
A graph theoretic approach for generating hypotheses about phonetic cues in speech
Human speech is highly variable, and as a result, the speech signal does not contain invariant cues
for identifying phonemes. Instead, models of speech perception suggest that combining multiple
cues and factoring out contextual variability may be the best way to optimize classifier performance
(McMurray and Jongman, 2011). How do we identify what the relevant cues are? Previous work
has generally relied on phonetic analyses and perceptual data to identify candidate cues. Here, we
employ tools from graph theory, providing a novel method for building perceptual models.

We investigate perception of fricatives (/f,v,T,D,s,z,S,Z/), drawing on previous work (Jongman
et al., 2000; McMurray and Jongman, 2011) that has identified 24 cue dimensions for classifying
these sounds. Using the dataset from McMurray and Jongman (2011), we create graphs (networks)
that depict the likelihood of individual talkers producing each phoneme using each of these cues,
along with the likelihoods that cues co-occur in individual tokens. Our goal is to identify subgraphs
that connect all of the talkers using minimal weights/maximal likelihoods, creating a model that
depicts the essential cues needed to correctly classify fricatives produced by the entire set of talkers.

Method. Graphs consist of nodes and weighted edges, with separate graphs for each phoneme.
Nodes represent individual talkers (N=20) and cues. An edge weight between a talker and cue is
defined as the inverse probability that the talker produced a given phoneme with that cue; edge
weights between cues are the inverse probability that tokens contain both cues. To create discrete
nodes for cues, we converted the 24 cue dimensions in the McMurray and Jongman dataset into 48
possible cues by first factoring out contextual differences (using the C-CuRE approach; McMurray
and Jongman, 2011) and then z-scoring the resulting cue-values. Each token was then classified
high or low along each cue dimension (e.g., an F1 value was coded as either F1LOW or F1HIGH).

From these graphs, we identified subgraphs that fully connected each of the 20 talkers with
minimal edge weights (Fig. a); edges with weights ≥5 (corresponding to probabilities of ≤20%)
were not included. The resulting subgraphs are known as Steiner trees, and this method has been
used recently in other fields for similar types of problems (e.g., identifying gene-protein networks
in biology; Bailly-Bechet et al., 2011). The search algorithm was run 100 times for each fricative;
a cue was included in analyses if ≥5% of the simulation runs included that cue. We then trained
multinomial regression classifiers, evaluating classifier accuracy using tokens held out from train-
ing and comparing performance to listeners’ responses. We also compared the Steiner tree classi-
fiers to those trained on the entire set of cues to determine if the algorithm successfully identified
the subset of cues needed without sacrificing accuracy or goodness-of-fit.

Results. We first evaluate the overall classifier performance when trained on all 48 cues, pro-
viding an upper bound on model performance (Fig. b). Overall, this model had a mean accuracy
of 87.3%. Note that this is slightly lower than the 92.9% accuracy reported by McMurray and
Jongman (2011) for classifiers trained on continuous cue-values—the difference reflects the cost
of coding the data in terms of high-low values only. We also evaluated this model’s goodness-of-fit
to the training dataset using the Bayesian Information Criterion (BIC) and compared the pattern of
model responses to those of human listeners by measuring the likelihood of the model given the
listener data. The overall BIC for the model was 3747.7 and the log-likelihood was -4050.4.

We then performed the same analyses for classifiers trained only using the Steiner tree cues.
The number of cues identified for each fricative varied: /f/ has 6 relevant cues, whereas /D/ has
13. This reflects the variability in which cues are used by individual talkers, and the overall relia-
bility of cues for identifying specific phonemes. Overall, there were 31 cues (out of 48 possible)
identified across the set of fricatives. The classifier trained on these cues had a mean accuracy of
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cues used by listeners to accurately recognize speech.
informative data from acoustic measurements speech sounds that can be used to understand the

specific cue-values; by examining a spectrogram and waveform, we can tell whether values are
high or low along each cue dimension, which in turn allows us to classify cues as either present or 
absent in a given speech sound. In sum, this technique provides a useful tool that draws out highly

85.7%, slightly lower, but very close to the performance for the entire set of cues. The Steiner tree 
model, however, had a lower BIC (3671.7) and higher log-likelihood (-3780.5), both indicating 
better fits to the data. Thus, the Steiner tree model provided a better match to listeners’ responses.

Examining the Steiner trees reveals which cues are useful for identifying specific phonemes. 
In the figure below, the Steiner tree for /z/ reveals three cues with clusters of talkers surround-
ing them; several talkers use a high spectral mean at the vowel transition to indicate this sound 
(M1TRANS P), and a small group use voicing during frication (LOWF P). This information allows 
us to make predictions about how /z/ tokens will be classified by listeners. Indeed, the Steiner 
tree could represent listeners’ knowledge of the way this group of talkers produces /z/ sounds. 
Combined with the subgraphs for the other phonemes, this allows us to generate hypotheses about 
the cues listeners use to categorize speech sounds.

Conclusions. Graph algorithms that find Steiner trees provide a novel method of identifying 
phonetic cues used by talkers to reliably indicate specific phonemes. This, in turn, allows us 
to build computational models and classifiers that use these specific cues to recognize speech. 
Reducing the space of potential cues to just those identified in Steiner trees has only a small impact 
on performance and produces results that are closer to listeners’ performance. The method also 
enables easy identification of cues in new speech sound tokens because we do not need to know

(a) Example graphs for /z/. Pink dots are talker nodes; green dots are
cues. Left: complete graph. Right: Subgraph identifying three cues
needed to account for all talkers.
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(b) Model and listener accuracy as
a function of phoneme. Dashed
line is chance performance.
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