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Introduction   The existence and characteristics of an innate endowment for language are a matter 
of ongoing debate. Accepting the idea of innate building blocks of grammar (parameters, Chomsky 
1982; constraints, Prince and Smolensky 1993), one may ask whether the learning mechanisms 
that allow a child to find language-specific configurations of these building blocks are a part of the 
innate language endowment as well. Such domain-specific learning mechanisms have been 
proposed for learning of parametric stress: innate cues (data patterns innately specified by the 
learner), default settings, and/or innately-specified ordering on parameter setting have been argued 
to be crucial for successful learning (Dresher and Kaye 1990, Pearl 2007). In this paper we present 
the first evaluations of two domain-general statistical learners, on the complete typology of stress 
systems generated by Dresher and Kaye’s parameter system. On the basis of these quantitative 
results and an analysis comparing learning difficulty to empirically attested stress systems, we 
argue that domain-specific learning mechanisms are not necessary for successful learning. 
Learning Background   The standard probabilistic learner for parameter grammars is Yang’s 
(2002) Naïve Parameter Learner (NPL), which assumes that grammars are defined by a finite set 
of parameters with probabilities over parameter settings. We examine Pearl’s (2011) generalized 
variant of the NPL. This online learner processes each data point by sampling a setting for each 
parameter from the probabilistic grammar and using the selected settings to generate a stress 
pattern for that data point. A match between the predicted and observed pattern adds 1 to the match 
counter 𝑚(𝜓) of every sampled parameter setting ψ, while a mismatch decreases the selected 
settings’ 𝑚(𝜓) by 1. When |𝑚(𝜓)| reaches the threshold b, a reward value 𝑅(𝜓) of 1 or 0 is 
calculated for that parameter setting as in (1a), and the grammar is updated as in (1b), after which 
 𝑚(𝜓) and 𝑚(¬𝜓) are reset to 0, where ¬𝜓 is the opposite setting of the same parameter as 𝜓; 
e.g., 𝜓  = FootHead(L), ¬𝜓  = FootHead(R).  

(1) a. 𝑅(𝜓) = 1 iff  𝑚(𝜓) ≥ 𝑏; 𝑅(𝜓) = 0 iff 𝑚(𝜓) ≤ −𝑏; otherwise, 𝑅(𝜓) = 𝑃𝑜𝑙𝑑(𝜓) 
b. 𝑃𝑛𝑒𝑤(𝜓) =  𝜆𝑅(𝜓) + (1 − 𝜆)𝑃𝑜𝑙𝑑(𝜓), where 𝜆 in [0,1] is the learning rate  

We compare the NPL with the Expectation Driven Parameter Learner (EDPL; Nazarov and 
Jarosz 2017), which uses the same grammar and update rule as the NPL, but determines the reward 
value individually for each parameter to improve fit with the data. In EDPL, 𝑅(𝜓) is defined as 
the probability of that parameter setting according to the current grammar given a match to the 
current data point: 𝑃(𝜓|𝑚𝑎𝑡𝑐ℎ). This is estimated by sampling r times from the current stochastic 
parameter grammar while temporarily fixing ψ. The proportion of matches in the sample yields an 
estimate for 𝑃(𝑚𝑎𝑡𝑐ℎ|𝜓), from which 𝑃(𝜓|𝑚𝑎𝑡𝑐ℎ) is derived by Bayesian reasoning, as in (2). 

(2) 𝑅(𝜓) = 𝑃(𝜓|𝑚𝑎𝑡𝑐ℎ) = 𝑃(𝑚𝑎𝑡𝑐ℎ|𝜓)𝑃𝑜𝑙𝑑(𝜓)
𝑃(𝑚𝑎𝑡𝑐ℎ|𝜓)𝑃𝑜𝑙𝑑(𝜓)+𝑃(𝑚𝑎𝑡𝑐ℎ|¬𝜓)𝑃𝑜𝑙𝑑(¬𝜓)

  

Computationally, the main difference between the EDPL and NPL is that the EDPL takes r samples 
per parameter value per data point, while the NPL takes 1 sample for all parameter settings. This, 
and the distinct reward definition, allows the EDPL to extract more information about the utility 
of each parameter setting from each word (see Nazarov & Jarosz 2017 for further details). 
Simulations   Pearl (2011) showed that the NPL is not effective for learning stress parameters for 
English. Nazarov and Jarosz (2017) showed that the EDPL performed better than the NPL (with b 
= 0) on a handful of typologically diverse stress systems. Here, we present tests of the NPL and 
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the EDPL on all 280 unique stress systems possible with the 2048 combinations of the 11 
parameters in Dresher and Kaye (1990) and Dresher (1999). Every stress system was presented on 
all possible 3-to-6-syllable combinations of CV, CVV, and CVC. We defined a run as successful 
when the stress patterns produced by the learner on each word were 99% correct (out of 100 
samples). EDPL simulations were run for a maximum of 100,000 iterations, with 𝜆 = 0.1, r = 50. 
NPL simulations were run for a maximum of 10,000,000 iterations, 𝜆 = 0.1, b = 0, 5, 10 (cf. Pearl 
2011). Both learners were run 10 times on each of the 280 languages. Results are in Table (3). 
(3)  EDPL NPL, b = 0 NPL, b = 5 NPL, b = 10 
% successful runs (median 
iterations needed to reach success) 

94.4%   
(200) 

0.8%  
(200,000) 

6.3% 
(70,000) 

5.3% (4,100) 

% languages sometimes (always) 
learned successfully 

95.7%  
(91.1%) 

1.1%  
(0.7%) 

8.9%  
(3.6%) 

8.6%  
(4.3%) 

Discussion   The EDPL is far more successful than the NPL in terms of the proportion of successful 
runs, the number of stress systems learned, and the number of iterations needed for learning. The 
NPL with b = 0 reliably learns only two systems: absolute initial stress, and absolute final stress. 
The other two variants of the NPL perform somewhat better thanks to the memory buffer created 
by the match counter, but still learn a small subset of the languages that the EDPL learns. The 
small proportion of stress systems (12 languages, 4.3% of the typology) that the EDPL reliably 
fails to learn are typologically anomalous:2 of these resemble Cairene Arabic (McCarthy 1979) 
and Manobo (Dubois 1976), respectively, in some aspects, while the other 10 are unattested 
variations on these typologically rare themes (Goedemans et al. 2015). This suggests that the 
characteristics of stress systems that pose difficulty to the EDPL may also be affected by a general 
learning pressure in human learners. In that case, the inability of the machine learners investigated 
to learn these languages models this learning pressure and could help explain the near-absence of 
stress systems with these characteristics among the worlds’ languages. 
Conclusion   Our results corroborate and extend Pearl’s (2011) finding that the NPL fails to learn 
attested stress systems; however, we also show that an alternative domain-general learning model 
(EDPL) performs well on a complete stress system typology. Further, while the EDPL fails to 
learn some of the stress systems, we show there is a strong correspondence between the languages 
that pose difficulty for the learner and their empirical (un)attestedness. Together, these findings 
suggest that domain-specific learning mechanisms may not be necessary when domain-general 
learners are equipped with more nuanced statistical learning mechanisms. 
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