spiring speaker

Ed Davey is such a dull,
monotonous speaker

Ed Davey is not a passion-
ate, inspiring speaker

2. can’t believe how much
captain America looks like
me

I wish I looked like Cap-
tain America. I need to lose
weights

can’t believe how much
captain America looks dif-
ferent from me

I don’t, but I wish I looked
like Captain America

3. Pictures of you holding
dead animal carcasses are
so flattering

Hate hunting season and
the pictures of you holding
dead animal are so gross

Pictures of you holding
dead animal carcasses is an
unflattering look

Pictures of you holding
dead animal carcasses are
not flattering

Table 1: Examples of speaker’s ironic messages (Sim) and interpretations given by 3 Turkers (Hi
int).

task. We observe that Turkers labeled 5% (i.e., 238
verbalizations) of Hints as invalid and low qual-
ity (e.g., wrong interpretation). For both tasks, we
allowed only qualified Turkers (i.e., at least 95%
approval rate and 5,000 approved HITs), paid 7
cents/task and gave sixty minutes to complete each
task. The final dataset contains 4,762 pairs Sim-
Hint.

3 Semantic Incongruity in Ironic
Messages: Explicit vs. Implicit

Attardo (2000) and later Burgers (2010) distin-
guish between two theoretical aspects of irony:
irony markers and irony factors. Irony markers are
meta-communicative signals, such as interjections
or emoticons that alert the reader that an utterance
might be ironic. In contrast, irony factors cannot
be removed without destroying the irony, such as
the incongruity between the literal evaluation and
its context (“semantic incongruity”). Incongruity
expresses the contrast between the conveyed senti-
ment (usually, positive) and the targeted situation
(usually, negative). This contrast can be explicitly
or implicitly expressed in the ironic message.

Following Karoui et al. (2017), we consider
that semantic incongruity is explicit, when it
is lexicalized in the utterance itself (e.g., both
the positive sentiment word(s) and the negative
situation are available to the reader explicitly).
On Twitter, beside sentiment words, users often
make use of hashtags (e.g., “Studying 5 subjects
. . . #worstsaturdaynight”) or an image (e.g., “En-
couraging how Police feel they’re above the law.
URL”; the URL shows a police car not paying
parking) to express their sentiment. We consider
these cases as explicit, since the incongruity is
present in the utterance even if via hashtags or
other media. For implicit incongruity, we con-
sider cases where one of the two incongruent terms
(“propositions” in Karoui et al. (2017)) is not lex-
icalized and has to be reconstructed from the con-

text (either outside word knowledge or a larger
conversational context). For example “You are
such a nice friend!!!”, or “Driving in Detroit is fun
;)” are cases of ironic messages where the seman-
tic incongruity is implicit. Based on these def-
initions of explicit and implicit incongruity, two
expert annotators annotated the Sim-Hint dataset
(1000 ironic messages) as containing explicit or
implicit semantic incongruity. The inter-annotator
agreement was =0.7, which denotes good agree-
ment similar to Karoui et al. (2017). The annota-
tion showed that 38.7% of the ironic messages are
explicit, while 61.3% are implicit. In the following
section we propose a typology of linguistic strate-
gies used in hearers’ interpretations of speakers’
ironic messages and in section 6.2 we discuss the
correlation of linguistic strategies with the type of
semantic incongruity.

4 Interpreting Verbal Irony: A Typology
of Linguistic Strategies

Given the definition of verbal irony, we would
expect that Turkers’ interpretation of speaker’s
ironic message will contain some degree of op-
posite meaning with respect to what the speaker
has said. However, it is unclear what linguistic
strategies the Turkers will use to express that. To
build our typology, from the total set of Sim-Hint

pairs obtained through crowdsourcing (i.e., 4,762
pairs; see Section 2) we selected a dev set of 500
Sim-Hint pairs. Our approach does not assume any
specific theory or irony, but it is data-driven: a lin-
guist expert in semantics and pragmatics analyzed
the dev set to formulate the lexical and pragmatic
phenomena attested in the data. The assembled
typology is, thus, the result of a bottom-up proce-
dure. A Sim-Hint pair can be annotated with more
than one strategy. The core linguistic strategies are
explained below and synthesized in Table 2.
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Typology Distribution (%)
Antonyms
- lexical antonyms (42.2)
- antonym phrases (6.0)
Negation
- simple negation (28.4)
Antonyms OR Negation
- weakening sentiment (23.2)
- interrogative ! declarative (5.2)
- desiderative constructions (2.8)
Pragmatic inference (3.2)

