
Empty Categories Help Parse the Overt

Weiwei Sun
Institute of Computer Science and Technology

The MOE Key Laboratory of Computational Linguistics
Center for Chinese Linguistics

Peking University
ws@pku.edu.cn

Abstract

This paper is concerned with whether deep
syntactic information can help surface pars-
ing, with a particular focus on empty cate-
gories. We consider data-driven dependency
parsing with both linear and neural disam-
biguation models. We find that the information
about empty categories is helpful to reduce the
approximation error in a structured prediction
based parsing model, but increases the search
space for inference and accordingly the es-
timation error. To deal with structure-based
overfitting, we propose to integrate disam-
biguation models with and without empty el-
ements. Experiments on English and Chinese
TreeBanks indicate that incorporating empty
elements consistently improves surface pars-
ing.

1 Introduction

In the last two decades, there was an increas-
ing interest in producing rich syntactic annota-
tions that are not limited to surface analysis. Such
analysis, e.g. deep dependency structures (King
et al., 2003), is usually coupled with grammars
under deep formalisms, e.g. Combinatory Cat-
egorial Grammar, Head-driven Phrase-Structure
Grammar and Lexical-Functional Grammar. Al-
though deep grammar formalisms allow informa-
tion beyond local construction to be constructed, it
is still not clear whether such additional informa-
tion is helpful for surface syntactic analysis. This
is partly because analysis grounded on different
grammar formalisms, e.g. HPSG and CFG, are not
directly comparable.

In the Government and Binding (GB; Chomsky
(1981)) theory, empty category is a key concept
bridging S-Structure and D-Structure, due to its
possible contribution to trace movements. Follow-
ing the linguistic insights underlying GB, a tradi-
tional dependency analysis can be augmented with

empty elements, viz. covert elements (Xue and
Yang, 2013). The new representation provides a
considerable amount of deep syntactic informa-
tion, while keeping intact all dependencies of overt
words. In this paper, we arguably call dependen-
cies among overt words only surface analysis. See
Figure 1 for an English example. Integrating both
overt and covert elements in one unified represen-
tation provides an effective yet light-weight way
to achieve deeper language understanding beyond
surface syntax.

This paper studies graph-based parsing models
for this new representation with a particular fo-
cus on the impact of information about the covert
on parsing the overt. The major advantage of the
graph-based approach to dependency parsing is
that its constrained factorization enables the de-
sign of polynomial time algorithms for decoding,
especially for projective structures. Following GB,
an empty element can only be a dependent. Fur-
thermore, the number and distribution of empty
elements in one sentence are highly constrained.
These properties make polynomial time decoding
for joint empty element detection and dependency
parsing still plausible. To exemplify our idea, we
extend McDonald and Pereira (2006)’s second-
and Koo and Collins (2010)’s third-order models
for the new problem.

The influence of incorporating empty elements
is twofold. On the one hand, the extra informa-
tion enriches the structural information of the out-
puts, which is important to reduce the approxi-
mation error in a structured prediction problem.
On the other hand, predicting empty elements in-
creases the search space for decoding, and thus in-
creases the difficulty of parameter estimation for
disambiguation. To evaluate the impact of empty
categories, we implement different parsing mod-
els based on global linear and neural models, and
conduct experiments on English Penn TreeBank

298
Proceedings of the Society for Computation in Linguistics (SCiL) 2019, pages 298-301.

New York City, New York, January 3-6, 2019

But it ;1 is n’t clear how long GM would be willing ;2 to fight Ford for Jaguar ;3

root

Figure 1: An example from PTB. The dependency structure is according to Stanford Dependency. “;” indicates
an empty element. “;1” indicates an expletive construction; “;2” indicates that the subject for fight, i.e. GM, is
located in another place; “;3” indicates a wh-movement.

(PTB; Marcus et al. (1993)) and Chinese Tree-
Bank (CTB; Xue et al. (2005)). Our experiment
shows that the second effect is prominent. The
accuracy of predicting dependencies among overt
words sometimes declines slightly.

To ensure that predicting the empty elements
helps parse the overt, we need to reduce the new
estimation error. To this end, we propose to inte-
grate scores from parsing models with and with-
out empty elements and perform joint decoding.
The intuition is to leverage parameters estimated
without empty elements as a backoff, which ex-
hibit better generalization ability. We evaluate
two joint decoders: One is based on chart merg-
ing and the other is based on dual decomposi-
tion. Experiments demonstrate that information
about the covert improves surface analysis in this
way. Accuracy evaluated using parsers with differ-
ent factorizations as well as different disambigua-
tion models, and on data sets from different lan-
guages is consistently improved. Especially, for
those sentences in which there is no empty ele-
ment, accuracy is improved too. This highlights
the fact that empty category can help reduce the
approximation error for surface analysis.

This work has been partially published in Zhang
et al. (2017) and Chen et al. (2018).

