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Abstract

A fundamental question in word learning is
how, given only evidence about what objects
a word has previously referred to, children are
able to generalize the total class (Smith, 1979;
Xu and Tenenbaum, 2007). E.g. how a child
ends up knowing that ‘poodle’ only picks out
a specific subset of dogs rather than the whole
class and vice versa. Here we present a com-
putational model of word learning which ac-
counts for a wide range of previously conflict-
ing experimental findings.

1 Generalization in Word Learning

Words are invitations to form categories (Waxman
and Markow, 1995). It is striking that infants in-
terpret a word as selecting members of some kind,
rather than simply naming an individual referent.
Put clearly in (Waxman, 2003): “Novel words invite
infants to assemble together objects into categories
that would otherwise (without linguistic context) be
perceived as disparate and distinct.”. This is not
to say that categorization functions solely through
the learning of words, but rather that the process re-
ceives a notable boost from linguistic support.

If hearing a novel word like ‘fep’ prompts the
learner to create a category, we would like to know
what knowledge ends up encoded by that process
and how. Once a child has seen that ‘poodle’ can
refer to whatever instances of poodles they were ex-
posed to, how does he know that ‘poodle’ can refer
to all (and only) items in the real class of poodles?

∗I would like to thank Charles Yang for consistent guidance
and advice throughout this project.

This is in contrast to both failing to generalize suffi-
ciently, e.g. erroneously positing that the word only
refers to their pet, as well as overgeneralizing to the
set of all dogs.

The Naı̈ve Generalization Model (NGM) pre-
sented in this paper offers an explanation of word
learning phenomena grounded in category forma-
tion (Smith and Medin, 1981) and learning theory
(Gallistel, 1990). The NGM captures relevant experi-
mental findings (Xu and Tenenbaum, 2007; Spencer
et al., 2011) which cannot straight-forwardly be ac-
counted for on a Bayesian inference theory (Xu and
Tenenbaum, 2007).

2 Experimental Findings in Generalization

The most popular experimental setup for investi-
gating the mechanisms behind learners’ behavior
in word generalization tasks stems from (Xu and
Tenenbaum, 2007). In an ostensive labeling task,
participants’ are asked to extend the category pre-
sented in a training set by selecting matching items
from a miniature ‘test-world’.

This setup consists of photographs of objects dis-
tributed across different broad categories or genres
(animals, vegetables, and vehicles) to be used as
stimuli. For any particular item, we operationally
define a ‘basic-level’ term (Markman, 1990) as the
label which would most likely be given to it in iso-
lation (e.g. a dog) . In relation to the basic-level
term, that same item might also be referred to using
a ‘subordinate-category label’ such as ‘poodle’ or a
‘superordinate-category label’ such as animal.

On each trial, participants are presented with one
or several training objects below the test grid along
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with an accompanying nonce word-label. For in-
stance, a participant may be shown a picture of a dal-
matian with the label ‘fep’ and asked to pick out all
the other ‘feps’ from the simultaneously displayed
test grid. While popularized by (Xu and Tenen-
baum, 2007), this paradigm has been replicated and
extended numerous times.

The broad experimental results are as follows:
When only a single object is presented with a la-
bel, then subjects most commonly generalize to the
basic-level category (e.g. selected all dogs rather
than only dalmations given that the single training
item was a dalmatian) (Xu and Tenenbaum, 2007;
Spencer et al., 2011). When multiple training ex-
amples are presented simultaneously, then general-
ization is made narrower (e.g. selecting only dal-
matians). This ‘suspicious coincidence effect’ has
been presented in favor of global evaluation in word
learning. Yet, this faces empirical challenges from
conditions under which the ‘effect’ is not obtained.
In particular, when those same training items are
given a single label but displayed to participants in
sequence rather than all at once then this effect dis-
appears (Spencer et al., 2011). i.e. all dogs are cho-
sen rather than only dalmatians. Models of Bayesian
inference do not predict this effect of presentation
style which is well-captured under the NGM.

3 Bayesian Inference Models

Existing models of category generalization in word
learning have been built on hypothesis comparison
and indirect negative evidence ((Xu and Tenenbaum,
2007) and subsequent work). Multiple innate hy-
potheses compete based on the relative probability
that each hypothesis would be generated by the at-
tested input data.

The ‘suspicious coincidence effect’ (SCE) is that,
when presented with a single exemplar, learners
tend to assume a ‘basic-level’ of generalization (e.g.
DOG) whereas when multiple like exemplars are pre-
sented simultaneously then only a narrow general-
ization is most common (such as POODLE).

This, however, is inadequate to capture the exper-
imental facts from (Spencer et al., 2011). When
participants are presented the same stimuli in se-
quence (including a short temporal gap between
items) rather than simultaneously the SCE disap-

pears. The Bayesian model presented in (Xu and
Tenenbaum, 2007) does not predict this effect of
presentation style.