Table 2: Typology of linguistic strategies and their
distribution (in %) over the dev set

4.1 Linguistic Strategies

Lexical and phrasal antonyms: This category
contains lexical antonyms (e.g., “love” $ “hate”,
“great” $ “terrible”) as well as indirect antonyms
(Fellbaum, 1998), where the opposite meaning can
only be interpreted in context (e.g., “passionate
speaker” ! “boring speaker”; Table 1). Although
the typical antonym of “passionate” is “unpassion-
ate”, “boring” works in this context as a lexical
opposite since a speaker who is passionate entails
that he is not boring. Besides lexical antonyms,
Turkers sometimes use antonym phrases (e.g., “I
can’t wait” ! “not looking forward”, “I like (to
visit ER)” ! “I am upset (to visit ER) ”).

Negation: Here, Turkers negate the main pred-
icate. This strategy is used in the presence of
copulative constructions where the predicative ex-
pression is an adjective/noun expressing sentiment
(e.g., “is great” ! “is not great”) and of verbs ex-
pressing sentiment (e.g., “love” ! “do not love”)
or propositional attitudes (e.g., “I wonder” ! “I
don’t wonder”).

Weakening the intensity of sentiment: The use
of negation and antonyms is sometimes accom-
panied by two strategies that reflect a weakening
of sentiment intensity. First, when Sim contains
words expressing a high degree of positive sen-
timent, the hearer’s interpretation replaces them
with more neutral ones (e.g., “I love it” ! “I don’t
like it”). Second, when Sim contains an intensi-
fier, it is eliminated in the Turkers’ interpretation.
Intensifiers specify the degree of value/quality ex-
pressed by the words they modify (Méndez-Naya,
2008) (e.g., “cake for breakfast. so healthy” !
“cake for breakfast. not healthy”).

Interrogative to Declarative Transformation
(+ Antonym/Negation): This strategy, used

mostly in conjunction with the negation or
antonym strategies, consists in replacing the inter-
rogative form with a declarative form, when Sim is
a rhetorical question (for brevity, RQ) (e.g., “don’t
you love fighting?” ! “I hate fighting”).

Counterfactual Desiderative Constructions:
When the ironic utterance expresses a posi-
tive/negative sentiment towards a past event (e.g.,
“glad you relayed this news”) or an expressive
speech act (e.g., “thanks X that picture needed
more copy”) the hearer’s interpretation of intended
meaning is expressed through the counterfactual
desiderative constructions I wish (that) p (“I wish
you hadn’t relayed . . . ”, “I wish X didn’t copy
. . . ”). Differently from antonymic phrases, this
strategy stresses on the failure of the speaker’s
expectation more than on their commitment to the
opposite meaning.

Pragmatic Inference: In addition to the above
strategies, there are cases where the interpretation
calls for an inferential process to be recognized.
For instance, “made 174 this month . . . I’m gonna
buy a yacht!” ! “made 174 this month . . . I am
so poor”. The distribution of the strategies on the
dev set is represented in Table 2.

4.2 Links to Theoretical Frameworks
In linguistic literature many different approaches
to irony have been provided. Here we focus on
the three accounts (w.r.t. examples from Sim-Hint

