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Abstract

The Naı̈ve Generalization Model (NGM) (Ca-
plan, 2018) explains word learning phenom-
ena as grounded in the local, dynamical pro-
cess of category formation. A range of exper-
imental evidence (Xu and Tenenbaum, 2007;
Spencer et al., 2011; Lewis and Frank, 2018)
supports the NGM over prior models of word
learning such as Bayesian inference (Xu and
Tenenbaum, 2007). Despite such progress, a
number of theoretical phenomena remain un-
addressed by previous accounts. In this pa-
per, we present a novel extension to NGM
which offers a strong fit to and explanation of
experimental data on homophone acquisition
(Dautriche et al., 2016).

1 Introduction

While the mutual-exclusivity constraint in word
learning (Markman and Wachtel, 1988) demon-
strates that concepts correspond to only a single
word form, in the case of homophony, a single pro-
nunciation can map to multiple distinct words each
with their own meaning. Thus when encountering
a novel label like ‘bat’ (which might refer to both a
type of mammal as well as a tool), the learner must
correctly determine whether this label corresponds
to a pair of distinct homophones rather than a sin-
gle word with a very broad meaning. Dautriche
and Chemla (2016) and Dautriche et al. (2016)
used a variant of the Xu and Tenenbaum (2007)
word learning paradigm to demonstrate that par-
ticipants are more likely to posit homophony - as
opposed to a single broad generalization - as the
largest semantic distance between attested exem-
plars increases. I.e. training items sampled from
a bimodal distribution are more likely to be ac-
quired as homophones compared to learning over
a unimodal distribution (Figure 2). This effect is
consistent over both artificially generated and nat-
urally occuring stimuli, suggesting that it is driven

by the category formation process of word learn-
ing rather than a top-down effect of prior world
knowledge (Dautriche and Chemla, 2016).

2 Model

2.1 The Naı̈ve Generalization Model

The Naı̈ve Generalization Model (NGM) (Caplan,
2018) offers an explanation of word learning phe-
nomena grounded in category formation (Smith
and Medin, 1981). The model explains the mech-
anism by which hearing novel words invites a
learner to create a new category from compo-
nent ‘features’. Such ‘features’ can simply be
thought of as properties that hold for some item
or any component piece of a semantic represen-
tation. While any two properties will be equally
true of an object, in the sense that they are formal
operators, it should be clear intuitively that some
properties are more salient than others in context.

Consider the number 73. It is probably easier
to determine that 73 is odd than it is to determine
that 73 is a prime; its not that its prime-ness is
less valid than its being odd, rather it is simply
a matter of salience (i.e. how noticeable it is to
an average person quickly). The NGM captures
this intuition by encoding mental representations
of words as a vector of features whose magnitudes
are proportional to salience sampled from learning
experience.

2.2 The Extension

During training, initial exposure to a novel pho-
netic label triggers a category formation process;
the model generates a vector representation of the
training item. At all subsequent instances of learn-
ing, the learner evaluates whether newly exem-
plars are a member of the the hypothesized cate-
gory. Encountering a labeled exemplar which is
judged inconsistent with the extant meaning hy-
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pothesis triggers the generation of a competitor
meaning hypothesis. In the original NGM, each
phonetic label was a unique identifier of a word,
which mapped to a single category, thus a only one
competitor hypothesis could ‘win’. In the present
extension, however, an edit distance is computed
between hypotheses for any learning trials which
result in multiple possible meanings: If the repre-
sentations are sufficiently close with respect to a
parameter threshold, they are merged into a sin-
gle vector, which corresponds to a broad general-
ization. However, hypotheses with a larger edit-
distance are kept distinct, resulting in homophony
(visualized in Figure 1).

2.3 Vector Representation
The vector representations are kept consistent with
Caplan (2018). Training items are a randomly or-
dered sequence of vectors with labels. These items
are designed in a hierarchical fashion, such that
items contain features of items superior to them
in the taxonomical tree (e.g. a dog is also an ani-
mal). While the world includes hierarchical rela-
tions between categories, a learner doesn’t neces-
sarily have direct access to that. The model, there-
fore, does not have access to this information of
hierarchy and processes the features as a flat distri-
bution, which ensures that the model does not triv-
ially use this property to generate taxonomy. Dur-
ing learning, the model operates on the features to
generate representations for labels by sampling a
salience value between 0 and 1 from a Gaussian
distribution with mean and deviation that are stip-
ulated as model parameters. Then, to represent the
learned meaning, the model generates a vector that
contains each one of these features with the calcu-
lated salience values. This variability of salience
of features is integral as it allows the system to
have a non-monotonic functionality.