In the next section, we introduce the Naı̈ve Gen-
eralization Model (NGM, which implements a sys-
tem of word learning as category formation. Learn-
ers extract properties of objects and store a mental
record of them. Grounded in literature on category
formation (Smith and Medin, 1981), inductive rea-
soning (Lawson, 2017) and learning theory (Gal-
listel, 1990), these mental representations serve as
the basis of word meanings and generalization. The
NGM captures a range of experimental findings with
respect to word learning, including the effect of pre-
sentation style that is unpredicted by models of hy-
pothesis evaluation or Bayesian inference.

4 Naı̈ve Generalization Model

Counter to the Bayesian inference account, we argue
that word learning is a dynamical process in which
hypothesized representations are generated and only
locally revised (as needed) based on input data. On
this account, not all plausible hypotheses are simul-
taneously available. Meanings are built incremen-
tally; any evaluation metric functions only over what
is generated from input by the learner. As this does
not necessarily maximize global probability of the
output vocabulary, we term this model the Naı̈ve
Generalization Model (NGM).

The difference in performance between paral-
lel and sequential experimental presentations of the
same stimuli is driven by creating a category from
multiple examples rather than comparing an extant
category to new data. Starting from the assumption
that encountering a word is an invitation to form a
category, the first instance of a word is qualitatively
different from other instances. Upon initial occur-
rence there are no prior hypothesized meanings to
compare against, and so a representation must be
created. At all future instances, however, the learner
must ask decide whether a new token is consistent
with the current mental representation or not. If
the prior hypothesized representation is inconsistent
with current input, then an alternative hypothesis
may be created.
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4.1 Features

Our implementation follows the classic literature on
categories (Smith, 1979; Smith and Medin, 1981)
by representing concepts as salient features. What
we call ‘features’ are simply properties that hold for
some item. While any two properties may be equally
true of an object, some properties are more salient
than others to an observer. To simulate the degree to
which a property is noticed by a learner, we model
two normal distributions over salience differing only
in mean; one for features consistent with a basic-
level bias and one for all other features.

When a learner encounters a new word, the model
samples from the appropriate salience distribution
for each feature present. The result is a mental rep-
resentation as a gradient vector of features. The
learner iterates over the items displayed (if more
than one present) and each feature present in the real
world will be stored in mental representation at a
proportion relative to that feature’s salience.

A representation R is computed for a label w
based on an example set of training items T by sam-
pling all features ∀f with salience S(f). This is
adapted from classic approaches to category mem-
bership calculation (Smith & Medin 1981).

Rw =
∑

t∈T
∀f ∈ tp, S(f) (1)

tp is the set of features (or properties) of the item
t. S(f) is the salience function for a feature f which
returns a value samples from the normal distribution
with mean µ determined by the hierarchical level of
f .

Multiple (simultaneous) exposures for a label
causes entrenchment (Lawson, 2017). We sum the
values of each present feature (until reaching a ceil-
ing condition). This is in line with previous featu-
ral implementations of categories, e.g. (Kruschke,
2008).

When items are presented in sequence, only
salient features are encoded in representation. This
‘sparse’ representation corresponds to a broad cate-
gory generalization. Simultaneous presentation, on
the other hand, entrenches shared features between
present items (Gentner and Namy, 1999; Rescorla,
1980). This entrenchment of otherwise non-salient
features leads the representations to correspond to

more specific, narrow categories.

4.2 Computing Distances

A standard distance calculation is made between
any new objects and existent mental representations
(Smith and Medin, 1981). The comparison of that
value to a fixed parameter threshold determines cat-
egory membership. Distance is then calculated be-
tween a test item and a mental representation for
a label by summing the difference of any feature
present in the mental representation that is miss-
ing in the test object under consideration. How-
ever, there is no cost incurred for features which are
present in a test item but are missing in the mental
representation of a class. For example, every ob-
ject in the world is going to be perceived as having
some color value, but that color plays no role in these
items’ membership in various natural classes.

5 Results

Tuning and testing of the computational model was
performed by feeding in the same input data from
published experiments and scoring the resultant out-
put like the empirical findings. Parameter tuning
was performed by running the model over the two
basic experimental conditions from (Xu and Tenen-
baum, 2007) – training over a single exemplar and
training over three basic-level matches in parallel.
Testing was then performed on all experimental con-
ditions from (Spencer et al., 2011) varying the hier-
archical organization and presentation style of the
input.

This model captures the broad range of experi-
mental findings in category generalization as shown
in (Table 1). The mean divergence per trial between
the experimental data and the output of the model
is 5.67%. 96% of trial configurations were within a
single standard deviation of the empirical finding.

6 Discussion

The Naı̈ve Generalization Model presented here is
able to account for a range of experimental findings
in word learning. This includes the ‘suspicious co-
incidence’ effect from (Xu and Tenenbaum, 2007).
Importantly though, the NGM captures effects of pre-
sentation style (Spencer et al., 2011) which are not
predicted on a model of Bayesian Inference. The
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Figure 1: Table showing results comparison between experiments run in (Spencer et al. 2011) and output of the present model.

local computations of the NGM are consistent with
other types of word learning models such as Pur-
suit (Stevens et al., 2016) with respect to referent-
mapping. Word learning is a dynamical process
in which hypothesized representations are generated
and only locally revised (as needed) based on subse-
quent input.
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