corpus) that bear a different views on pragmatic
factors. According to Grice (1975), ironic mes-
sages are uttered to convey a meaning opposite
to that literally expressed, flouting the conversa-
tional maxim of quality “do not say what you be-
lieve to be false”. In verbal irony, the violation
of the maxim is frequently signaled by “the oppo-
site” of what is said literally (e.g., intended mean-
ing of “carcasses are flattering” is they are gross;
Table 1). The linguistic strategies of antonyms
(e.g. “worst day of my life”) and simple nega-
tion (“yeap we totally dont drink alcohol every
single day”[...]) cover the majority of the Sim-
Hint corpus and seem to fit the Gricean (Grice,
1975) account of irony, since the hearer seems
to have primarily recognized the presence of se-
mantic incongruity. However, as touched upon
by Giora (1995), antonyms and direct negation
are not always semantically equivalent strategies,
since the second sometimes allows a graded inter-
pretation: if “x is not encouraging”, it is not nec-
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essarily bad, but simply “x < encouraging”. Such
an implicature is available exclusively with items
allowing mediated contraries, such as sentiment
words (Horn, 1989). Direct negation with senti-
ment words implies that just one value in a set is
negated, while the others are potentially affirmed.
The spectrum of interpretations allowed by nega-
tion as a rephrasing strategy indicates that hearers
recognize that the relevance of the ironic utterance
in itself plays a role next to what the utterances
refers to (if the rephrased utterance is intended
as “x is not encouraging at all”, the perceived ir-
relevance of the corresponding ironic utterance is
more prominent than in “x is not very encourag-
ing”). The fact that the interpretation of irony has a
propositional scope is even clearer when the ironic
sentence in interrogative form (“and they all lived
happily ever after ?”) is rephrased as a declara-
tive (e.g. “I doubt they all lived happily ever af-
ter”): the hearers recognizes that the question has
a rhetoric value since otherwise contextually irrel-
evant. The intentional falsehood of Gricean anal-
ysis is also not deemed by Sperber and Wilson
(1986); Wilson and Sperber (2012) as a necessary
and sufficient condition for irony. According to
their theory of echoic mentioning, irony presup-
poses the mention to the inappropriateness of the
entire sentence: in asserting “awesome weather in
Scotland today” the speaker does not simply want
to express that the weather was horrible but he
signals that assuming that the weather would be
nice was irrelevant and, thus, ridiculous. Kreuz
and Glucksberg (1989) expand the Relevance The-
ory approach talking about echoic reminding to
account for cases such as “could you be just a
little louder, please? My baby isn’t trying to
sleep” where the extreme politeness reminds the
hearer that the question is indeed a request and
that the mother bears a certain stance and has cer-
tain expectations towards the addressee. Simi-
larly, the use of the pragmatic inference strategy
cannot be fully explained in Gricean terms: the
rephrase “made 174 this month . . . I am so poor”
for “made 174 this month . . . I am gonna buy a
yatch” more than pointing to the presence of lex-
ical incongruity, show that the hearers knows for
background knowledge that the assertion of “buy-
ing a yatch” is completely irrelevant in the con-
text of a low salary situation. Rephrasing strate-
gies using counterfactual desiderative construc-
tions (e.g. “I really wish my friends and fam-

ily would check up on my after yesterday’s near
death experience”) show, instead, that the interpre-
tation of irony involves an echoic reminding to the
speaker’s (social) expectations which failed to be
fulfilled. Overall, using the results of our crowd-
sourcing experiment with main existing theories
of irony, it turns out that the theories have a com-
plementary explanatory power. In Section 6.2 we
investigate weather this situation might relate to
the presence of explicit/implicit irony.

5 Empirical Analysis of Interpretation
Strategies

Here our goal is to perform a comparative em-
pirical analysis to understand how hearers inter-
pret verbal irony. To accomplish this, we pro-
pose computational models to automatically de-
tect these linguistic strategies in two datasets: (1)
Sim -Hint dataset and (2) the SIGN dataset. As
stated in Section 2, albeit for a different purpose,
the task designed in Peled and Reichart (2017) is
identical to ours: they used a set of 3,000 sarcas-
tic tweets and collected five interpretation verbal-
ization, including an option to just copy the orig-
inal message if it was not deemed ironic. They
used workers skilled in comedy writing and liter-
ature paraphrasing. SIGN contains 14,970 pairs.
To evaluate our models, we asked two annotators
to annotate two test sets of 500 pairs each from
the Sim -Hint and the SIGN dataset (i.e., denoted
by SIGNtest), respectively. Note, the test set for
the Sim -Hint has no overlap with the dev set of
500 Sim-Hint pairs used to identify the strategies
(Section 4). Agreement between the annotators for
both sets is high with  > 0.9. In SIGNtest, 79
instances were just copies of the original message,
which we eliminated, thus the SIGNtest contains
only 421 instances.

5.1 Computational Methods

Lexical Antonyms. To detect whether an Sim-
Hint pair uses the lexical antonyms strategy, we
first need to build a resource of lexical antonyms.
We use the MPQA sentiment Lexicon (Wilson
et al., 2005), Hu and Liu (2004)’s opinion lexi-
con, antonym pairs from Mohammad et al. (2013),
antonyms from WordNet, and pairs of oppo-
site verbs from Verbocean (Chklovski and Pantel,
2004).