2.4 Vector Evaluation
When the model model encounters training items
with the same label, it postulates homophony by
checking whether the new exemplar and the previ-
ously learner meaning are consistent. To do this,
the model evaluates the distance between the two
representations, which is measured as the normal-
ized sum of the differences between salience val-
ues of features of the representations. The model
sums up the salience values of features that exist
only in one of the representations, and difference
of salience values of features that exist in both

of the representations. Then, the sum is normal-
ized with the maximum number of features, to the
range 0-1. This process of consistency evaluation
is visualized in Figure 1.

3 Evaluation

3.1 Previous Experimental Background

Experiments on adults have investigated how a
single word form can map onto multiple meanings
(Dautriche and Chemla, 2016; Dautriche et al.,
2016). For instance, the homophone ‘bat’ can re-
fer to both a baseball bat and the animal species.
While in principal the ability to acquire homo-
phones is unbounded, in practice it must be subject
to important constraints. Specifically, Dautriche
et al. (2016) hypothesized that people “refer to
convex concepts and form lexical representations
that follow this constraint, in essence showing
early awareness that homophony is a possibility
in natural languages.” To test this, they indepen-
dently provided the subjects with labeled items
with two different distributions, uniform and bi-
modal. In the uniform distribution, the presented
items are distributed evenly across the conceptual
space. In the bimodal distribution, the items are
unevenly distributed such that there are two clus-
ters of items in the conceptual space. After train-
ing, the participants are asked to whether the la-
bel they just learned also applies to a series of
novel items from various position in the concep-
tual space, i.e. if a new item also fell into the
same category as the previously observed items.
The findings suggest that people form conceptual
spaces that match the experimental conditions and
are less likely to extend a label to a new item that
is not within the conceptual space.

Distribution Semantic Gap Outcome

Uniform Small
Broad

generalization
Bimodal Large Homophony

Table 1: Summary of the learner behavior

3.2 Results

Evaluation of the NGM extension was performed
by replicating the stimuli and the testing pro-
cedure from Dautriche and Chemla (2016) and
Dautriche et al. (2016). The model is fed in a
set of word-label pairs which are either uniformly
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Figure 1: Flow chart of the present extension to NGM. The model compares a new exemplar and an already learned
representation. If the distance between the representations is smaller than the threshold parameter, a single broad
representation is generated. Otherwise, both representations are kept, indicating homophony.

Figure 2: Comparison of adult data and model output. The model captures the increase in likelihood of positing
homophony across trials; the separation of exemplars in conceptual space encourages positing homophony. Error
bars show standard deviation.

or bimodally distributed. Then, the model’s level
of generalization is tested on novel words. We
find that, matching human performance, the like-
lihood of positing homophony rather than a single
broad meaning increases as a function of semantic
distance independent of parameter value (Figure
3). Additionally, hyperparameter optimization us-
ing step-wise grid-search offers a strong quantita-
tive fit between human empirical performance and
model output (Figure 2). The average absolute dif-
ference between the model and experimental out-
put is 0.057 and all of the model output scores are
within a single standard deviation of the empirical
finding.

4 Discussion

In this paper, we presented an extension to the
Naı̈ve Generalization Model, a model which ex-
plains word learning phenomena as grounded in
the local, dynamical process of category forma-
tion, to a homophone acquisition. On the con-
trary to the Bayesian inference models, this model

does not assume that hypotheses for the meanings
of words exist a priori; it instead forms represen-
tation of meanings as it processes input. Based
on training samples, the model creates representa-
tion that model mental states, and iteratively al-
ters these representations with new information.
On our view, learning of homophones, like word
learning in general (Caplan, 2018) , is a dynami-
cal, yet mechanistic process in which learning is
driven by local computation rather than any global
probability maximization.
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