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1 Overview

We propose a new way to model derivations, based
on a category (Mac Lane, 1971) Der, building on
the work of Boston et al. (2010) and Ehrig et al.
(1973; 1997). Der is a generalization of FPos, the
category of finite partial orders (fposets) and order-
preserving maps. The objects of Der are ‘variable’
fposets which keep track of derived syntactic objects
(DSOs), parameterized over a sequence of steps. As
with Boston, et al. we consider derivations of de-
pendency trees, here modeled as fposets. However,
we represent structural changes explicitly in deriva-
tions as order-preserving maps. In this sense, we
represent structural changes like the “derivations”
of Ehrig et al. (1997), in that they are morphisms
between dependency structures (explicit mappings
between nodes which preserve dependency). This
gives information relating the structure of each DSO
to each DSO depending on it. These data are suffi-
cient to characterize projection, constituency, gram-
matical relations, and many other properties. A mor-
phism φ : ∆ → Γ in Der is a generalization of
an order-preserving function which induces order-
preserving functions between DSOs associated to
points of ∆ and Γ. In this sense, a morphism of
derivations piecewise maps (portions of) DSOs in ∆
to (portions of) DSOs in Γ.

Since we in principle allow general posets to be
derived objects, and general order-preserving maps
to represent “structural changes”, it is an immediate
consequence that we can model feature-geometry,
feature sharing, etc. in derivations and derived
objects, not expressible in prior models (such as

Boston, et al.).1 Since we encode the structural
change information in the derivation itself, mor-
phisms between derivations will keep track of this
information. Similarly, we can describe grammati-
cal relations just using derivational structure, since
the explicit structural changes are part of the model.

2 Formal properties of Der

A derivation ∆ consists of: (1) a set X of points;
(2) a partial ordering ≤ on X; and (3) for each point
x ∈ X , a partial order >x and an order-preserving
surjection !x : Ux → >x, where Ux = {y ∈ X |
x ≤ y}. The assignments in (3) must meet a ‘com-
patibility condition’: if y ≤ x, then there exists an
order-preserving function fx,y : >x → >y such that
!y ◦ ix,y = fx,y◦!x, where ix,y : Ux ↪→ Uy is just
the subspace inclusion. If such a function exists, it
is unique. Thus, to every point x ∈ X , we have an
associated partial DSO >x, and fx,y : >x → >y
represents the net structural change from the partial
DSO at x to the partial DSO at y whenever y ≤ x.
We write |∆| for the set underlying ∆, and ≤∆ for
the underlying partial ordering on |∆|. Note that >x
has root (least element) !x(x).

We define a morphism of derivations φ : ∆ → Γ
to be a function |φ| : |∆| → |Γ| such that a ≤∆ b
implies that φ(a) ≤Γ φ(b). This function must in-
duce order-preserving maps between partial DSOs,
in that for every x ∈ ∆, there must exist a (neces-
sarily unique) order-preserving function φx : >x →

1Feature sharing and its implementations in syntax have
been described by (Frampton and Gutmann, 2000) and (Peset-
sky and Torrego, 2007); feature geometry in (Harley and Ritter,
2002), (Preminger, 2014), and (Svenonius and Bye, 2011).
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>φ(x) such that !φ(x) ◦ φ = φx◦!x : Ux → >φ(x).
This category is concrete in the sense of Adámek,

et al. (2004) using the obvious (representable) func-
tor |·| : Der → Set mapping ∆ to |∆| and mor-
phisms to their underlying functions.2

All categories have an induced notion of isomor-
phism. A morphism φ : ∆ → Γ is an iso if there is
a morphism ψ : Γ → ∆ such that ψ ◦ φ = 1∆ and
φ ◦ ψ = 1Γ, where 1∆ and 1Γ are the identity func-
tions on ∆ and Γ (Mac Lane, 1971). Two derivations
∆ and Γ are then isomorphic iff their points are in
a bijective correspondence, such that for each point
x ∈ ∆, ψφ(x) ◦ φx = 1>x and φx ◦ ψφ(x) = 1>φ(x)
are isos of partial orders, such that the following di-
agram of fposets commutes for any x ≤∆ y ∈ ∆:

>x >φ(x)

>y >φ(y)

∼

∼

!y,x !φy,φx

That is, the bijection between ∆ and Γ extends
to an isomorphism between corresponding DSOs,
such that these isomorphisms induce isomorphisms
of structural changes (order-preserving functions).
For example, the derivations for ‘I saw the dog’ and
‘I saw the cat’ will be isomorphic, so long as the
feature structure of each word and the dependencies
introduced are in exact correspondence. We can say
that x ≤ y is a projection relation if >y → >x maps
!y(y) to !x(x); in this case we write x @ y. It is im-
mediate that projection is preserved not only under
isomorphism, but arbitrary morphisms.