Given this lexicon of lexical antonyms, the task
is now to detect whether a given Sim-Hint pair
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dev test SIGNtest

Strategies P R F1 P R F1 P R F1
Lex ant 89.0 95.7 92.2 97.2 89.9 93.4 89.4 97.9 93.5
Simple neg 92.0 89.4 90.7 88.3 88.3 88.3 93.3 91.2 92.2
AN weaksent 93.6 87.9 90.7 95.0 91.9 93.4 93.3 87.5 90.3
ANI!D 53.1 65.4 58.6 80.0 0.44 57.2 85.7 70.6 77.4
AN desiderative 100.0 92.9 96.3 100.0 100.0 100.0 100.0 66.7 80.0
AntPhrase+PragInf 86.2 53.2 65.8 70.7 85.3 77.4 89.5 68.0 77.3

Table 3: Evaluation of Computational Methods on dev, test and SIGNtest set (in %)

uses the lexical antonyms strategy. We use a
heuristic approach based on word-alignment and
dependency parsing (similar to contradiction de-
tection (De Marneffe et al., 2008)). Word-to-word
alignments between Sim-Hint are extracted using
a statistical machine translation (SMT) alignment
method - IBM Model 4 with HMM alignment
from Giza++ (Och and Ney, 2004). We consider
a lexical antonym strategy if: 1) antonym words
are aligned; 2) they are the roots of the respec-
tive dependency trees or if the nodes modified
by the lexical antonyms are the same in their re-
spective trees (e.g., ‘can you show any more of
steelers” ! “show less of steelers”, the candi-
date lexical antonyms are more and less and they
are the objects of the same predicate in Sim-Hint:
show). Out of 211 Sim-Hint pairs that are marked
as having lexical antonym strategy (dev set), 12
instances are identified by only the dependency
parses, 67 instances by the word-alignments, and
100 instances by both (P/R/F1 scores are 92.1%,
77.7% and 84.3%), respectively on dev dataset.
However, sometimes both dependency and word-
alignment methods fail. In “circling down the
bowl. Yay” ! “circling down the bowl. aw-
ful”, although the lexical antonyms yay and aw-
ful exist, neither the alignment nor the dependency
trees can detect it (25 such instances in the dev
set). To account for this, after having run the
dependency and alignment methods, we also just
search whether a Sim-Hint pair contains a lexical
antonym pair. This improves the final recall and on
the dev set we achieve 89.0% precision, 95.7% re-
call, and 92.2% F1 on dev dataset (Lex ant Strat-
egy; Table 3 show results both on dev and the
test sets). Note, just searching whether a lexical
antonym pair is present in a Sim-Hint pair results
in low precision (58.6%) but high recall (80%).

Simple negation. This strategy (denoted as
Simple neg in Table 3 and Table 4) involves iden-
tifying the presence of negation and its scope.
Here, however, the scope of negation is con-

strained since generally Turkers negated only a
single word (i.e., “love” ! “not love”). Thus our
problem is easier than the general problem of find-
ing the scope of negation (Li and Lu, 2018; Qian
et al., 2016; Fancellu et al., 2016). We use 30
negation markers from Reitan et al. (2015) to find
negation scope in tweets. We first detect whether a
negation marker appears in either Hint or Sim, but
not in both (negation can appear in Sim for ironic
blame) If the marker is used, we extract its parent
node from the dependency tree, and if this node is
also present in the other utterance, then Negation
strategy is selected. For instance, in “looks just
like me” ! “does not look like me”, the negation
not is modifying the main predicate looks in Hint,
which is also the main predicate in Sim (words are
lemmatized). In the next section, we discuss if the
parent nodes are not the same but similar and with
different sentiment strength.

