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 Introduction. Patterns of reduplication, in which the realization of a morpheme involves 
complete or partial copying of a stem, have a rich descriptive typology. The study of reduplication 
has also been central to many areas of linguistic theory, including the morphology/phonology 
interface, prosodic morphology, and constraint-based approaches to grammar (see Inkelas & 
Downing 2015, Downing & Inkelas 2015 for a comprehensive review). In contrast, computational 
research on morphology has tended to avoid reduplication because of its apparent unwieldiness: 
for full reduplication, a straightforward finite-state implementation requires a state set that grows 
exponentially with the maximum length of stems that can be copied, and even for bounded partial 
reduplication this approach requires exhaustive enumeration of copyable sequences. Most 
computational analyses of reduplication patterns that do exist involve specialized mechanisms and, 
most importantly, are hand-written rather than learned from data (e.g., Walther 2000, Beesley & 
Karttunen 2003, Hulden & Bischoff 2009); one exception, proposed by Frank & Tenenbaum 
(2011), is limited to learning syllable reduplication in ABA and ABB patterns. 
 This talk introduces a recurrent neural network model of reduplication that provides analyses 
for a range of attested patterns, including full reduplication (e.g., talk → talk-talk), reduplication 
with overwriting (e.g., talk → talk-shmalk), and various forms of partial copying. While similar at 
a high level to other encoder-decoder networks that have recently been applied to morphological 
patterns (e.g., Malouf 2017), the model proposed here is distinguished by being highly 
interpretable: it contains functionally-specialized layers whose representations and processes have 
clear counterparts in linguistic analyses of reduplication. Furthermore, because all of the 
operations in the network are differentiable, it offers a novel approach to learning reduplication 
patterns from examples. Several representative simulations probe the potential of this approach. 
 Network representations. The network embeds stems, reduplicants and other affixes, and 
output forms as (exact or approximate) tensor product representations (TPRs; e.g., Smolensky 
1990). Each symbol x is embedded as an m-dimensional vector x; these vectors are arbitrary here 
except that they have privative components indicating the presence of a symbol (as opposed to ε), 
the identities of the word boundaries (start ⋊ and end ⋉), and the consonant/vowel status of each 
non-boundary symbol. Separately, each ordinal position i ∈ 0, ..., n − 1 is embedded as a one-hot 
vector ri (where n is the maximum sequence length that a given network can represent). An exact 
TPR is created by summing bindings (x ⊗ r = x rT) of symbol and position vectors; this is how 
input stems are provided to the model (e.g., ⋊⊗r0 + t⊗r1 + ɑ⊗r2 +k⊗r3 +⋉⊗r4 for talk). 
Representations learned by the network (e.g., for fixed affixes) and outputs created during its 
processing are typically approximate TPRs in which ‘blends’ of symbol vectors are combined with 
position vectors. Multiplying a TPR matrix X with a designated unbinding vector ui returns a 
symbol or blend; computing the negative Euclidean distance of the result to each symbol 
embedding and applying softmax yields a probability distribution over symbols in the ith position. 
 Network processing. The reduplicant layer receives the TPR S of the stem as input and 
performs two operations: it extracts a contiguous portion of the stem (i.e., annotates the remaining 
stem symbols for deletion) and adds a possibly empty affix to the stem. Extraction is performed 
with a bidirectional scan of the stem by a recurrent unit that has minimal hidden state (two scalars); 
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affixation works as described below. The output of this layer is an approximate TPR R. The pivot 
layer identifies the point in the stem at which the reduplicant is added (e.g., prefixed or suffixed) 
with a bidirectional scan of S by a recurrent unit defined as in the reduplicant layer. The 
combination layer than transforms [S, R, pivot] into an output TPR O by (i) unbinding symbol 
vectors from S and binding them to successive position vectors in the output until the pivot point 
is reached, then (ii) unbinding symbol vectors from R and binding them into the output until the 
reduplicant is exhausted, and finally (iii) unbinding any remaining symbol vectors of S and binding 
them successively into the output. The result O can be decoded as described above and thereby 
used to assess the log-probability of each target output symbol for the given stem.  
 Simulations. The results here are typical of several learning simulations with the same 
hyperparameters and other details (Adagrad optimizer, epochs = 1000, minibatch size = 40, 
learning rate = 0.1, affix regularizer coefficient = 0.001). In each case ∼3/4 of the available stem-
output pairs were used for training with the rest held out for testing. No morpheme boundaries or 
other annotations were supplied during training. English full reduplication was learned from a 
large set of monomorphemic nouns (e.g., talk → talk-talk): train accuracy 1.0 (2739/2739), test 
accuracy 1.0 (914/914). The simulation for English shm-reduplication involved a smaller corpus 
of examples gathered from the internet (e.g., talk → talk-shmalk): train 1.0 (42/42), test 0.80 
(12/15); test errors were minimal edits of target outputs (e.g., easy → easy-shmaasy). Bengali echo 
reduplication, which involves full copy with t overwriting an initial consonant (e.g., boj ‘books’ 
→ boj toj ‘books or anything’), was learned from the examples in Khan (2007): train 1.0 (93/93), 
test 1.0 (31/31). Amele iterative reduplication, in which copying the initial consonant-vowel of a 
verb indicates simultaneous action (e.g., bagawen ‘he came out’ → ba-bagawen ‘as he came out’), 
was learned from examples in Roberts (1987): train 1.0 (75/75), test 1.0 (26/26). Finally, Ilokano 
plural reduplication is a textbook case of partial copying in which an initial heavy syllable is 
extracted and prefixed: train 1.0 (27/27), test 0.9 (8/9).  
 Summary. These results support the development of neural networks that successfully learn 
and generalize morphological operations using representations and processes that are linguistically 
interpretable, and motivate extensions to an even wider typology (e.g., foot copying).  
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