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1 Introduction 

Practical implementation of brain-computer inter-
face (BCI) technology has been hindered by limi-
tations in the speed and accuracy of existing sys-
tems. Such systems primarily utilize the P300 
evoked response potential (ERP) to identify a tar-
get character during repetitive serial presentations 
of possible characters (Farwell and Donchin, 
1988). The use of a visual array means “P300 
spellers” are available primarily to patients with 
gaze control. Moreover, accurate results come at 
the price of typing speed: no more than 15-19 
characters per minute in healthy subjects (Town-
send and Platsko, 2016; Speier et al., 2018), which 
has been deemed insufficient in patient surveys 
(Huggins et al., 2011). Furthermore, the device re-
quires considerable time to set up and calibrate for 
each session (> 20 min.). 

Electrocorticography (ECoG) and local field 
potential (LFP) signals provide superior data in 
that neural recordings are taken directly on top of 
the cortex or within the cortical layer. This allows 
single cell events to be recorded with great tem-
poral and spatial accuracy, and the signals can be 
analyzed without external stimulus presentation. 
To date, only two studies have attempted transla-
tion from neural signals to phoneme sequences by 
means of continuous classification of invasive 
neural data (Herff et al., 2015; Moses et al., 2016).  

While invasive systems promise better transla-
tion speed, the accuracy of these systems remains 
high only with use of a reduced dictionary (10-100 
words). Other design features intended to facili-
tate phoneme classification limit applicability. 
Moses et al. (2016) made use of phoneme onset 

time relative utterance onset, and Herff et al., 
(2015) labeled phonemes by means of speech-
recognition software prior to feature extraction; 
both approaches are capitalize on prior linguistic 
knowledge, making the schemes insufficient for 
classification of unmodified, naturalistic speech.  

Thus, an important challenge to decoding natu-
ralistic speech lies in identifying the appropriate 
inputs for a classificatory scheme. Data manipu-
lation must not aid performance, and the number 
of inputs the classifier must learn should be few 
enough to be learned rapidly, yet extensible to the 
range of words used in naturalistic speech.  

2 Current study 

This study investigates whether isolating the neu-
ral signal of motor movements in articulatory pho-
netics provides more reliable inputs for classifica-
tion than phoneme classes. Individual phonemes 
are defined by feature sets: while the set is unique, 
individual features overlap. Orienting to articula-
tory features can account for the similarities and 
differences that arise in the neural signals of each 
phoneme, resulting in better detection quality with 
a limited number of inputs. A classification 
scheme based on motor movements avoids distor-
tion or ambiguity in recorded speech (Ohala, 
1981) and interference from acoustic feedback 
during self-produced speech (Houde et al., 2002).  

We utilize data from LFP signals, which can be 
processed more quickly and acquired with greater 
accurately than ERP data, and machine methods 
adapted from previous brain-computer interface 
research to improve classification performance 
(Speier et al., 2011; Speier et al., 2013). 
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3 Method 

Phonemes were assigned a series of numbers rep-
resenting their place and manner of articulation 
(Table 1). A subset of phonemes in different con-
texts was tested to determine if context-dependent 
phonetic models such as triphones (Jurafsky, 
2000) are relevant for neural representations. 

3.1 Speech stimuli 
Three subjects performed between 56 and 603 tri-
als, repeating words (“yes”, “no”) or phoneme 
strings (single vowels with and without preceding 
consonants). The inventory of phonemes pro-
nounced varied from eight (three consonants, five 
vowels) to 16 (11 consonants, five vowels) de-
pending on the number of trials. 

3.2 Neural recordings 
Data was obtained from neurosurgical patients 
implanted with intracranial depth electrodes to 
identify seizure foci for potential surgical treat-
ment of epilepsy (Tankus et al., 2012). LFPs were 
recorded from microwires in temporal and frontal 
lobe sites. Preprocessing of the data followed the 
procedure outlined by Moses et al. (2016).  

3.3 Feature selection 
Neural signals converted into feature vectors were 
used to train a convolutional neural network archi-
tecture for the classification process (Figure 1). 
The statistical probability of a phoneme was cal-
culated based on speech corpora  (Weide, 2005; 
Francis and Kucera, 1979), and classifiers provid-
ing the optimal performance for probability distri-
butions over phonemes at each time point were 
then generated by means of a particle filter and 
model of natural language. Our model takes into 
account frequency components, signal latency, 
and the context of phonemic representations. 

3.4 Evaluation metrics 
Trial accuracy is the number of trials classified 
correctly in entirety by the model, divided by the 
total number of trials. Phoneme sequences must 
match their word set label and each phoneme must 
overlap with its label. Classification can be con-
sidered either a true positive (i.e., correct pho-
neme overlapping the label), false positive (i.e., 
classified phoneme that either doesn’t match the 
corresponding label or occurs during silence), or 
false negative (i.e., no detected phoneme during a 
label). Phoneme precision is the proportion of 
classified phonemes that match known labels, and 
phoneme recall is the proportion of phonemes that 
were correctly detected. 

 
Figure 1: Machine learning process for decoding speech. Ground truth values are determined by 
manually labeling phonemes in the audio signal (a). Feature vectors are created at each time point 
based on the associated neural signal (b) and a probability distribution over phonemes is created using 
linear discriminant analysis and a Gaussian mixture model (c). Probabilities are smoothed using a 
temporal process model and prior knowledge of probabilities in natural language (d). 