Weakening the intensity of sentiment. The
first strategy — replacing words expressing a high
degree of positive/negative sentiment with more
neutral ones (‘I love being sick” ! “I don’t like
being sick)—, is applied only in conjunction with
the negation strategy. We measure the differ-
ence in strength using the Dictionary of Affect
(Whissell et al., 1986). Out of 31 Sim-Hint pairs
in the dev set, we automatically identify 28 inter-
pretations that use this approach. For the second
strategy — removing the intensifier (I am really
happy” ! “I am disappointed’) —, we first deter-
mine whether the intensifier exists in Sim and is
eliminated from Hint. We use only adjective and
adverb intensifiers from Taboada et al. (2011), pri-
marily to discard conjunctions such as “so” (“no
water so I can’t wash . . . ”). This strategy is used
together with both lexical antonyms and Simple
negation strategies. For a candidate Sim-Hint pair,
if the lexical antonym strategy is selected and aS

and aH are the lexical antonyms, we determine
whether any intensifier modifies aS and no inten-
sifier modifies aH . If the Negation strategy is se-
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lected, we identify the negated term in the Hint

and then search its aligned node from the Sim us-
ing the word-word alignment. Next, we search in
the Sim if any intensifier is intensifying the aligned
term. The strategies are denoted as AN weaksent
in Table 3 and Table 4.

Interrogative to Declarative Transformation
(+ Antonym/Neg). To capture this strategy we
need to determine first if the verbal irony was ex-
pressed as a rhetorical question. To build a clas-
sifier to detect RQ, we collect two categories of
tweets (4K each) (1) tweets labeled with #sarcasm
or #irony that also contain “?”, and (2) information
seeking tweets containing “?”. We train a binary
classifier using SVM RBF Kernel with default pa-
rameters. The features are Twitter-trained word
embeddings (Ghosh et al., 2015), modal verbs,
pronouns, interrogative words, negations, and po-
sition of “?” in a tweet. We evaluate the training
model on the dev data and the P/R/F1 are 53.2%,
65.4%, and 58.6%, respectively (in future work
we plan to develop more accurate models for RQ
detection). Once we detect the ironic message
was expressed as a RQ, we identify the specific
interpretation strategy accompanying the trans-
formation from interrogative to declarative form:
antonym or negation. These combined strategies
are denoted as ANI!D in Table 3 and Table 4.

Desiderative Constructions: Currently, we use
a simple regular expression “I [w]⇤ wish” to cap-
ture counterfactual cases (AN desiderative in Ta-
bles 3 and Table 4).

Note, when the Simple negation and lexical
antonyms strategies are combined with other strat-
egy (e.g., removing of intensifier), we consider
this combined strategy for the interpretation of
verbal irony and not the simple negation or lexical
antonym strategy (i.e., we do not double count).

Phrasal antonyms and pragmatic inference:
Identifying phrasal antonyms and pragmatic in-
ference is a complex task, and thus we propose
a method of phrase matching based on phrase
extraction via unsupervised alignment technique
in SMT. We use IBM Model 4 with HMM
(Giza++; (Och and Ney, 2000)), phrase extraction
via Moses (Koehn et al., 2007) and the IRST tool
to build the required language models. As post-
processing, we first remove phrase pairs obtained
from the Sim-Hint bitext that are also present in
the set of extracted phrases from the Hint-Hint

Strategies Sim-Hint SIGN
Lex ant 2,198 (40.0) 9,691 (51.8)
Simple neg 1,596 (29.1) 3,827 (20.5)
AN weaksent 895 (16.3) 2,160 (11.6)
ANI!D 329 (6.0) 933 (5.0)
AN desiderative 92 (1.7) 86 (0.5)
AntPhrase+PragInf 357 (6.5) 1912 (10.1)

Table 4: Distribution of interpretation strategies on
two datasets (in %)

bitext. This increases the likelihood of retaining
semantically opposite phrases, since phrases ex-
tracted from the Hint-Hint bitext are more likely
to be paraphrastic. Second, based on the transla-
tion probability scores �, for phrase e if we have
a set of aligned phrases fset we reject phrases
that have � scores less than 1

size(fset)
. Finally,

11,200 phrases are extracted from the Sim-Hint

bitext. The low recall for this strategy is ex-
pected since there are too many ways that users
can employ pragmatic inference or rephrase the
utterance without directly using any antonym or
negation. In future, we will explore neural MT
(Cho et al., 2014) and use external data to gen-
erate more phrases. Since we have not manually
evaluated these phrase pairs, we only use this strat-
egy after we have tried all the remaining strategies
(AntPhrase+PragInf in Table 3 and Table 4).