2 Parsing to Dependency Trees with and
without Empty Elements

In this section, we formally introduce dependency
graphs and graph-based parsing models, as well
as the primary notation used in this article. A de-
pendency graph G = (V, A) is a labeled directed
graph, such that for sentence x = w1, . . . , wn the
following holds:

1. V = {0, 1, 2, . . . , n},

2. A ✓ V ⇥ R ⇥ V .

The vertex set V consists of n + 1 nodes, each
of which is represented by a single integer. Espe-

cially, 0 represents a virtual root node w0, while
all others corresponded to words in x. The arc
set A represents the labeled dependency relations
of the particular analysis G. Specifically, an arc
(i, r, j) 2 A represents a dependency relation r
from head wi to dependent wj . A dependency
graph G is thus a set of labeled dependency re-
lations between the root and the words of x. To
simplify the description in this section, we mainly
consider unlabeled parsing and assume the rela-
tion set R is a singleton. Or taking it another way,
we assume A ✓ V ⇥ V .

Considering implementation, we denote the in-
dex set of all possible dependencies as I =
{(i, j)|i, j 2 {1, · · · , n}, i 6= j}. A dependency
parse then can be represented as a vector

y = {y(i, j) : (i, j) 2 I}

where y(i, j) = 1 if there is an arc (i, j) in the
graph, 0 otherwise. For a sentence x, we define
dependency parsing as a search for the highest-
scoring analysis of x:

y⇤(x) = arg max
y2Y(x)

SCORE(x, y)

Here, Y(x) is the set of all trees compatible with
x and SCORE(x, y) evaluates the event that tree y
is the analysis of sentence x. In brief, given a sen-
tence x, we compute its parse y⇤(x) by searching
for the highest-scored analysis in the set of com-
patible trees Y(x); scores are assigned by SCORE.

In general, performing a direct maximization
over the set Y(x) is infeasible, and a common so-
lution used in many parsing approaches is to intro-
duce a part-wise factorization:

SCORE(x, y) =
X

p2PART(y)

SCOREPART(x, p)

Above, we have assumed that the dependency
parse y can be factored into a set of parts p, each of

299

which represents a small substructure of y; for ex-
ample, y might be factored into the set of its com-
ponent dependencies. The parts are evaluated us-
ing a local scoring function SCOREPART. The fac-
torization thus establishes implicit independence
restrictions between parts, which can be exploited
to efficiently solve the combinatorial optimization
problem involved in the search for the highest-
scoring dependency analysis.

Now consider dependency parsing with empty
category detection. We also formulate the issue
as an optimization problem. Assume that we are
given a sentence x with n normal words. We use
an index set Io = {(i, j)|i, j 2 {1, · · · , n}} to
denote all possible overt dependency edges, and
use Ic = {(i, �j)|i, j 2 {1, · · · , n}} to denote
all possible covert dependency edges. �j denotes
an empty node that precede the jth word. Then a
dependency parse with empty nodes can be repre-
sented as a vector:

z = {z(i, j) : (i, j) 2 Io [Ic}.

Let Z denote the set of all possible z, and
PART(z) denote the factors in the dependency
tree, including edges (and edge siblings in the
second-order model). Then parsing with ECD can
be defined as a search for the highest-scored z⇤(x)
in all compatible analyses, just like parsing with-
out empty elements:

z⇤(x) = arg max
z2Z(x)

SCORE(x, z)

= arg max
z2Z(x)

X

p2PART(z)

SCOREPART(x, p)

The choice of factorization involves a tradeoff
between complexity and expressiveness, and thus
design of factorizations that are both expressive
and efficiently parsable is of critical importance
for practical parsing applications. A number of
dynamic programming (DP) algorithms have been
designed for first- (Eisner, 1996), second- (Mc-
Donald and Pereira, 2006; Carreras, 2007) and
third- (Koo and Collins, 2010) factorization. In
Zhang et al. (2017), we introduced the basic de-
sign of the above algorithms and their extensions
to include detection of empty categories.

3 Experiments

We conduct experiments on both English and Chi-
nese treebanks. In particular, PTB and CTB are
used. Because PTB and CTB are phrase-structure

Table 1: UASo of different individual models on test
data. The upper and bottom blocks present results ob-
tained by sibling and tri-sibling models respectively.

Algo English Chinese
1 91.73 89.16
3 91.70 (�0.03) 89.20 (+0.04)
4 91.72 (�0.01) 89.28 (+0.12)
2 92.23 90.00
5 92.41 (+0.18) 89.82 (�0.18)

treebanks, we need to convert them into depen-
dency annotations. To do so, we use the tool pro-
vided by Stanford CoreNLP to process PTB, and
the tool provided by Xue and Yang (2013) to pro-
cess CTB 5.0. We use gold-standard POS to de-
rive features for disambiguation. We use stan-
dard training, validation, and test splits to facilitate
comparisons. Accuracy is measured with unla-
beled attachment score for all overt words (UASo):
the percentage of overt words with the correct
head. We are also concerned with the prediction
accuracy for empty elements. To evaluate perfor-
mance on empty nodes, we consider the correct-
ness of empty edges. We report the percentage of
empty words in right slot with correct head. The
i-th slot in the sentence means that the position
immediately after the i-th concrete word. So if we
have a sentence with length n, we get n + 1 slots.