Concrete categories have an induced notion of
embedding. A morphism ι : S → ∆ is an embed-
ding if the underlying function is injective, and for
any φ : Γ → ∆ such that for all g ∈ Γ, φ(g) ∈ S ,
the function φ|S : Γ→ S is a morphism (Adámek et
al., 2004). We can prove that for any subset S ⊂ |∆|
of any ∆, there is a unique embedding S → ∆
whose underlying set function is the subset inclusion
S ⊂ |∆|. We can show that for a, b ∈ S, a ≤S b
iff a ≤∆ b. The induced map >Sa → >∆

a from the
DSO at a in S to the DSO at a in ∆ is an embed-
ding of fposets for each a ∈ S . An important class
of subderivations are those associated to a subset of
a derived object: for any subset of a derived object

2The functor is represented by a terminal derivation 1, any
singleton with the only possible derivation structure.

K ⊂ >x, x ∈ ∆, there is an induced subderivation
structure on {y ∈ ∆ | x ≤ y such that !x(y) ∈ K}.
Both ‘derivational’ constituents and ‘derived’ con-
stituents are special cases of these. Such substruc-
tures are useful for ‘structured’ implementations of
‘copying the derivation tree’ along the lines of Ko-
bele (2006). More general subderivations show what
dependencies remain if certain objects are removed
from the derivation.

Similarly, every pair of derivations (∆,Γ) has a
product with underlying set |∆| × |Γ| and coproduct
with underlying set |∆| + |Γ|, where × and + are
Cartesian product and disjoint union, respectively.
In fact, Der has all finite limits and colimits.3 Co-
products can be used for representing workspaces,
but they are especially useful for describing struc-
tural changes taking in tuples of objects.

3 Rules and recursive construction of
derivations

We have formalized structural changes as order-
preserving maps f : P → Q between derived ob-
jects, as in (Ehrig et al., 1997). Since FPos, like the
category of directed graphs, has coproducts, a tuple
of maps fi : Pi → Z can be represented by a sin-
gle map +ifi : P1 + . . . + Pn → Z; so, adapting
Ehrig et al.’s method to tuples of syntactic objects,
like in (Boston et al., 2010), doesn’t require any new
constructions. However, in describing a grammar, it
is useful to think of many structural changes as aris-
ing from a common operation, applied in different
contexts. Ehrig et al.’s ‘single pushout method’ does
exactly this. In any category, given objects A,B,
and C and maps f : A → B and g : A → C,
a pushout of f and g is an object E together with
maps k1 : B → E and k2 : C → E such that
k1 ◦ f = k2 ◦ g, such that for any F with maps s1 :
B → F and s2 : C → F such that s1 ◦ f = s2 ◦ g,
there is a unique morphism u : E → F such that
u ◦ k1 = s1 and u ◦ k2 = s2 (Borceux, 1994). As
with all universal constructions, if (E, k1, k2) and
(E′, k′1, k

′
2) are any two pushouts of f and g, then

there is a uniquely determined isomorphismE ∼= E′

between them. We call k1 the pushout of g along f ,
and conversely k2 the pushout of f along g.

3For standard definitions of limits and colimits, see
(Mac Lane, 1971).
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As an example, we show that for any pair of
rooted partial orders R and S, the map f : R +
S → Z which attaches the root of S to the root
of R, f arises as the pushout of a canonical root-
attachment structural change along the unique map
picking out the two roots, as shown in Fig. 1. The
‘basic operation’ is pushed out along the ‘input-in-
context’ (structural description) to obtain the struc-
tural change on R and S.

Figure 1: Example rule attaching one root to another.

To restrict application of a rule, restrict which ver-
tical maps are admissible. For example, we can re-
strict to maps arising as a sum of two maps which
must send a to the root of R and b to the root of S
(if these roots exist).