5.2 Results and Distribution of Linguistic
Strategies

The performance of the models is similar on both
test and SIGNtest sets, showing consistently
good performance (Table 3; 90% F1 for all strate-
gies, except the AntPhrase+PragInf and ANI!D).
Given these results, we can now apply these mod-
els to study the distribution of these strategies in
the entire datasets (Table 4). The strategy distri-
bution between our dataset Sim-Hint and SIGN
dataset is similar and matches the distribution on
the manual annotations on the dev dataset in Ta-
ble 2. The sum of the strategies can exceed the
total number of the pairs since a tweet can con-
tain several ironic sentences that are interpreted
by Turkers. For instance, in “Dave too nice . . . a
nice fella” ! “Dave not nice . . . a mean fella” we
observe the application of two strategies, lexical
antonyms (e.g., nice ! mean) and negation (e.g.,
nice ! not nice).
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6 Discussion

6.1 Hearer-dependent Interpretation
Strategies

We investigate how hearers adopt strategies for in-
terpreting the speaker’s ironic intent. To imple-
ment this study, we selected three Turkers (e.g.,
H1, H2, and H3; In Table 1, Hi

int are generated
by the correspondent Turker Hi), from our crowd-
sourced data, who were able to rephrase at least
five hundred identical Sim messages. Note, we
cannot carry this experiment on the SIGN dataset
(Peled and Reichart, 2017) because the annotators’
information is absent there.

Although the three Turkers choose lexical
antonym and simple negation as two top choices,
there is some variation among them. H1 and
H2 choose antonyms more frequently than nega-
tion while in contrary Turker H3 choose negation
more than antonyms, sometime combined with the
weakening of sentiment strategy. As we mentioned
in Section 4.2, antonyms and direct negation are
not semantically equivalent strategies since the lat-
ter, allows a graded interpretation: if “x is not in-
spiring”, it is not necessarily bad, but simply “x <
inspiring” (Giora, 1995). In Table 1, the Sim-Hint

pair “passionate” ! “boring” and “flattering” !
“gross” (interpretation of H1) have more contrast
than the pair “passionate” ! “not passionate” and
“so flattering” ! “not flattering” (interpretation of
H3). This suggests that H1 perceive the intensity
of negative sentiment towards the target of irony
(“Ed Davey” and “picture of dead animals”, re-
spectively) higher than Turker H3. All three Turk-
ers have chosen the remaining strategies with sim-
ilar frequencies.

6.2 Message-dependent Interpretation
Strategies

Interpretation Strategies and the Type of Se-
mantic Incongruity: We investigate whether
the type of semantic incongruity in the ironic mes-
sage (explicit vs. implicit; see Section 3) influ-
ences the choice of interpretation strategies by the
hearers. To do this, we looked at Sim-level distri-
bution of interpretation strategies used by the hear-
ers for the same ironic message Sim. Table 5 rep-
resents the correlation of linguistic strategies with
the type of semantic incongruity (explicit vs. im-
plicit) as well as the presence and absence of irony
markers.

We notice that Turkers use lexical antonyms

Strategies incongruity marker
Exp. Imp. + �

Lex ant 48.5 34.8 35.7 42.2
Simple neg 24.9 32.3 28.9 30.0
AN weaksent 14.3 17.6 15.7 16.8
ANI!D 5.9 6.1 12.3 3.1
AN desiderative 1.3 1.9 0.9 2.0
AntPhrase+PragInf 5.2 7.1 6.2 6.6

Table 5: Rephrasing Strategies against Incongru-
ency and Irony Markers on Sim-Hint dataset (in
%)

Figure 1: Strategies selected per message (in %)

as interpretation strategy more when the seman-
tic incongruity is explicit than implicit (48.5% vs.
34.8%): the presence of explicit sentiment trig-
gered the use of the antonym strategy. In contrary
they use simple negation more when the semantic
incongruity is implicit than explicit.

We also analyze the interpretation strategies
w.r.t. to the presence (+) or absence (�) of irony
markers. We implement various morpho-syntactic
as well as typographic markers (similar to (Ghosh
and Muresan, 2018)) to identify the presence of
markers. We observe that Lex ant strategy is
used more in cases where the markers are ab-
sent. In Sim-Hint, markers are present twice as
much in the case of implicit (21%) than explicit
incongruity (10%). This finding validates (Burg-
ers et al., 2012) who argued speakers will likely
use markers to signal their ironic intent in implicit
incongruity.

