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1 Introduction and overview
One prevailing view on system-wide phonological
complexity is that increases in complexity in one
aspect (e.g., phonemic inventory) is offset by reduc-
tions in complexity in other aspects (e.g., phonotac-
tics). Underlying this claim – the so-called “com-
pensation hypothesis” (Martinet, 1955; Moran and
Blasi, 2014) – is the intuition that languages are
generally speaking of roughly equivalent complex-
ity, i.e., no language is overall inherently more
complex than others. This has been hypothesized
to be the result of natural processes of historical
language change, and is sometimes attributed to a
potential linguistic universal of equal “communica-
tive capacity” (Pellegrino et al., 2011).

Methods for making such intuitions and hypothe-
ses objectively measurable and/or testable have
been of interest for some time, though existing mea-
sures are typically relatively coarse. For example,
correlations between the size of vowel and con-
sonant inventories have been extensively studied,
with mixed results – see, e.g., Moran and Blasi
(2014) for a review. Increases in phonemic in-
ventory size are also thought to negatively corre-
late with word length measured in phonemes. In
Nettle (1995), an inverse relationship was demon-
strated between the size of the segmental inven-
tory and the mean word length for 10 languages,
and similar results (with some qualifications) were
found for a much larger collection of languages in
Moran and Blasi (2014). Syllable inventories and
syllable-based measures of phonotactic complexity
– e.g., highest complexity syllable type in Mad-
dieson (2006) – are also used as variables when
looking for evidence of complexity compensation
in phonological systems. Even when moving be-
yond the segment to larger possible structures, how-
ever, complexity is generally measured in terms of
inventory size. Note, additionally, that by exam-
ining negative correlations between word length
and inventory size within the context of complexity

compensation, the word length in phonemes is also
being taken implicitly as a measure of complexity.

In this paper, we take an information theoretic
view of phonotactic complexity, and derive a mea-
sure that permits straightforward cross-linguistic
comparison: bits per phoneme. When given a word,
represented as a sequence of phonemic segments,
and a statistical model trained on a sample of words
from the language, we can measure the bits per
phoneme (which, as we know from Brown et al.
(1992), is an upper bound on the actual value) and
compare across languages. Using a collection of
approximately 1000 “basic” concept words across
more than a hundred languages, we demonstrate
a very high negative correlation between bits per
phoneme and the average length of words measured
in phonemes. Conventional segmental inventory
measures demonstrated relatively poor correlation
with word length.

2 Data, methods and experiments
2.1 NorthEuraLex

We experiment on data from the NorthEuraLex
corpus (Dellert and Jäger, 2017). The corpus is
a concept-aligned multi-lingual lexicon with data
from 107 languages. The lexicons contains 1016
“basic” concepts. Importantly, NorthEuraLex is ap-
pealing for our study as all the words are written in
a unified IPA scheme. For the results reported in
this paper, we omitted Mandarin, since no tone in-
formation was included in its annotations, causing
its phonotactics to be greatly underspecified. No
other tonal languages were included in the corpus,
so all reported results are over 106 languages.

We split the data at the concept level. We cre-
ate 10 random train-dev-test splits where the train-
ing portion has 812 concepts, the dev portion has
101 concepts and the test portion has 103 con-
cepts. We then create language-specific sets with
the language-specific words for the concept to be
rendered.
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Correlation

Measure Pearson r Spearman ⇢

Number of:
phonemes -0.047 -0.054
vowels -0.164 -0.162
consonants 0.030 0.045

Bits/phoneme:
unigram -0.217 -0.222
trigram -0.682 -0.672
LSTM -0.762 -0.744

Table 1: Pearson and Spearman rank correlation coefficients
between complexity measures and average sentence length in
phoneme segments.

2.2 Models

We train three models for measuring bits per
phoneme: a unigram model; a smoothed trigram
model; and an LSTM language model. In each
case, the model is defined over sequences of sym-
bols from an IPA vocabulary (plus end-of-word
symbol), and is estimated on the training data and
tuned on the development data. Bits-per-phoneme
and correlations are calculated on the test set. The
unigram model estimates the probability of each
phone in the sequence simply as the relative fre-
quency of that phone in the training set. The tri-
gram model is estimated as the deleted interpo-
lation (Jelinek, 1980) of the trigram, bigram and
unigram relative frequency estimates, with the mix-
ture parameters estimated on the dev set. Finally,
the LSTM language model over IPA symbols is
akin to a character-level LSTM, which has been
shown to be state of the art for character-level lan-
guage modeling (Merity et al., 2018). We train the
LSTM with an attention mechanism.

2.3 Experiments

In addition to measuring bits-per-phoneme with
our three models, we also measure the size of the
phoneme inventories, as well as the number of vow-
els and the number of consonants, as additional po-
tential measures of phonological complexity. For
each of these variables, we calculated both the Pear-
son correlation and Spearman rank correlation co-
efficients, and present them in Table 1.

In addition to the correlations, we plot the tri-
gram and LSTM bits-per-phoneme for each lan-
guage versus the average length (in IPA tokens)
of words in the collection, for each language in
Figure 1. The plot demonstrates that the LSTM
is, indeed, achieving much lower bits-per-phoneme
than the trigram model for every language in the
collection, i.e., the increased modeling capacity

Figure 1: Bits-per-phoneme vs average sentence length under
both a trigram and an LSTM language model.

yields improved models. In addition, however, the
improved modeling yields an improved correlation
with the length of the string.
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