Phoneme Reference Position Height Rounding Tenseness 
/i/ beet 1 1 1 1 
/ɪ/ bit 2 2 1 2 
/eɪ/ bait 1 3 1 1 
/ɛ/ bet 1 5 1 2 
/æ/ bat 1 6 1 2 
/ə/ about 3 4 1 2 
/ʌ/ but 5 5 1 2 
/ɑ/ cot 5 7 1 1 
/u/ boot 5 1 2 1 
/ʊ/ book 4 2 2 2 

/oʊ/ boat 5 3 2 1 
/ɔ/ bought 5 5 2 2 

/aʊ/ cow 5+4 7+2 2 1 
/aɪ/ hide 5+2 7+2 1 1 
/ɔɪ/ toy 5+2 5+2 2 1 

 

Table 1: Articulatory features for vowel pho-
nemes in the CMU pronouncing dictionary. 
Tongue position varies from front (1) to back 
(5); tongue height varies from close (1) to open 
(7); lip rounding is rounded (1) or unrounded 
(2); and tenseness can be tense (1) or lax (2). 
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4 Results  

Inter-subject variation in the number of phonemes 
obtained precluded an exact comparison across 
subjects. Nonetheless, we observed that for each 
subject classification accuracy was higher for 
vowels within words, suggesting phonetic context 
does play a role in neural signals (Table 2).  

These results indicate the addition of a conso-
nant improved vowel accuracy, even when fewer 
instances of a type were available for classifier 
training. Consonants reflect better classification 
performance than vowels. This is indicated by 
precision and recall metrics, averaged across sub-
jects (Table 3).  

Place of articulation was most informative for 
phoneme precision and exhibited greater overall 
consistency. Articulation that required tongue 
movements (e.g., alveolars) produced the greatest 
precision. An interaction between place and man-
ner of articulation likely played a role in the clas-
sification of stops and fricatives. Manner of artic-
ulation was most informative for phoneme recall. 
This metric showed wide variation, with strong 
results for “vowel-like” nasals and liquids. Voice-
less consonants were detected least often. 

5 Discussion 

The results of our study suggest that phenomena 
relevant to the overt pronunciation of phonemes, 
such as co-articulation in context and the 

articulatory feature set of phonemes, may be en-
coded in their neural representation. These find-
ings allow for speculation as to the extent to which 
such neural signals may also be incorporated into 
the human brain’s system of speech discrimina-
tion, perhaps lending renewed support for a re-
vised version of the motor theory of perception; 
that is, the idea that the identification of vocal tract 
gestures contributes to speech perception (e.g., 
Galantucci et al., 2006; Liberman et al., 1967). 
 Similarly, it is notable that even in the neural rep-
resentation of articulatory features, vowels are 
easier to detect, but more difficult to reliably clas-
sify. These finding parallels those in speech per-
ception research, which finds the isolation of 
vowels to be substantially more difficult, as vow-
els lack clear temporal markers of onset (Johnson, 
1988; Hermes, 1990). Further research may reveal 
whether parallels exist between the relative stabil-
ity of a phoneme’s articulatory feature set over 
time and the robustness of  neurological encoding. 

6 Future directions 

Future directions include full integration of this 
post-hoc analysis into the machine learning 
model. Learning articulatory features rather than 
individual phonemes can significantly reduce the 
dimensionality of the model, allowing for more 
accurate estimation of probabilities and more ef-
ficient use of training data 

Two innovations in data collection are planned. 
Firstly, individual consonant or consonant/vowel 
combinations will be contrasted in minimal pairs 
so as to isolate the neural signal of each feature 
(i.e., /z/ vs. /s/: voiced/voiceless alveolar fricative, 
/ð/ vs. /θ/: voiced/voiceless dental fricative, /z/ vs. 
/ð/: voiced alveolar/dental fricative, /s/ vs. /θ/: 
voiceless alveolar/dental fricative, etc.).  

Isolated vowels Word vowels 
71.8% 87.5% 
31.9% 34.8% 
41.1% 50.0% 

Table 2: Classification accuracy of vowels in 
isolation versus vowels occurring in words. 

Phoneme Articulation Precision Phoneme Articulation Recall 
/d/ voiced alveolar stop 0.46 /m/ voiced bilabial nasal 0.63 
/l/ voiced alveolar liquid 0.42 /l/ voiced alveolar liquid 0.51 

/h/ voiceless glottal frica-
tive 0.35 /r/ 

voiced palatal liquid 
0.48 

/m/ voiced bilabial nasal 0.30 /d/ voiced alveolar stop 0.27 

/r/ voiced palatal liquid 0.30 /v/ 
voiced labiodental frica-

tive 0.15 

/v/ voiced labiodental 
fricative 0.29 /g/ voiced velar stop 0.15 

/p/ voiceless bilabial stop 0.25 /h/ voiceless glottal fricative 0.13 
/g/ voiced velar stop 0.20 /p/ voiceless bilabial stop 0.03 

Table 3: Precision and recall for consonants and their associated articulatory features. 
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Secondly, a subset of silent trials have been col-
lected and may be used to compare the classifica-
tion scheme in covert versus overt language pro-
duction to ascertain if motor signals remain rele-
vant for covert speech. Subjects will be asked to 
silently mouth minimal pairs in addition to their 
covert and overt production, allowing articulation, 
pre-planning, and associated production noise to 
be teased apart in the neural signal. 

A final consideration concerns verification of 
the results of the study in a larger subject pool and 
with patients who possess an alternative electrode 
placement. Electrodes were implanted based on 
clinical need, rather than according to any expec-
tation of their optimal placement for the differen-
tiation of articulatory feature sets. Alternative 
electrode placement may reveal that the robust re-
sults exhibited by certain features are merely in-
dicative of more optimal electrode coverage of the 
area associated with control of that feature.  
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