We can generalize the construction to derivations.
We first note that FPos ↪→ Der is a subcategory,
taking P to the derivation with the same points and
underlying order, where for each x ∈ P , we have
!x : Ux → >x an isomorphism. Consider where A,
B, and C are derivations (say, ∆, Γ, and Σ) with
morphisms φ : ∆ → Γ and ψ : ∆ → Σ. We ask
for the universal fposet completing the diagram, that
is, an fposet P (considered as a derivation) together
with derivation morphisms (P, k1, k2), such that for
any other poset and pair of morphisms (Q, s1, s2),
we have a unique order-preserving map u : P → Q
such that u◦k1 = s1 and u◦k2 = s2. If φ is the basic
‘structural change’ and ψ the structural description,
we can obtain this ‘pushout’ of φ along ψ, an oper-
ation h : Σ → P . Since Der has coproducts, this
also handles operations acting on tuples.

Given an operation h : Σ → P , we want a con-
struction which returns a new derivation containing
Σ as a subderivation, with P ‘on top’, incorporat-
ing the ‘new’ structural change h. This can also be

given with a universal construction. Consider any
derivation E and morphism k : Σ + P → E. We
say that k takes h-images to projection if for ev-
ery x ∈ Σ, k(h(x)) @ k(x). For any operation
h : Σ→ P , there is a universal derivation ext(h) to-
gether with a map k : Σ + P → ext(h) which takes
h-images to projection, in that if k′ : Σ + P → E
takes h-images to projection, then there is a unique
morphism u : ext(h)→ E such that uk = k′.

We can recursively construct derivations by start-
ing with some base fposets, then taking pushouts to
obtain operations, then extending along those op-
erations using the construction above. The model
given so far does not keep track of ‘typing’ of el-
ements in the DSOs (N/V/wh/etc.), nor whether a
feature is ‘active’, nor any ordering between the fea-
tures (indicating the order they must be checked in).
We may add these data to fully emulate Boston et
al. (2010) and similar formalisms using objects of
Der and operations as sketched above. Operations
using feature geometry and feature sharing can be
modeled identically to the root-attachment case us-
ing the same methods, just with different generating
operations and admissible contexts.

4 Comparison to other models

The defining property of Der is that it emphasizes
descriptions of derivations as ‘structured sets’. We
compare our notions of isos and substructures to
those in other theories.

We start by looking at the relevant notions for
DSOs. Stabler & Keenan (2003; 2010) view a
grammar as a set of expressions, together with par-
tial operations. Their method is general, account-
ing for many variants of formal MGs. Two objects
are isomorphic in their sense if there is a permuta-
tion π of the expressions preserving the operations,
such that π takes one object to the other. This no-
tion is not with respect to the structure of the SOs:
embedding a grammar in another can decrease the
isomorphisms between objects, simply by virtue of
there being more items to combine with. There is
no corresponding notion of substructure of a DSO,
though they do give a ‘constituency’ relation be-
tween DSOs. A is a constituent of B in their sense if
there is some sequence of operations taking in an A
and eventually producing a B. Since this quantifies
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over the whole grammar, items not occurring in par-
ticular derivations of B may still be constituents of it;
e.g., if λ ::= yx and λ :: y are items of the grammar,
they will be constituents of λ : x, despite not occur-
ring in the derivation in Fig. 2L. In both cases, these
definitions are about the combinatorial relations be-
tween objects under operations, not about the struc-
ture of the objects involved.

L. R.

Figure 2: Example MG and Der derivations

We turn to isos of derivations. Kobele (2006) con-
structs labeled ordered trees which keep track of the
sequence of steps of the derivation and the derived
SO at each step. Notice if we take order- and label-
preserving maps between them as morphisms, the
isos are then very ‘rigid’ in that only identically la-
beled trees can be isomorphic, unable to compare
the derivations of sentences like those for “I saw the
dog” and “I saw the cat”. We could weaken the
morphisms, such that they do not have to preserve
the labels ‘on the nose’ but rather only ‘up to iso of
DSOs/lexical items.’ Such a notion is at least clear
when DSOs are objects like graphs or fposets. For
example, consider derivations of dependency trees
like those in Boston et al., such as in Fig. 2R. How-
ever, consider the derivation just like that in Fig. 2R,
except a′ and b′ have been reversed. We can iso-
morphically compare the steps of the two deriva-
tions, mapping a to a, and b to b, and bicontinu-
ously compare the a′ < b′ tree to the b′ < a′ tree.
However, this should not be an iso, since the attach-
ment is reversed. Der does not suffer from this is-
sue precisely because it explicitly keeps track of the
relations between steps, even without making refer-
ence to the operation applied. Our notion of isos of
derivations extends to a more robust notion of equiv-
alence of languages, beyond the case of inclusions of
languages such as the ‘lexical extensions’ of Keenan
& Stabler (2003; 2010). None of the other models
can talk about the general subderivations from §3.
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