How far can VOT take us? Voicing categorization with and without the use of VOT

The relationship between voice onset time (VOT) as a phonetic cue and voicing as a phonological
feature serves as a model cue-category system for studying how human listeners map sounds onto
meaningful linguistic categories. In English, VOT is a primary cue for distinguishing unaspirated
stops (/b,d,g/; referred to hereafter as voiced) from aspirated stops (/p,tk/; referred to as voice-
less). VOT is an extremely reliable cue, such that there is little overlap word-initially between
voiced and voiceless tokens. Thus, perhaps VOT is sufficient by itself. On the other hand, other
cues have been proposed as alternatives, and there are a number of secondary cues for voicing
judgments, including fO, formant onsets, and vowel length [1, 2], suggesting that a cue-integration
approach, where listeners combine multiple cues [3], might be more effective.

Here, we investigate the extent to which listeners can accurately determine voicing categories
on the basis of VOT and other cues by evaluating models of speech categorization that include
VOT as a cue by itself, use VOT in conjunction with other cues, or evaluate voicing categorization
without VOT. We trained a series of logistic regression classifiers to make voicing judgments using
phonetic data from a corpus of stop consonants produced by N=12 speakers of American English
[4]. We addressed the following questions: (1) is VOT alone sufficient for voicing categorization,
(2) does the addition of other cues substantially increase categorization accuracy, and (3) in the
absence of VOT, can other cues suffice? Results from the models are compared against listener
data, which sets a high bar for the model; listeners make few errors in consonant recognition and
are particularly accurate when making voicing judgments [as high as 98.9% in quiet; 5].

Method. Thirty-five potential cues were derived from those identified in previous phonetic
studies of stop consonants, as well as cues used in studies of other types of consonants [e.g.,
spectral moments in different time windows for fricatives; 6]. Sounds were produced by 12 talkers
in 15 vowel contexts. Recordings were coded in Praat [7] to identify two acoustic landmarks:
(1) burst onset and (2) vocoid onset; a Praat script then automatically extracted the cues. Tokens
with undefined fO measurements were removed, leaving 1056 tokens for analysis. Based on the
distributional statistics of the cues, we computed their reliability (70icing), using the metric,

rvoicz’ng = (:U/voiced - Mvoiceless)Q/Uvoicedavoiceless7 (1)
where 7,icing 18 the statistical reliability of the cue (i.e., how well it distinguishes the voicing
categories), 4 1s the mean of a category, and o is its standard deviation [8]. This yields a unitless
measure, where higher values correspond to less overlapping distributions, akin to d'.

We then evaluated several models of voicing categorization based on these measurements using
logistic regression classifiers, implemented in R [9]. Each model was trained to predict VOICING
(voiced vs. voiceless) based on different subsets of the cues. The general form of the classifier,

P(VOICING) = 1/1 + exp (Bo + S, 5iCs) (2)

evaluates the additive effect of different sets of acoustic cues (C'), similar to other cue-integration
models [3, 8]. VOICING is the predicted category (VOICED=0; VOICELESS=1), N is the number
of cues, [3; is the regression coefficient for cue C;, and [ is the overall intercept of the model (i.e.,
bias towards voiced vs. voiceless responses). Classifiers were trained on a random 90% of the
tokens and tested on the remaining 10%; this process was repeated 500 times. We evaluated the
following models with VOT: (1) VOT alone, (2) VOT and VL, a purported secondary voicing cue
uncorrelated with VOT [10]; (3) VOT and several other cues cited in the literature (VOT, VL, F1
onset, F2 onset, and fO onset); (4) all 35 cues. Similarly, models were evaluated without VOT: (1)
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the second-most reliable cue after VOT (spectral mean [SM] during the first 40ms); (2) SM and
VL; (3) SM, VL, F1 onset, F2 onset, and fO onset; and (4) all 35 cues except VOT.

Results. As expected, VOT was the most reliable cue (7yicing=81.73; voiced: 22+10 ms;
voiceless: 80120 ms; Fig. 1). The second most reliable cue was the SM (7 0;cing=5.85; voiced:
1095+£904 Hz; voiceless: 240541698 Hz). This cue was correlated with VOT (r=0.50); thus, it
may provide a good alternative. VL was most reliable cue uncorrelated with VOT (r=-0.04).

To test classifiers, we first investigated VOT as the only voicing cue. The classifier did ex-
tremely well, with a mean accuracy of 95+ 2%, well above chance. However, performance still
falls short of human listeners’ (=99%). The second model included VOT and VL as two indepen-
dent cues and performed significantly better than the VOT-only model at categorization (¢t = 12.76,
p < .0001), with a mean accuracy of 974+-2%. However, the model still falls short of human listen-
ers by approx. 2%. Next, the classifier with 5 phonetically-motivated cues had a mean accuracy of
98+1%, which is almost at listener level. Lastly, inputting all 35 cues yielded the same results as
the previous model (98+1%), suggesting those cues do not provide more information (Fig. 2).

In order to see how well listeners can identify voicing without VOT, we substituted the second
best cue (SM) for VOT. This cue is not nearly as reliable (70;cing=5.85); as such, the model per-
formed more poorly, with 71+4% correct (Fig. 3). Subsequent simulations evaluated models with
SM and VL (72+4%), SM and other phonetically-motivated cues (78+4%), and a model with
all 34 cues except VOT (8743%). These results provide evidence that secondary cues can give
the listener some information to assist in accurate categorization, but the classifier is never able
to achieve human-like performance without VOT. However, a VOT-only model still falls short. A
cue-integration approach including VOT and secondary cues, offers the best model of categoriza-
tion. Thus, VOT appears to be a necessary, but not sufficient, cue for voicing judgments.
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Figure 1: Cue reliabilities.
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Figure 2: Models with VOT.
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Figure 3: Models without VOT.
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