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Sound categories often overlap in their acoustics, which can make phonetic category learning
difficult [1]. Several studies have suggested that normalizing acoustics relative to context would
improve category separation [2, 3, 4]. However, recent work shows that normalization is ineffective
for learning the Japanese vowel length contrast from spontaneous child-directed speech, if categories
are not yet known [5]. We analyze why this discrepancy occurs and find that it arises from differences
between spontaneous speech and controlled lab speech. Thus, normalization is unlikely to help
reduce category overlap in real, naturalistic phonetic learning situations.

Most previous work studied normalization on controlled lab speech, while [5] studied sponta-
neous speech. We applied the same analyses from [5] to Japanese controlled lab speech from [6] in
which mothers teach their infants nonce words. This speech was either read (‘Werker Read’) or
spontaneous (‘Werker Spontaneous’), but even the spontaneous speech was less naturalistic than the
data used in [5]: the task from [6] controlled how many short/long vowels there were, and what
contexts they occurred in. We also replicated the analyses from [5], which were run on data from
[7] (‘RJMICC Spontaneous’), and compared normalization efficacy on these three datasets.

Following [5], we used logistic regression to separate short/long vowels based on either unnor-
malized acoustic cues (duration, formants), or cues with all available contextual factors normalized
(regressed) out (Table 1). We further computed an upper bound on normalization performance by
running a third logistic regression using cues with the best possible subset of contextual factors
normalized out (determined by cross-validation on a training set). Contextual factors were broadly
construed to include speaker, vowel quality, neighboring sounds, etc.

Normalizing with all factors was ineffective on all three corpora, but the normalization upper
bound was much better, relative to unnormalized, on Werker Read and Spontaneous than on RJMICC
Spontaneous (Table 2). This means normalization can be helpful on lab-controlled speech or more
balanced spontaneous speech, but is relatively ineffective on the naturalistic spontaneous speech
that infants learn from. The poor performance on spontaneous speech held even when we replaced
linear regression with a neural network, which can learn more complex normalization functions.

We next investigated why normalization didn’t work in specific cases, and found that context-
specific imbalances between short and long vowels made normalization ineffective. Equation 1
quantifies the extent to which imbalances impede normalization.
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In Equation 1, Nl,c is the number of vowels of length l in context c and µl,c is the mean of vowels
of length l in context c. This equation shows how the distance between the overall short and long
vowel category means changes after normalization. Normalization will pull the means apart when
this value is positive and will push the means together when this value is negative. The equation
reveals that all else being equal, if the proportion of long and short vowels differs across contexts,
normalization will actually decrease the distance between category means. This occurs because
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imbalances in a particular context artificially shift the mean duration of vowels in that context (i.e.
having disproportionately many long vowels increases the mean).

Our results call into question the role of normalization in helping learners deal with acoustic
variability in category learning. Learners whose input contains phonotactic constraints, phonological
alternations, and other context-specific imbalances (which are common in language) would do better
to use context as an informative top-down cue to category membership, rather than normalize it out.

Werker Read
Vowel Quality

Speaker
Previous Sound
Following Sound

Prosodic Position
F0

Werker Spontaneous
Vowel Quality

Speaker
Previous Sound
Following Sound

Prosodic Position
F0

RJMICC Spontaneous
Vowel Quality

Speaker
Previous Sound

Following Sound
Prosodic Position

Accented
Duration of Adjacent Sounds

Part of Speech

Table 1: The full set of contextual factors available for each dataset, with factors that were included
in the normalization upper-bound shown in bold.

Data Model Accuracy BIC (Lower is better)
Unnormalized 91.4 246

Werker Read Normalized (all factors) 86.1 399
Normalized (best factors) 95.1 105
Unnormalized 82.9 1072

Werker Spontaneous Normalized (all factors) 78.5 1219
Normalized (best factors) 90.0 869
Unnormalized 91.2 28716

RJMICC Spontaneous Normalized (all factors) 91.2 30990
Normalized (best factors) 91.2 28122
Normalized (neural network) 91.2 28188

Table 2: Efficacy of normalization, averaged across 10 runs. Unnormalized RJMICC performs well,
despite being spontaneous, because 90.9% of the vowels are short.
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