Table 1 lists the accuracy of individual mod-
els coupled with different decoding algorithms on
the test sets. We focus on the prediction for overt
words only. Models coupled with Algorithm 1, 3
and 4 are second-order models, while with 2 and
5 third-order ones. When we take into account
empty categories, more information is available.
The empirical results suggest that deep linguis-
tic information does not necessarily help surface
analysis.

We can see from the definition of the extended
algorithms that the search space for decoding is
significantly increased. This results in a side ef-
fect for practical parsing. Given the limit of avail-
able annotations for training, searching for more
complicated structures in a larger space is harmful
to the generalization ability in structured predic-
tion (Sun, 2014). Incorporating empty elements
significantly increases the difficulty for parameter
estimation, and therefore it is harder to find a good
disambiguation model. To control structure-based
overfitting, we propose to combine the two score
functions learned from models with and without

300

Table 2: UASo of different joint decoding models on
test data. “CM” and “DD” are short for joint decoders
based on chart merging and dual decomposition respec-
tively. The upper and bottom blocks present results
obtained by sibling and tri-sibling models respectively.
All improvements are statistically significant.

Algo English Chinese
CM 1+3 91.94 (+0.21) 89.53 (+0.37)

1+4 91.88 (+0.15) 89.44 (+0.28)
DD 1+3 91.96 (+0.23) 89.53 (+0.37)

1+4 91.94 (+0.21) 89.53 (+0.37)
CM 2+5 92.60 (+0.37) 90.35 (+0.35)
DD 2+5 92.71 (+0.48) 90.38 (+0.38)

empty elements.
We evaluate two joint decoders: chart merging

and dual decomposition. Table 2 lists the accu-
racy of different joint decoding models on the test
sets. We can see that the joint decoding frame-
work is effective to deal with structure-based over-
fitting. This time, the accuracy of analysis for
overt words is consistently improved across a wide
range of conditions. Especially, the third-order
model is improved more. We use the Hypothe-
sis Tests method (Berg-Kirkpatrick et al., 2012) to
evaluate the improvements. When the p-value is
set to 0.05, all improvements in Figure 2 is statis-
tically significant.

Table 3: UASo of different neural parsing models on
test data. Results are obtained by sibling models. The
joint decoder is CM.

Algo English Chinese
1 93.59 90.70
3 93.49 90.45

1+3 93.96 92.00

We also evaluate the impact of empty categories
as well as joint decoding on neural dependency
parsing. Table 3 summarizes the results. Due
to the complexity of third-order parsing model as
well as its marginal improvement, we only report
results obtained by second-order parsing. With-
out structure regularization, i.e. joint decoding in
our case, incorporating information about empty
category cannot improve surface parsing. In fact,
the parsing accuracy decreases slightly. When the
model for parsing without empty elements is in-
corporated, empty category always improves sur-
face parsing. The improvement is statistically sig-
nificant.

References
Taylor Berg-Kirkpatrick, David Burkett, and Dan

Klein. 2012. An empirical investigation of statisti-
cal significance in NLP. In Proceedings of the 2012
Joint Conference on EMNLP and CoNLL.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In In Proc.
EMNLP-CoNLL.

Yufei Chen, Yuanyuan Zhao, Weiwei Sun, and Xiao-
jun Wan. 2018. Pre- and in-parsing models for neu-
ral empty category detection. In Proceedings of the
ACL. http://aclweb.org/anthology/P18-1250.

Noam Chomsky. 1981. Lectures on Government and
Binding. Foris Publications, Dordecht.

Jason M. Eisner. 1996. Three new probabilistic mod-
els for dependency parsing: an exploration. In Pro-
ceedings of the 16th conference on Computational
linguistics - Volume 1. pages 340–345.

Tracy Holloway King, Richard Crouch, Stefan Riezler,
Mary Dalrymple, and Ronald M. Kaplan. 2003. The
PARC 700 dependency bank. In In Proceedings of
the 4th International Workshop on Linguistically In-
terpreted Corpora (LINC-03). pages 1–8.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of ACL.
Association for Computational Linguistics, Upp-
sala, Sweden, pages 1–11.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: the Penn treebank. Comput. Lin-
guist. 19(2):313–330.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of EACL-2006. volume 6,
pages 81–88.

Xu Sun. 2014. Structure regularization for structured
prediction. In Advances in Neural Information Pro-
cessing Systems 27, pages 2402–2410.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta
Palmer. 2005. The Penn Chinese treebank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering 11:207–238.

Nianwen Xue and Yaqin Yang. 2013. Dependency-
based empty category detection via phrase struc-
ture trees. In Proceedings of NAACL-2013. Atlanta,
Georgia, pages 1051–1060.

Xun Zhang, Weiwei Sun, and Xiaojun Wan.
2017. The covert helps parse the overt. In
Proceedings of the CoNLL. pages 343–353.
http://aclweb.org/anthology/K17-1035.

301

