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Language models (LMs) define probability dis-
tributions over sequences of words. Most LMs are
evaluated using perplexity, a measure related to
the probability assigned by the model to a word
in the corpus. This measure conflates multiple
sources of success (or failure) in predicting the
next word; in particular, many words can be pre-
dicted based on collocational and semantic factors
alone, without a robust representation of the syn-
tactic structure of the sentence.

We argue that more informative syntactic eval-
uation metrics could accelerate progress towards
grammatically sophisticated LMs. Indeed, avoid-
ing ungrammatical predictions may be as impor-
tant as accurately capturing word collocations,
which simple n-gram LMs already excel at. To
this end, we propose a metric that assesses whether
the probability distribution learned by the LM con-
forms to the grammar of the language. Concretely,
given two sentences that differ minimally from
each other, one of which is grammatical and the
other is not, it is desirable for the model to as-
sign a higher probability to the grammatical one
(Lau et al., 2017; Linzen et al., 2016). We pro-
pose to evaluate the LM on sentence pairs that ex-
emplify complex syntactic phenomena; this eval-
uation strategy provides a fine-grained and inter-
pretable breakdown of the strengths and weak-
nesses of an LM.

We automatically generated a large number of
sentence pairs (⇠350,000) using templates. Our
data set included three phenomena considered to
be sensitive to hierarchical syntactic structure (Ev-
eraert et al., 2015; Xiang et al., 2009) — subject-
verb agreement, reflexive anaphora and negative
polarity items — in the following conditions:

(1) Simple agreement:
The farmer smiles/*smile.

(2) Agreement in a sentential complement:
The mechanics said the author laughs/*laugh.

(3) Agreement in short VP coordination:
The authors laugh and swim/*swims.

(4) Agreement in long VP coordination:
The author knows many different foreign lan-
guages and enjoys/*enjoy playing tennis with
colleagues.

(5) Agreement across a prepositional phrase:
The author next to the guards smiles/*smile.

(6) Agreement across a subject relative clause:
The author that likes the security guards
laughs/*laugh.

(7) Agreement across an object relative:
The movies that the guard likes are/*is good.

(8) Agreement in an object relative:
The movies that the guard likes/*like are
good.

(9) Simple reflexive anaphora:
The author injured himself/*themselves.

(10) Reflexive in sentential complement:
The mechanics said the author hurt him-
self/*themselves.

(11) Reflexive across a relative clause:
The author that the guards like injured him-
self/*themselves.

(12) Simple NPI:
No/*most authors have ever been famous.

(13) NPI across a relative clause:
a. No authors that the guards like have ever

been famous.
b. *The authors that no guards like have ever

been famous.

All combinations of subject number and local
noun number were included in the data set; e.g.,
for agreement across a prepositional phrase:

(14) a. the farmer near the parent smiles/*smile
b. the farmer near the parents smiles/*smile
c. the farmers near the parent smile/*smiles
d. the farmers near the parents smile/*smiles

We used our challenge to test three LMs: an n-
gram baseline, a recurrent neural network (RNN)
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RNN Multitask n-gram Humans

SUBJECT-VERB AGREEMENT:
Simple 0.94 1.00 0.79 0.96
In a sentential complement 0.99 0.93 0.79 0.93
Short VP coordination 0.90 0.90 0.51 0.94
Long VP coordination 0.61 0.81 0.50 0.82
Across a prepositional phrase 0.57 0.69 0.50 0.85
Across a subject relative clause 0.56 0.74 0.50 0.88
Across an object relative clause 0.50 0.57 0.50 0.85
Across an object relative (no that) 0.52 0.52 0.50 0.82
In an object relative clause 0.84 0.89 0.50 0.78
In an object relative (no that) 0.71 0.81 0.50 0.79

REFLEXIVE ANAPHORA:
Simple 0.83 0.86 0.50 0.96
In a sentential complement 0.86 0.83 0.50 0.91
Across a relative clause 0.55 0.56 0.50 0.87

NEGATIVE POLARITY ITEMS:
Simple 0.40 0.48 0.06 0.98
Across a relative clause 0.41 0.73 0.60 0.81

Table 1: Overall accuracies for the LSTMs, n-gram model and humans on each test case.

LM trained on a 90M word subset of the English
Wikipedia, and an RNN LM trained on a multitask
objective: language modeling (on the same subset
of English Wikipedia) and Combinatory Catego-
rial Grammar (CCG) supertagging (Bangalore and
Joshi, 1999), which requires rich syntactic annota-
tions (based on the Penn Treebank).

We also designed a human experiment on Ama-
zon Mechanical Turk that mirrored the task given
to the LMs: both versions of a minimal pair were
shown on the screen at the same time, and partici-
pants were asked to judge which one of them was
more acceptable. There is a rich literature showing
that humans make mistakes such as subject-verb
agreement errors (Bock and Miller, 1991; Phillips
et al., 2011); while we would ultimately like to
have LMs that do not make any errors (unlike hu-
mans), matching human performance would be an
impressive first step.

Results of the LMs and humans on our dataset
are shown in Table 1. The n-gram baseline largely
performed at chance, suggesting that good perfor-
mance on the task requires syntactic representa-
tions. The RNN LMs performed well on simple
cases but struggled on more complex ones. Multi-
task training with a supervised syntactic objective
improved the performance of the RNN on the chal-
lenge set; nevertheless, this model was still much
weaker than humans, especially in subject-verb
agreement across relative clauses. This suggests

that our data set is challenging and can motivate
richer language modeling architectures.
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