Message interpreted the same by all hearers:
In Figure 1, the vertical columns (purple: Sim-
Hint and grey: SIGN ) depict the distribution (in
%) of tweets strategy-wise. In Sim-Hint dataset,
for 17% of messages (124 Sims) all five Turkers
use the same strategy to interpret the Sims (labeled
as 5 on the X-axis), whereas for 26% (188 Sims),
4 Turkers used same strategy (labeled as 4,1 on X-
axis) and so on.

We observe when the Sims are marked by strong
subjective words e.g., “great”, “best”, etc., they
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have been replaced in 90% of cases as lexical
antonyms (e.g., “great” ! “terrible”). In addition,
the majority of adjectives are used in attributive
position (i.e., “lovely neighbor is vacuuming at
night”), thus blocking paraphrases involving pred-
icate negation. However, not all strong subjec-
tive words guarantee the use of direct opposites
in the Hints (e.g., “flattering” ! “not flattering”;
See Table 1). The choice of strategies may also
depend upon the target of ironic situation (Ivanko
and Pexman, 2003). We implement the bootstrap-
ping algorithm from Riloff et al. (2013) to iden-
tify ironic situations in Sims that are rephrased by
Lexical antonym strategy. We find utterances con-
taining stereotypical negative situations regarding
health issues (e.g., “having migraines”, “getting
killed by chemicals”) and other undesirable nega-
tive states such as “oversleeping”, “luggage lost”,
“stress in life” are almost always interpreted via
lexical antonym strategy.

Utterances where all five Turkers used simple
negation, if negative particles are positioned in
the ironic message with a sentential scope (e.g.,
“not a biggie”, “not awkward”) then they are sim-
ply omitted in the interpretations. This trend can
be explained according to the inter-subjective ac-
count of negation types (Verhagen, 2005). Sen-
tential negation leads the addressee to open up an
alternative mental space where an opposite predi-
cation is at stake.

7 Related Work

Most NLP research on verbal irony or sarcasm has
focused on the task of sarcasm detection treating
it as a binary classification task using either the ut-
terance in isolation or adding contextual informa-
tion such as conversation context, author context,
visual context, or cognitive features (González-
Ibáñez et al., 2011; Liebrecht et al., 2013; Wallace
et al., 2014; Zhang et al., 2016; Ghosh and Veale,
2016; Schifanella et al., 2016; Xiong et al., 2019;
Castro et al., 2019). Unlike this line of work,
our research focuses on how the hearer interprets
an ironic message. The findings from our study
could have multiple impacts on the sarcasm de-
tection task. First, interpretation strategies open
up a scope of “graded interpretation” of irony in-
stead of only a binary decision (i.e., predicting the
strength of irony). Second, nature of semantic in-
congruence and stereotype irony situations can be
useful features in irony detection.

Recently, Peled and Reichart (2017) proposed
a computational model based on SMT to gen-
erate interpretations of sarcastic messages. We
aim to deepen our understanding of such inter-
pretations by introducing a typology of linguis-
tic strategies. We study the distribution of these
strategies via both hearer-dependent and message-
dependent interpretations. Psycholinguistics stud-
ies that have dealt with the hearers’ perception,
have mainly focused on how ironic messages are
processed: through the analysis of reaction times
(Gibbs, 1986; Katz et al., 2004), the role of situa-
tional context (Ivanko and Pexman, 2003) and in
tackling speaker-hearer social relations by anno-
tating ironic texts from different genres (Burgers,
2010). However, no attention has been paid to cor-
relations between how ironic message is expressed
and how it is interpreted by the hearer, including
what linguistic strategies the hearers employ.

8 Conclusions

We leveraged a crowdsourcing task to obtain a
dataset of ironic utterances paired with the hearer’s
verbalization of their interpretation. We proposed
a typology of linguistic strategies for verbal irony
interpretation and designed computational mod-
els to capture these strategies with good perfor-
mance. Our study shows (1) Turkers mostly adopt
lexical antonym and negation strategies to inter-
pret speaker’s irony, (2) interpretations are corre-
lated to stereotype ironic situations, and (3) irony
expression (explicit vs. implicit incongruity and
absence or presence of markers) influences the
choice of interpretation strategies and match with
different explanatory theories (the Gricean ap-
proach links up better with explicit incongruity,
while Relevance Theory with the implicit one).
The latter can have an impact on irony detection
by bringing out more discriminative semantic and
pragmatic features.
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